首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The bis-bidentate bridging ligand L {α,α'-bis[3-(2-pyridyl)pyrazol-1-yl]-1,4-dimethylbenzene}, which contains two chelating pyrazolyl-pyridine units connected to a 1,4-phenylene spacer via flexible methylene units, reacts with transition metal dications to form a range of polyhedral coordination cages based on a 2M:3 L ratio in which a metal ion occupies each vertex of a polyhedron, a bridging ligand lies along every edge, and all metal ions are octahedrally coordinated. Whereas the Ni(II) complex [Ni(8)L(12)](BF(4))(12)(SiF(6))(2) is an octanuclear cubic cage of a type we have seen before, the Cu(II), Zn(II), and Cd(II) complexes form new structural types. [Cu(6)L(9)](BF(4))(12) is an unusual example of a trigonal prismatic cage, and both Zn(II) and Cd(II) form unprecedented hexadecanuclear cages [M(16)L(24)]X(32)(X = ClO(4) or BF(4)) whose core is a skewed tetracapped truncated tetrahedron. Both Cu(6)L(9) and M(16)L(24) cages are based on a cyclic helical M(3)L(3) subunit that can be considered as a triangular "panel", with the cages being constructed by interconnection of these (homochiral) panels with additional bridging ligands in different ways. Whereas [Cu(6)L(9)](BF(4))(12) is stable in solution (by electrospray mass spectrometry, ES-MS) and is rapidly formed by combination of Cu(BF(4))(2) and L in the correct proportions in solution, the hexadecanuclear cage [Cd(16)L(24)](BF(4))(32) formed on crystallization slowly rearranges in solution over a period of several weeks to the trigonal prism [Cd(6)L(9)](BF(4))(12), which was unequivocally identified on the basis of its (1)H NMR spectrum. Similarly, combination of Cd(BF(4))(2) and L in a 2:3 ratio generates a mixture whose main component is the trigonal prism [Cd(6)L(9)](BF(4))(12). Thus the hexanuclear trigonal prism is the thermodynamic product arising from combination of Cd(II) and L in a 2:3 ratio in solution, and arises from both assembly of metal and ligand (minutes) and rearrangement of the Cd(16) cage (weeks); the large cage [Cd(16)L(24)](BF(4))(32) is present as a minor component of a mixture of species in solution but crystallizes preferentially.  相似文献   

2.
The ligand L(bip), containing two bidentate pyrazolyl-pyridine termini separated by a 3,3'-biphenyl spacer, has been used to prepare tetrahedral cage complexes of the form [M(4)(L(bip))(6)]X(8), in which a bridging ligand spans each of the six edges of the M(4) tetrahedron. Several new examples have been structurally characterized with a variety of metal cation and different anions in order to examine interactions between the cationic cage and various anions. Small anions such as BF(4)(-) and NO(3)(-) can occupy the central cavity where they are anchored by an array of CH···F or CH···O hydrogen-bonding interactions with the interior surface of the cage, but larger anions such as naphthyl-1-sulfonate or tetraphenylborate lie outside the cavity and interact with the external surface of the cage via CH···π interactions or CH···O hydrogen bonds. The cages with M = Co and M = Cd have been examined in detail by NMR spectroscopy. For [Co(4)(L(bip))(6)](BF(4))(8) the (1)H NMR spectrum is paramagnetically shifted over the range -85 to +110 ppm, but the spectrum has been completely assigned by correlation of measured T(1) relaxation times of each peak with Co···H distances. (19)F DOSY measurements on the anions show that at low temperature a [BF(4)](-) anion diffuses at a similar rate to the cage superstructure surrounding it, indicating that it is trapped inside the central cage cavity. Furthermore, the equilibrium step-by-step self-assembly of the cage superstructure has been elucidated by detailed modeling of spectroscopic titrations at multiple temperatures of an acetonitrile solution of L(bip) into an acetonitrile solution of Co(BF(4))(2). Six species have been identified: [Co(2)L(bip)](4+), [Co(2)(L(bip))(2)](4+), [Co(4)(L(bip))(6)](8+), [Co(4)(L(bip))(8)](8+), [Co(2)(L(bip))(5)](4+), and [Co(L(bip))(3)](2+). Overall the assembly of the cage is entropy, and not enthalpy, driven. Once assembled, the cages show remarkable kinetic inertness due to their mechanically entangled nature: scrambling of metal cations between the sites of pure Co(4) and Cd(4) cages to give a statistical mixture of Co(4), Co(3)Cd, Co(2)Cd(2), CoCd(3) and Cd(4) cages takes months in solution at room temperature.  相似文献   

