首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents a study on screening of microalgal strains from the Peking University Algae Collection and heterotrophic cultivation for biodiesel production of a selected microalgal strain. Among 89 strains, only five were capable of growing under heterotrophic conditions in liquid cultures and Chlorella sp. PKUAC 102 was found the best for the production of heterotrophic algal biodiesel. Composition of the growth medium was optimised using response surface methodology and optimised growth conditions were successfully used for cultivation of the strain in a fermentor. Conversion of algal lipids to fatty acid methyl esters (FAMEs) showed that the lipid profile of the heterotrophically cultivated Chlorella sp. PKUAC 102 contains fatty acids suitable for biodiesel production.  相似文献   

2.
Poly-(3-hydroxybutyrate) (PHB) is a polyester with biodegradable and biocompatible characteristics and has many potential applications. To reduce the raw material costs and microbial energy consumption during PHB production, cheaper carbon sources such as sucrose were evaluated for the synthesis of PHB under anaerobic conditions. In this study, metabolic network analysis was conducted to construct an optimized pathway for PHB production using sucrose as the sole carbon source and to guide the gene knockout to reduce the generation of mixed acid byproducts. The plasmid pMCS-sacC was constructed to utilize sucrose as a sole carbon source, and the cascaded promoter P3nirB was used to enhance PHB synthesis under anaerobic conditions. The mixed acid fermentation pathway was knocked out in Escherichia coli S17-1 to reduce the synthesis of byproducts. As a result, PHB yield was improved to 80% in 6.21 g/L cell dry weight by the resulted recombinant Escherichia coli in a 5 L bed fermentation, using sucrose as the sole carbon source under anaerobic conditions. As a result, the production costs of PHB will be significantly reduced.  相似文献   

3.
The present study focused on improving docosahexaenoic acid (DHA) production by Schizochytrium sp. through N-methyl-N-nitro-N-nitrisiguanidine treatment coupled with ultraviolet radiation based on the metabolic pathway analysis. The activity of glucose-6-phosphate dehydrogenase of the mutant was higher than the parent strain, which indicated that the hexose monophosphate pathway of the mutant was strengthened, and more NADPH was thus produced. Also, the activities of malic enzyme and ATP–citrate lyase in the cell extract of the mutant were higher than the parent strain, which indicated that the screening method increased NADPH and acetyl–CoA supply in vivo effectively. Finally, in the batch culturing of the mutant, 34.84% higher lipid was accumulated with the cell dry weight at the same level compared with the parent strain. Moreover, the DHA percentage of the total fatty acids up to 56.22% was achieved using the mutant, which was 38.88% higher than the parent strain. When the cultures were maintained under appropriate conditions, the final DHA yield was 0.20 and 0.11 g/g dry biomass, for the mutant and parent, respectively.  相似文献   

4.
Propionic acid bacteria are the source of many metabolites, e.g., propionic acid and trehalose. Compared to microbiological synthesis, the production of these metabolites by petrochemical means or enzymatic conversion is more profitable. The components of microbiological media account for a large part of the costs associated with propionic fermentation, due to the high nutritional requirements of Propionibacterium. This problem can be overcome by formulating a medium based on the by-products of technological processes, which can act as nutritional sources and at the same time replace expensive laboratory preparations (e.g., peptone and yeast extract). The metabolic activity of P. freudenreichii was investigated in two different breeding environments: in a medium containing peptone, yeast extract, and biotin, and in a waste-based medium consisting of only apple pomace and potato wastewater. The highest production of propionic acid amounting to 14.54 g/L was obtained in the medium containing apple pomace and pure laboratory supplements with a yield of 0.44 g/g. Importantly, the acid production parameters in the waste medium reached almost the same level (12.71 g/L, 0.42 g/g) as the medium containing pure supplements. Acetic acid synthesis was more efficient in the waste medium; it was also characterized by a higher level of accumulated trehalose (59.8 mg/g d.s.). Thus, the obtained results show that P. freudenreichii bacteria exhibited relatively high metabolic activity in an environment with apple pomace used as a carbon source and potato wastewater used as a nitrogen source. This method of propioniate production could be cheaper and more sustainable than the chemical manner.  相似文献   

5.
Image analysis technique was applied to identify morphological changes of pellets from white-rot fungus Trametes versicolor on agitated submerged cultures during the production of exopolysaccharide (EPS) or ligninolytic enzymes. Batch tests with four different experimental conditions were carried out. Two different culture media were used, namely yeast medium or Trametes defined medium and the addition of lignolytic inducers as xylidine or pulp and paper industrial effluent were evaluated. Laccase activity, EPS production, and final biomass contents were determined for batch assays and the pellets morphology was assessed by image analysis techniques. The obtained data allowed establishing the choice of the metabolic pathways according to the experimental conditions, either for laccase enzymatic production in the Trametes defined medium, or for EPS production in the rich Yeast Medium experiments. Furthermore, the image processing and analysis methodology allowed for a better comprehension of the physiological phenomena with respect to the corresponding pellets morphological stages.  相似文献   

