首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 614 毫秒
1.
A circular cylinder placed in a uniform flow, and that spans the entire length between two side walls, may experience either parallel or oblique vortex shedding depending on the end conditions. It was shown by Mittal and Sidharth (2014) that the spatio-temporal periodicity of the oblique vortex shedding results in constant-in-time force experienced by the cylinder. On the contrary, parallel vortex shedding leads to fluid force that fluctuates with time. The free vibrations of a circular cylinder, in the presence of a wall, are investigated. For comparison, computations with end walls, where a slip condition on velocity is specified, are also carried out. The Reynolds number, based on the diameter of the cylinder and free-stream speed of the flow, is Re=100. The initial condition for the free vibrations is the fully developed unsteady flow past a stationary cylinder with oblique shedding. It is found that as the amplitude of vibration of the cylinder builds up, the vortices shed from the cylinder align with its axis leading to parallel shedding. The response of the cylinder is associated with two branches: initial and lower. On the lower branch, the response of the cylinder is virtually identical from two- and three-dimensional computations. The flow as well as the response is different on the initial branch and outside the synchronization regime. Forced vibrations confirm the phenomena.  相似文献   

2.
This paper presents results obtained from a numerical simulation of a two-dimensional (2-D) incompressible linear shear flow over a square cylinder. Numerical simulations are performed, using the lattice Boltzmann method, in the ranges of 50⩽Re⩽200 and 0⩽K⩽0.5, where Re and K are the Reynolds number and the shear rate, respectively. The effect of the shear rate on the frequency of vortex shedding from the cylinder, and the lift and drag forces exerted on the cylinder are quantified together with the flow patterns around the cylinder. The present results show that vortex structure behind the cylinder is strongly dependant on both the shear rate and Reynolds number. When Re=50, a small K can disturb the steady state and cause an alternative vortex shedding with uneven intensity. In contrast, a large value of K will suppress the vortex shedding from the cylinder. When Re>50, the differences in the strength and size of vortices shed from the upper and lower sides of the cylinder become more pronounced as K increases. Vortex shedding disappears when K is larger than a critical value, which depends on Re. The flow patterns around the cylinder for different Re tend towards self-similarity with increasing K. The lift and drag forces exerted on the cylinder, in general, decrease with increasing K. Unlike a shear flow past a circular cylinder, the vortex shedding frequency past a square cylinder decreases with increasing the shear rate. A significant reduction of the drag force occurs in the range 0.15<K<0.3.  相似文献   

3.
A stabilized finite element method, to carry out the linear stability analysis of a two‐dimensional base flow to three‐dimensional perturbations that are periodic along span, is presented. The resulting equations for the time evolution of the disturbance requires a solution to the generalized eigenvalue problem. The analysis is global in nature and is also applicable to non‐parallel flows. Equal‐order‐interpolation functions for velocity and pressure are utilized. Stabilization terms are added to the Galerkin formulation to admit the use of equal‐order‐interpolation functions and to eliminate node‐to‐node oscillations that might arise in advection‐dominated flows. The proposed formulation is tested on two flow problems. First, the mode transitions in the circular Couette flow are investigated. Two scenarios are considered. In the first one, the outer cylinder is at rest, while the inner one spins. Two linearly unstable modes are identified. The primary mode is real and represents the axisymmetric Taylor vortices. The second mode is complex and consists of spiral vortices. For the counter‐rotating cylinders, the primary transition is via the appearance of spiral vortices. Excellent agreement with results from earlier studies is observed. The formulation is also utilized to investigate the parallel and oblique modes of vortex shedding past a cylinder for the Re = 100 flow. It is found that the flow is associated with a large number of unstable oblique shedding modes. The parallel mode of vortex shedding is a special case of this family of modes and is associated with the largest growth rate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
In contrast with a wide range of applications concerning flows around a circular cylinder at upper subcritical Reynolds numbers (Re), there is no systematic understanding about the fundamentals of so-called random flow patterns, and their effects on intermittent modulations in the time history of pressure or force, and the decrease in their spanwise correlations. This paper employed the large-eddy simulation (LES) technique to predict flows past a circular cylinder at Re=1.3×105 and to provide images based on flow visualization that can clarify the physical mechanism responsible for these outcomes. A reasonably sufficient spanwise length was adopted for the numerical model by taking into consideration the effect of aspect ratios (the spanwise length to the diameter). We found that even at such high Res, a three-dimensional pattern of vortical field is present in the wake resulting in total force modulation and weak spanwise correlation, e.g., obvious oblique shedding. The whole development process of the three-dimensional wake is exhibited as a universal. The results revealed that local phase variations in primary vortex shedding are the starting points of three-dimensional wake patterns, which are induced by the “irregular” streamwise vortex. The three-dimensional near wake following local phase variations is associated with a successive evolution composed of certain stages in order. Quantitative analyses based on the time series of sectional lift coefficients show that intermittent increase in primary shedding periods and sectional lift streak divisions are closely related to local phase variations and vortex division in the development process of the three-dimensional pattern. In addition to the phase difference along the span, the three-dimensional pattern also weakens vortex shedding in cross sections perpendicular to the axis of the cylinder, resulting in modulation of the sectional lift coefficient.  相似文献   