3.
The Cu(I)-catalyzed 1,3-cycloaddition of organic azides with terminal alkynes, the CuAAC "click" reaction is currently receiving considerable attention as a mild, modular method for the generation of functionalized ligand scaffolds. Herein we show that mild one-pot "click" methods can be used to readily and rapidly synthesize a family of functionalized bidentate 2-pyridyl-1,2,3-triazole ligands, containing electrochemically, photochemically, and biologically active functional groups in good to excellent yields (47-94%). The new ligands have been fully characterized by elemental analysis, HR-ESI-MS, IR, (1)H and (13)C NMR and in three cases by X-ray crystallography. Furthermore we have demonstrated that this family of functionalized "click" ligands readily form bis-bidentate Pd(II) complexes. Solution studies, X-ray crystallography, and density functional theory (DFT) calculations indicate that the Pd(II) complexes formed with the 2-(1-R-1H-1,2,3-triazol-4-yl)pyridine series of ligands are more stable than those formed with the [4-R-1H-1,2,3-triazol-1-yl)methyl]pyridine "click" ligands.  相似文献   

4.
The tetradentate imino-carboxylate ligand [L](2)(-) chelates the equatorial sites of Ni(II) to give the complex [Ni(L)(MeOH)(2)] in which a Ni(II) center is bound in an octahedral coordination environment with MeOH ligands occupying the axial sites. Lanthanide (Ln) and Group II metal ions (M) template the aggregation of six [Ni(L)] fragments into the octahedral cage aggregates (M[Ni(L)](6))(x)(+) (1: M = Sr(II); x = 2,2: M = Ba(II); x = 2, 3: M = La(III); x = 3, 4: M = Ce(III); x = 3, 5: M = Pr(III); x = 3, and 6: M = Nd(III); x = 3). In the presence of Group I cations, however, aggregates composed of the alkali metal-oxide cations template various cage compounds. Thus, Na(+) forms the trigonal bipyramidal [Na(5)O](3+) core within a tricapped trigonal prismatic [Ni(L)](9) aggregate to give ((Na(5)O) subset [Ni(L)](9)(MeOH)(3))(BF(4))(2).OH.CH(3)OH, 7. Li(+) and Na(+) together form a mixed Li(+)/Na(+) core comprising distorted trigonal bipyramidal [Na(3)Li(2)O](3+) within an approximately anti-square prismatic [Ni(L)](8) cage in ((Na(3)Li(2)O) subset [Ni(L)](8)(CH(3)OH)(1.3)(BF(4))(0.7))(BF(4))(2.3).(CH(3)OH)(2.75).(C(4)H(10)O)(0.5), 8, while in the presence of Li(+), a tetrahedral [Li(4)O](2+) core within a hexanuclear open cage [Ni(L)](6) in ((Li(4)O) subset [Ni(L)](6)(CH(3)OH)(3))2ClO(4).1.85CH(3)OH, 9, is produced. In the presence of H(2)O, the Cs(+) cation induces the aggregation of the [Ni(L)(H(2)O)(2)] monomer to give the cluster Cs(2)[Ni(L)(H(2)O)(2)](6).2I.4CH(3)OH.5.25H(2)O, 10. Analysis by electronic spectroscopy and mass spectrometry indicates that in solution the trend in stability follows the order 1-6 > 7 > 8 approximately 9. Magnetic susceptibility data indicate that there is net antiferromagnetic exchange between magnetic centers within the cages.  相似文献   