6.
Bioethanol produced from lignocellulosic materials has been considered a sustainable alternative fuel. Such type of raw materials have a huge potential, but their hydrolysis into mono-sugars releases toxic compounds such as weak acids, which affect the microorganisms' physiology, inhibiting the growth and ethanol production. Acetic acid (HAc) is the most abundant weak acid in the lignocellulosic materials hydrolysates. In order to understand the physiological changes of Saccharomyces carlsbergensis when fermenting in the presence of different acetic acid (HAc) concentrations, the yeast growth was monitored by multi-parameter flow cytometry at same time that the ethanol production was assessed. The membrane potential stain DiOC6(3) fluorescence intensity decreased as the HAc concentration increased, which was attributed to the plasmic membrane potential reduction as a result of the toxic effect of the HAc undissociated form. Nevertheless, the proportion of cells with permeabilized membrane did not increase with the HAc concentration increase. Fermentations ending at lower external pH and higher ethanol concentrations depicted the highest proportions of permeabilized cells and cells with increased reactive oxygen species levels. Flow cytometry allowed monitoring, near real time (at-line), the physiological states of the yeast during the fermentations. The information obtained can be used to optimize culture conditions to improve bioethanol production.  相似文献   

7.
The condensation of 2-aminobenzamide with aldehydes or ketones has been achieved using cellulosesulfonic acid under mild reaction conditions to furnish 2,3-dihydroquinazolin-4(1H)-ones in good yields with a high selectivity. The use of biodegradable solid acid catalyst, cellulosesulfonic acid makes this method quite simple, more convenient, and practical. This catalyst was also found to be very active for the synthesis of hydroxyalkylquinazolin-4-ones from cyclic enol ethers.  相似文献   

8.
The present study was aimed to evaluate the suitability of agro-wastes and crude vegetable oils for the cost-effective production of poly-β-hydroxybutyrate (PHB), to evaluate growth kinetics and PHB production in Alcaligenes faecalis RZS4 and Pseudomonas sp. RZS1 with these carbon substrates and to study the biodegradation of PHB accumulated by these cultures. Alcaligenes faecalis RZS4 and Pseudomonas sp. RZS1 accumulates higher amounts of PHB corn (79.90% of dry cell mass) and rice straw (66.22% of dry cell mass) medium respectively. The kinetic model suggests that the Pseudomonas sp. RZS1 follows the Monod model more closely than A. faecalis RZS4. Both the cultures degrade their PHB extract under the influence of PHB depolymerase. Corn waste and rice straw appear as the best and cost-effective substrates for the sustainable production of PHB from Alcaligenes faecalis RZS4 and Pseudomonas sp. RZS1. The biopolymer accumulated by these organisms is biodegradable in nature. The agro-wastes and crude vegetable oils are good and low-cost sources of nutrients for the growth and production of PHB and other metabolites. Their use would lower the production cost of PHB and the low-cost production will reduce the sailing price of PHB-based products. This would promote the large-scale commercialization and popularization of PHB as an ecofriendly bioplastic/biopolymer.  相似文献   

9.
Magnolia flower buds are a source of herbal medicines with various active compounds. In this study, differences in the distribution and abundance of major essential oils, phenolic acids, and primary metabolites between white flower buds of Magnolia heptapeta and violet flower buds of Magnolia denudata var. purpurascens were characterised. A multivariate analysis revealed clear separation between the white and violet flower buds with respect to primary and secondary metabolites closely related to metabolic systems. White flower buds contained large amounts of monoterpene hydrocarbons (MH), phenolic acids, aromatic amino acids, and monosaccharides, related to the production of isoprenes, as MH precursors, and the activity of MH synthase. However, concentrations of β-myrcene, a major MH compound, were higher in violet flower buds than in white flower buds, possibly due to higher threonine levels and low acidic conditions induced by comparatively low levels of some organic acids. Moreover, levels of stress-related metabolites, such as oxygenated monoterpenes, proline, and glutamic acid, were higher in violet flower buds than in white flower buds. Our results support the feasibility of metabolic profiling for the identification of phytochemical differences and improve our understanding of the correlated biological pathways for primary and secondary metabolites.  相似文献   