5.
6.
应用Lattice- Boltzmann方法计算了水平通道内方柱绕流,分析了不同时刻方柱后尾迹的旋涡结构和发展过程,得到了合理的结果;并进一步对Re=100时的圆柱绕流进行了计算,计算得到的升力系数、脱落频率、圆柱表面的压力系数的分布与他人的计算比较吻合。  相似文献   

7.
圆柱绕流涡脱落诱发较大的振动和声,如何有效地抑制值得关注.利用大涡模拟技术求解了Navier-Stokes方程,得到了涡脱落频率,升力脉动幅值及平均阻力系数.计算表明二维模拟不能体现流动基本特征,三维计算与实验吻合较好.为了抑制涡脱落,在直径为D的圆柱表面装入间距为1D,直径为0.0167D的O型环.通过升力、速度谱分析以及柱向横截面流场分析可知,在光滑圆柱外表面加入O型环能诱发流体边界层分离,有效地抑制涡脱落现象,升力脉动和观测点速度脉动幅值几乎完全消失,阻力系数也略微降低,适合在实际工程中采用.  相似文献   

8.
圆柱绕流流场结构的大涡模拟研究   总被引:2,自引:0,他引:2  
郝鹏  李国栋  杨兰  陈刚 《应用力学学报》2012,29(4):437-443,487,488
为进一步揭示绕流现象的形成机理,本文分别对处于层流稳态区、尾流过渡区、剪切层转换区Re分别为26、200、1.4×105的三种典型流态下的单圆柱绕流进行了二维数值模拟研究。Re为26时应用层流模型直接求解N-S方程,而Re分别为200、1.4×105时使用大涡模拟的方法进行计算。数值模拟很好地再现了稳定的涡旋结构、周期性交替脱落的卡门涡街结构、不规则的涡旋结构,在此基础上分析了尾流结构的基本特征及其压强分布规律、平均的流场特性、积分参数(如升力系数、阻力系数、斯特劳哈尔等),并与有关研究成果进行了对比。研究发现,采用不同流动介质时流场特性有所差异,空气为介质时的计算结果更符合实验的成果,而水为介质时计算结果偏差较大,这主要是由尾流涡旋产生的不合理负压造成的。  相似文献   

9.
This paper investigates flow past a rotating circular cylinder at 3600?Re?5000 and α?2.5. The flow parameter α is the circumferential speed at the cylinder surface normalized by the free-stream velocity of the uniform cross-flow. With particle image velocimetry (PIV), vortex shedding from the cylinder is clearly observed at α<1.9. The vortex pattern is very similar to the vortex street behind a stationary circular cylinder; but with increasing cylinder rotation speed, the wake is observed to become increasing narrower and deflected sideways. Properties of large-scale vortices developed from the shear layers and shed into the wake are investigated with the vorticity field derived from the PIV data. The vortex formation length is found to decrease with increasing α. This leads to a slow increase in vortex shedding frequency with α. At α=0.65, vortex shedding is found to synchronize with cylinder rotation, with one vortex being shed every rotation cycle of the cylinder. Vortex dynamics are studied at this value of α with the phase-locked eduction technique. It is found that although the shear layers at two different sides of the cylinder possess unequal vorticity levels, alternating vortices subsequently shed from the cylinder to join the two trains of vortices in the vortex street pattern exhibit very little difference in vortex strength.  相似文献   