5.
Qin L  Yao LY  Yu SY 《Inorganic chemistry》2012,51(4):2443-2453
Fluorescent carbazole-based dipyrazole ligands (H(2)L(1-4)) were employed to coordinate with dipalladium corners ([(phen)(2)Pd(2)(NO(3))(2)](NO(3))(2), [(dmbpy)(2)Pd(2)(NO(3))(2)](NO(3))(2), or [(15-crown-5-phen)(2)Pd(2)(NO(3))(2)](NO(3))(2), where phen = 1,10-phenanthroline and dmbpy = 4,4'-dimethyl-2,2'-bipyridine, in aqueous solution to afford a series of positively charged [M(8)L(4)](8+) or [M(4)L(2)](4+) multimetallomacrocycles with remarkable water solubility. Their structures were characterized by (1)H NMR spectroscopy, electrospray ionization mass spectrometry, and elemental analysis and in the cases of 1·8BF(4)(-) ([(phen)(8)Pd(8)L(1)(4)](BF(4))(8)), and 3·4BF(4)(-) ([(phen)(4)Pd(4)L(2)(2)](BF(4))(4)) by single-crystal X-ray diffraction analysis. Complexes 3-8 are square-type hybrid metallomacrocycles, while complexes 1 and 2 exhibit folding cyclic structures. Interestingly, in single-crystal structures of 1·8BF(4)(-) and 3·4BF(4)(-), BF(4)(-) anions are trapped in the dipalladium clips through anion-π interaction. The luminescence properties and interaction toward anions of these metallomacrocycles were discussed.  相似文献   

6.
Reaction of the bis-bidentate bridging ligand L(3), in which two bidentate chelating 3(2-pyridyl)pyrazole units are separated by a 3,3'-biphenyl spacer, with Co(II) salts affords tetranuclear cage complexes of composition [Co(4)(L(3))(6)]X(8)(X =[BF(4)](-), [ClO(4)](-), [PF(6)](-) or I(-)) in which four 6-coordinate Co(II) ions in an approximately tetrahedral array are connected by six bis-bidentate bridging ligands, one spanning each of the six edges of the Co(4) tetrahedron. In every case, X-ray crystallography reveals that the 'apical' Co(II) ion has a fac tris-chelate geometry, whereas the other three Co(II) ions have mer tris-chelate geometries, resulting in (non-crystallographic)C(3) symmetry for the cages; that this structure is retained in solution is confirmed by (1)H NMR spectroscopy of the paramagnetic cages. In every case one of the anions is located inside the central cavity of the cage, with the remaining seven outside. We found no clear evidence for an anion-based templating effect. The cage superstructure is sufficiently large to leave gaps in the centres of the faces through which the internal and external anions can exchange. Variable-temperature (19)F NMR spectroscopy was used to investigate the dynamic behaviour of the cages with X =[BF(4)](-) and [PF(6)](-) in MeCN solution: in both cases two separate signals, corresponding to external and internal anions, are clear at 233 K which have coalesced to a single signal at room temperature. Analysis of the linewidth of the minor signal (for the internal anion) at various temperatures below coalescence gave an activation energy for anion exchange of ca. 50 kJ mol(-1) in each case, a figure which suggests that anion exchange can occur via a conformational rearrangement of the cage superstructure in solution rather than opening of the cavity by cleavage of metal-ligand bonds.  相似文献   

7.
The tetradentate ligand L(naph) contains two N-donor bidentate pyrazolyl-pyridine units connected to a 1,8-naphthyl core via methylene spacers; L45 and L56 are chiral ligands with a structure similar to that of L(naph) but bearing pinene groups fused to either C4 and C5 or C5 and C6 of the terminal pyridyl rings. The complexes [Cu(L(naph))](OTf) and [Ag(L(naph))](BF4) have unremarkable mononuclear structures, with Cu(I) being four-coordinate and Ag(I) being two-coordinate with two additional weak interactions (i.e., "2 + 2" coordinate). In contrast, [Cu4(L(naph))4][BF4]4 is a cyclic tetranuclear helicate with a tetrafluoroborate anion in the central cavity, formed by an anion-templating effect; electrospray mass spectrometry (ESMS) spectra show the presence of other cyclic oligomers in solution. The chiral ligands show comparable behavior, with [Cu(L45)](BF4) and [Ag(L45)](ClO4) having similar mononuclear crystal structures and with the ligands being tetradentate chelates. In contrast, [Ag4(L56)4](BF4)4 is a cyclic tetranuclear helicate in which both diastereomers of the complex are present in the crystal; the two diastereomers have similar gross geometries but are significantly different in detail. Despite their different crystal structures, [Ag(L45)](ClO4) and [Ag4(L56)4](BF4)4 behave similarly in solution according to ESMS studies, with a range of cyclic oligomers (up to Ag9L9) forming. With transition-metal dications Co(II), Cu(II), and Cd(II), L(naph) generates a series of unusual dodecanuclear coordination cages [M12(L(naph))18]X24 (X- = ClO4- or BF4-) in which the 12 metal ions occupy the vertices of a truncated tetrahedron and a bridging ligand spans each of the 18 edges. The central cavity of each cage can accommodate four counterions, and each cage molecule is chiral, with all 12 metal trischelates being homochiral; the crystals are racemic. Extensive aromatic stacking between ligands around the periphery of the cages appears to be a significant factor in their assembly. The chiral analogue L45 forms the simpler tetranuclear, tetrahedral coordination cage [Zn4(L45)6](ClO4)(8), with one anion in the central cavity; the steric bulk of the pinene chiral auxiliaries prevents the formation of a dodecanuclear cage, although trace amounts of [Zn12(L45)18](ClO4)24 can be detected in solution by ESMS. Formation of [Zn4(L45)6](ClO4)8 is diastereoselective, with the chirality of the pinene groups controlling the chirality of the tetranuclear cage.  相似文献   