10.
Growth and fermentation characteristics, biomass composition, lipid characterization and metabolic profiling analysis of two different Schizochytrium sp. strains, the original strain and the industrial adaptive strain, were investigated in the fed-batch fermentation process. The final cell biomass, total lipids content, docosahexanoic acid (DHA) content and DHA productivity of the adaptive strain were much higher than those of the original strain. The metabolic distinctions which extensively existed between these two strains were revealed by the score plot of principal component analysis. In addition, potential biomarkers responsible for discriminating different strains were identified as myo-inositol, histidine, alanine, asparagine, cysteine, and oxalic acid. These findings provided new insights into the industrial strain screening and further improvement of DHA production by Schizochytrium sp.  相似文献   

11.
Glycerol, a biodegradable and virtually non-toxic bio-sourced chemical can be used as an alternative, reusable, sustainable solvent, with so far limited application in the field of green organic chemistry. Herein, the reaction conditions have been screened for the ring-closing metathesis (RCM) of N,N-diallyltosylamine and diethyl diallylmalonate in glycerol, under microwave irradiation and in the presence of the most common commercially available RCM catalysts. The products were isolated in high yield after extraction and the catalyst could be recycled up to two times. Results with simultaneous cooling of the reaction vessel under microwave irradiation are also reported.  相似文献   

12.
Matrix-assisted laser desorption ionization (MALDI) with a time-of-flight analyzer has been used to analyze bacterial lipooligosaccharides (LOS). Crude LOS preparations from pathogenic strains of Haemophilus influenzae and Haemophilus ducreyi and a commercial preparation of lipopolysaccharide from Salmonella typhimurium were treated with hydrazine to remove O-linked fatty acids on the lipid A moiety. The resulting O-deacylated LOS forms were water soluble and more amenable to cocrystallization with standard MALDI matrices such as 2,5-dihydroxybenzoic acid and 1-hydroxyisoquinoline. Under continuous extraction conditions, O-deacylated LOS yielded broad peaks with abundant salt adducts as well as forming prompt fragments through β-elimination of phosphoric acid, that is, [M-H3PO4-H]. However, when a time delay was used between ionization and extraction (“delayed extraction”) a significant improvement was seen in both mass resolution and the stability of the molecular ions against β-elimination of phosphoric acid, especially in the negative-ion mode. Both an external two-point calibration and an internal single-point calibration were used to assign masses, the latter of which provided the highest degree of accuracy (better than 0.01% in most cases). At higher laser powers, the LOS molecules cleave readily between the oligosaccharide and lipid A moieties yielding a number of prompt fragments. Postsource decay (PSD) analysis of selected molecular ions provided a set of fragments similar to those seen in the linear spectra, although they were more limited in number because they were derived from a single LOS-glycoform. Both the prompt and PSD fragments provided important structural information, especially in assigning the phosphate and phosphoethanolamine substitution pattern of the lipid A and oligosaccharide portions of LOS. Last, with the addition of ethylenediaminetetraacetic acid followed by pulsed sonication, the relatively insoluble (and impure) LOS preparations yielded MALDI spectra similar to the O-deacylated LOS, although these intact LOS preparations required higher laser powers to ionize and were generally more affected by competing impurities.  相似文献   

13.
The marine microalgaePhaeodactylum tricornutum, with a high lipid content constituting 20–60% of its dry weight under controlled growth conditions (1), has recently come into focus as a potentially rich source of dietary marine vegetable oil. In particular, this species has a characteristic high content of eicosapentenoic acid (EPA), which has potential benefits in human nutrition, since it cannot be synthesized in vivo in the human body. Some factors that could alter the biochemical composition ofPhaeodactylum tricornutum in favor of lipid production have been examinated in this study.  相似文献   

14.
Microalgal lipids were separated into two fractions, triacylglycerols (TAGs) and free fatty acids (FFAs), by solid-phase extraction employing sodium carbonate as the sorbent and dichloromethane (20% by volume) in n-hexane as the extracting solvent. The TAG fraction was then saponified, followed by acidification, extraction and tert-butyldimethylsilyl esterification. The FFA fraction was directly acidified, extracted and derivatized. From the lipid extracts of eight microalgal species examined, a total of 13 fatty acids were detected in the TAG fractions and nine were found in the FFA fractions, with at much higher total TAG content in all microalgae. Oleic acid was the most prominent fatty acid in three species, α-linolenic acid was more abundant in two others, and palmitic acid was present in highest concentration in the remaining three species.  相似文献   

15.
Due to the high cost of bioplastic production, sesame wastewater, generated from the sesame seed hulling process, was investigated to be used as inexpensive and renewable carbon source for the production of biodegradable polyhydroxyalkanoate (PHA) by extreme Haloferax mediterranei. The sesame wastewater (SWW) was hydrolyzed using different concentrations of hydrochloric acid (0.4. 1.00 and 2.00 M) at different period of times (15, 60 and 90 min). The concentration of salt (NaCl) and nitrogen source (NH4Cl and yeast) required for H. mediterranei cells growth and the accumulation of PHA biopolymer was optimized. A maximum 0.53 g/L concentration of PHA was achieved when the SWW extract media was supplemented with 100 g/L NaCl and 6.0 g/L yeast extract. The cultivation was scaled-up using sequencing batch reactor (SBR) fermentation under non-sterile conditions. The SBR results showed that SWW needs an auxiliary carbon source to obtain high PHA production. Consequently, the system fed with SWW and glucose produced higher PHA (20.9 g/L) than the system fed with SWW.  相似文献   