10.
横向振荡圆柱绕流的格子Boltzmann方法模拟   总被引:1,自引:0,他引:1  
龚帅  郭照立 《力学学报》2011,43(5):809-818
基于格子Boltzmann方法(LBM)对不可压横向振荡圆柱绕流问题进行了数值研究. 与传统的求解宏观的N-S方程的数值方法不同, LBM求解此类问题不需要采用动网格, 而且不需要对网格进行特殊处理, 从而节约了计算成本. 结果显示, 当振荡频率增加到相应的静止圆柱绕流的自然涡脱落频率附近时, 圆柱后最新形成的集中涡距离柱体越来越近, 直到达到一个极限位置. 随后, 集中涡突然转向圆柱体另一侧脱落. 当振荡频率接近于静止圆柱的自然涡脱落频率时, 发生频率同步的现象. 随着振荡频率远离自然涡脱落频率, 同步现象消失. 在几种次谐振荡和超谐振荡下, 尾流区的涡脱落频率仍为相应的静止圆柱绕流的自然涡脱落频率.   相似文献   

11.
An adaptive fuzzy sliding mode control (AFSMC) scheme is applied to actively suppress the two-dimensional vortex-induced vibrations (VIV) of an elastically mounted circular cylinder, free to move in in-line and cross-flow directions. Laminar flow regime at Re=90, low non-dimensional mass with equal natural frequencies in both directions, and zero structural damping coefficients, are considered. The natural oscillator frequency is matched with the vortex shedding frequency of a stationary cylinder at Re=100. The strongly coupled unsteady fluid/cylinder interactions are captured by implementing the moving mesh technology through integration of an in-house developed User Define Function (UDF) into the main code of the commercial CFD solver Fluent. The AFSMC approach comprises of a fuzzy system designed to mimic an ideal sliding-mode controller, and a robust controller intended to compensate for the difference between the fuzzy controller and the ideal one. The fuzzy system parameters as well as the uncertainty bound of the robust controller are adaptively tuned online. A collaborative simulation scheme is realized by coupling the control model implemented in Matlab/Simulink to the plant model constructed in Fluent, aiming at determination of the transverse control force required for complete suppression of the cylinder streamwise and cross-flow oscillations. The simulation results demonstrate the high performance and effectiveness of the adopted control algorithm in attenuating the 2D-VIV of the elastic cylinder over a certain flow velocity range. Also, the enhanced transient performance of the AFSM control strategy in comparison with a conventional PID control law is demonstrated. Furthermore, the effect of control action on the time evolution of vortex shedding from the cylinder is discussed. In particular, it is observed that the coalesced vortices in the far wake region of the uncontrolled cylinder, featuring the C(2S)-type vortex shedding characteristic mode, are ultimately forced to switch to the classical von Kármán vortex street of 2S-type mode, displaying wake vortices of moderately weaker strengths very similar to those of the stationary cylinder. Lastly, robustness of AFSMC is verified against relatively large structural uncertainties as well as with respect to a moderate deviation in the uniform inlet flow velocity.  相似文献   

12.
横向强迫振荡柱体尾流控制是柱体涡激振动控制的基础,在海洋、土木等工程中具有重要意义. 横向强迫振荡柱体尾流中存在一种锁频旋涡脱落模式,即在一个振荡周期内柱体上、下侧各脱落旋转方向相反的一对涡,称为2P模式. 本文将相对宽度b/D=0.32的窄条控制件置于横向强迫振荡柱体下游,对振幅比A/D=1.25, 无量纲振频f_e D/V_∞=0.22,雷诺数Re=1 200的2P模式旋涡脱落进行干扰,并通过改变控制件位置,研究旋涡的变化规律. 采用二维大涡模拟和实验验证方法进行研究,在控制件位置范围0.8≤X/D≤3.2, 0.4≤Y/D≤3.2内,得到了2P, 2S, P+S和另外6种新发现的旋涡脱落模式,并对各模式旋涡的形成过程作了详细描述. 在控制件位置平面上给出了各旋涡模式的存在区域,画出了旋涡脱落强度的等值线图,并发现在一个相当大的区域内,旋涡脱落强 度可减小一半以上,尾流变窄. 发现柱体大幅振荡引起的横向剪切流在旋涡生成中起关键作用. 探讨了控制件对横向剪切流的影响,分析了控制件在每种旋涡模式形成中的作用机制.   相似文献   

13.
串列双圆柱绕流问题的数值模拟   总被引:8,自引:0,他引:8  
刘松  符松 《计算力学学报》2000,17(3):260-266
本文运用有限体积方法,对绕串列放置的双圆柱的二维不可压缩流动进行了数值计算。为研究两圆柱不同间距对圆柱相互作用和尾流特征的影响,选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)在1.5~5.0之间每隔0.5共八个有代表性的间距进行了计算模拟。计算均在Re=200条件下进行。计算结果表明:对该绕流问题,流动特征在很大程度上取决于间距的大小。且间距存在一临界值,间距比从小于临界值变化到大于临界  相似文献   

14.
不可压缩粘性流动的CBS有限元解法   总被引:1,自引:1,他引:0  
对于二维不可压缩粘性流动,首先通过坐标变换的方式得到了的不含对流项的NS方程,并给出了CBS有限元方法求解的一般过程。结合一类同时含有压力和速度的出口边界条件,对方腔顶盖驱动流、后向台阶绕流和圆柱绕流进行了计算。所得结果与基准解符合良好,验证了CBS算法对于定常、非定常粘性不可压缩流动问题的可行性和所用出口边界条件的无反射特性。特别的,对于圆柱绕流,Re=100时非定常升、阻力系数及漩涡脱落等非定常都得到了较好地模拟,为一进步研究自激振动等更加复杂的非定常流动问题奠定了基础。  相似文献   

15.
In this paper, the electro-magnetic control of vortex-induced vibration (VIV) of a circular cylinder is investigated numerically based on the stream function–vorticity equations in the exponential–polar coordinates attached on the moving cylinder for Re=150. The effects of the instantaneous wake geometries and the corresponding cylinder motion on the hydrodynamic forces for one entire period of vortex shedding are discussed using a drag–lift phase diagram. The drag–lift diagram is composed of the upper and lower closed curves due to the contributions of the vortex shedding but is magnified, translated and turned under the action of the cylinder motion. The Lorentz force for controlling the vibration cylinder is classified into the field Lorentz force and the wall Lorentz force. The symmetric field Lorentz force will symmetrize the flow passing over the cylinder and decreases the lift oscillation, which, in turn, suppresses the VIV, whereas the wall Lorentz force has no effect on the lift. The cylinder vibration increases as the work performed by the lift dominates the energy transfer. Otherwise, the cylinder vibration decreases. If the net transferred energy per motion is equal to zero, the cylinder will vibrate steadily or be fixed.  相似文献   