16.
The development of sensitive measurements to analyze individual cells is of relevance to elucidate specialized roles or metabolic functions of each cell under physiological and pathological conditions. Lipids play multiple and critical roles in cellular functions and the application of analytical methods in the lipidomics area is of increasing interest. In this work, in vitro maturation of porcine oocytes was studied. Two independent sources of chemical information (represented by mass spectra in the positive and negative ion modes) from single oocytes (immature oocytes, 24-h and 44-h in vitro matured oocytes) were acquired by using desorption electrospray ionization-mass spectrometry (DESI-MS). Low and mid-level data fusion strategies are presented with the aim of better exploring the large amount of chemical information contained in the two mass spectrometric lipid profiles. Data were explored by principal component analysis (PCA) within the two multi-block approaches to include information on free fatty acids, phospholipids, cholesterol-related molecules, di- and triacylglycerols. After data fusion, clearer differences among immature and in vitro matured porcine oocytes were observed, which provide novel information regarding lipid metabolism throughout oocyte maturation. In particular, changes in TAG composition, as well as increase in fatty acid metabolism and membrane complexity were evidenced during the in vitro maturation process. This information can assist the improvement of in vitro embryo production for porcine species.  相似文献   

17.
18.
《中国化学快报》2023,34(4):107875
Fatty acid photodecarboxylase of Chlorella variabilis NC64A (CvFAP) is a novel photoenzyme with great potential in the treatment of waste lipids and production of sustainable aviation fuel. However, the fragile nature of CvFAP to blue light is an urgent challenge. Herein, we demonstrated anaerobic environment could significantly improve the photostability of CvFAP for the first time. The decarboxylation of palmitic acid by CvFAP for 3 h under anaerobic environment increased pentadecane yield by 44.7% as compared to that under aerobic environment. The residual activity of CvFAP after blue-light preillumination in the absence of palmitic acid for 0.5 h under anaerobic environment was 80.4%, which was 258.7 times higher than that under aerobic environment. Remarkable accumulation of superoxide radical and singlet oxygen in CvFAP under aerobic environment led to the poor photostability of CvFAP. Anaerobic environment helped to mitigate the production of superoxide radical and singlet oxygen in CvFAP, improving the photostability of CvFAP.  相似文献   

19.
Adenia viridiflora Craib. is an indigenous edible plant that became an endangered species due to limited consumption of the local population with unknown reproduction and growth conditions. The plant is used as a traditional herb; however, its health applications lack scientific-based evidence. A. viridiflora Craib. plant parts (old leaves and young shoots) from four areas as Kamphaeng Phet (KP), Muang Nakhon Ratchasima (MN), Pakchong Nakhon Ratchasima (PN), and Uthai Thani (UT) origins were investigated for phenolic compositions and in vitro health properties through the inhibition of key enzymes relevant to obesity (lipase), diabetes (α-glucosidase and dipeptidyl peptidase-IV), Alzheimer’s disease (cholinesterases and β-secretase), and hypertension (angiotensin-converting enzyme). Phenolics including p-coumaric acid, sinapic acid, naringenin, and apigenin were detected in old leaves and young shoots in all plant origins. Old leaves exhibited higher total phenolic contents (TPCs) and total flavonoid contents (TFCs), leading to higher enzyme inhibitory activities than young shoots. Besides, PN and MN with higher TPCs and TFCs tended to exhibit greater enzyme inhibitory activities than others. These results will be useful to promote this plant as a healthy food with valuable medicinal capacities to support its consumption and agricultural stimulation, leading to sustainable conservation of this endangered species.  相似文献   

20.
To achieve a sustainable circular economy, polymer production must start transitioning to recycled and biobased feedstock and accomplish CO2 emission neutrality. This is not only true for structural polymers, such as in packaging or engineering applications, but also for functional polymers in liquid formulations, such as adhesives, lubricants, thickeners or dispersants. At their end of life, polymers must be either collected and recycled via a technical pathway, or be biodegradable if they are not collectable. Advances in polymer chemistry and applications, aided by computational material science, open the way to addressing these issues comprehensively by designing for recyclability and biodegradability. This Review explores how scientific progress, together with emerging regulatory frameworks, societal expectations and economic boundary conditions, paint pathways for the transformation towards a circular economy of polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号