16.
A numerical study on the flow past a square cylinder placed parallel to a wall, which is moving at the speed of the far field has been made. Flow has been investigated in the laminar Reynolds number (based on the cylinder length) range. We have studied the flow field for different values of the cylinder to wall separation length. The governing unsteady Navier–Stokes equations are discretized through the finite volume method on a staggered grid system. A SIMPLE type of algorithm has been used to compute the discretized equations iteratively. A shear layer of negative vortex generates along the surface of the wall, which influences the vortex shedding behind the cylinder. The flow‐field is distinct from the flow in presence of a stationary wall. An alternate vortex shedding occurs for all values of gap height in the unsteady regime of the flow. The strong positive vortex pushes the negative vortex upwards in the wake. The gap flow in the undersurface of the cylinder is strong and the velocity profile overshoots. The cylinder experiences a downward force for certain values of the Reynolds number and gap height. The drag and lift are higher at lower values of the Reynolds number. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Fluctuating wind pressures acting on bluff bodies are influenced by approaching turbulence and signature (body-induced) turbulence. For a circular cylinder, the signature turbulence is closely related to the formation of Karman vortex shedding. In this paper, proper orthogonal decomposition (POD) and spectral proper transformation techniques (SPT) are applied to the pressure fluctuations acting on a circular cylinder. The physical relationships between the decomposed modes and vortex shedding are discussed to identify the dominant aerodynamic behavior (lift or drag) and to evaluate its contribution to overall behavior. The effect of Reynolds number (Re) is also addressed. It is found that the application of POD and SPT can separate the along-wind and across-wind effects on the cylinder model in both subcritical and supercritical regimes. In contrast to POD, the SPT mode is formulated in the frequency domain, and the dynamic coherent structures can be defined in terms of amplitude and phase angle, which allows detection of the advection features of vortex shedding. In addition, it is observed that the energy contribution of the shedding induced lift force increases with Re and gradually becomes a dominant aerodynamic force at Reynolds numbers in the supercritical regime.  相似文献   

18.
The fundamental mechanism of vortex shedding past a curved cylinder has been investigated at a Reynolds number of 100 using three-dimensional spectral/hp computations. Two different configurations are presented herein: in both cases the main component of the geometry is a circular cylinder whose centreline is a quarter of a ring and the inflow direction is parallel to the plane of curvature. In the first set of simulations the cylinder is forced to transversely oscillate at a fixed amplitude, while the oscillation frequency has been varied around the Strouhal value. Both geometries exhibit in-phase vortex shedding, with the vortex cores bent according to the body's curvature, although the wake topology is markedly different. In particular, the configuration that was found to suppress the vortex shedding in absence of forced motion exhibits now a primary instability in the near wake. A second set of simulations has been performed imposing an oscillatory roll to the curved cylinder, which is forced to rotate transversely around the axis of its bottom section. This case shows entirely different wake features from the previous one: the vortex shedding appears to be out-of-phase along the body's span, with straight cores that tend to twist after being shed and manifest a secondary spanwise instability. Further, the damping effect stemming from the transverse planar motion of the part of the cylinder parallel to the flow is no longer present, leading to a positive energy transfer from the fluid to the structure.  相似文献   

19.
Turbulent flow past two circular cylinders of different diameters is numerically investigated. The two-dimensional Reynolds-averaged Navier–Stokes equations are solved by using a finite element method with a kω turbulence closure. Following a relevant numerical model validation process, effects of cylinder gap-to-diameter ratio, the angular position of the smaller cylinder and the diameter ratio of cylinders on the vortex shedding and the forces on the cylinders are investigated using the numerical model. It is found that the relative position of the small cylinder has significant effects on the hydrodynamic force and vortex shedding characteristics of the cylinders.  相似文献   

20.
Three-dimensional Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) are performed to investigate the shear effects on flow around a circular cylinder at Reynolds numbers of Re=60–1000. The shear parameter, β, which is based on the velocity gradient, cylinder diameter and upstream mean velocity at the center plane of the cylinder, varies from 0 to 0.30. Variations of Strouhal number, drag and lift coefficients, and unsteady wake structures with shear parameter are studied, along with their dependence on Reynolds number. The presented simulation provides detailed information for the flow field around a circular cylinder in shear flow. This study shows that the Strouhal number exhibits no significant variation with shear parameter. The stagnation point moves to the high-velocity side almost linearly with shear parameter, and this result mainly influences the aerodynamic forces acting on a circular cylinder in shear flow. Both the Reynolds number and shear parameter influence the movement of the stagnation point and separation point. Mode A wake instability is suppressed into parallel vortex shedding mode at a certain shear parameter. The lift force increases with increasing shear parameter and acts from the high-velocity side to the low-velocity side. In addition, a simple method to estimate the lift force coefficient in shear flow is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号