8.
Three angular ditopic ligands (1,3-bis(benzimidazol-1-ylmethyl)-4,6-dimethylbenzene L(1), 1,3-bis(benzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene L(2), and 1,4-bis(benzimidazol-1-ylmethyl)-2,3,5,6-tetramethylbenzene L(3)) and one tripodal ligand 1,3,5-tris(benzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene L(4) have been prepared. Reaction of these shape-specific designed ligands with different metal salts affords a series of discrete molecular architectures: [Ag(2)L(1)(2)](BF(4))(2) 1, [Ag(2)L(2)(2)](CF(3)SO(3))(2) 2, [CF(3)SO(3)(-) subset Ag(2)L(3)(2)]CF(3)SO(3) 3, [CF(3)SO(3)(-) subset Ag(2)L(3)(3)]CF(3)SO(3) 4, [ClO(4)(-) subset Cu(2)L(2)(4)](ClO(4))(3) 5, [4H(2)O subset Ni(2)L(2)(4)Cl(4)].6H(2)O 6, [BF(4)(-) subset Ag(3)L(4)(2)](BF(4))(2) 7, [ClO(4)(-) subset Ag(3)L(4)(2)](ClO(4))(2) 8, and [CuI(3)(2-) subset Cu(3)L(4)(2)](2)[Cu(2)I(4)] 9. The compounds were characterized by elemental analysis, ESI-MS, IR, and NMR spectroscopy, and X-ray crystallography. 1 is a dinuclear metallacycle with 2-fold rotational symmetry in which two syn-conformational L(1) ligands are connected by two linearly coordinated Ag(+) ions. 2 and 3 are structurally related, consisting of rectangular structures assembled from two linearly coordinated Ag(+) ions and two L(2) or L(3) ligands. The structure of 4 is a trigonal prismatic box consisting of two Ag(+) ions in trigonal planar coordination linked by three L(3) ligands, while the structures of 5 and 6 are tetragonal prismatic cages constructed by two square planar Cu(2+) or Ni(2+) ions linked by four L(2) ligands. The topologies of 7-9 are similar to that of 4; however, these three structures are assembled from three linearly coordinated Ag(+) or Cu(+) ions and two tripodal ligands, representing an alternative strategy to assembling a trigonal prism. (1)H NMR and ESI-MS were utilized to elucidate the solution structures of these macrocycles.  相似文献   

9.
The reaction of the ligand 2-(2-trifluoromethyl)anilino-4,6-di-tert-butylphenol, H(2)((1)L(IP)), and PdCl(2) (2:1) in the presence of air and excess NEt(3) in CH(2)Cl(2) produced blue-green crystals of diamagnetic [Pd(II)((1)L(ISQ))(2)] (1), where ((1)L(ISQ))(*)(-) represents the o-iminobenzosemiquinonate(1-) pi radical anion of the aromatic ((1)L(IP))(2-) dianion. The diamagnetic complex 1 was chemically oxidized with 1 equiv of Ag(BF(4)), affording red-brown crystals of paramagnetic (S = (1)/(2)) [Pd(II)((1)L(ISQ))((1)L(IBQ))](BF(4)) (2), and one-electron reduction with cobaltocene yielded paramagnetic (S = (1)/(2)) green crystals of [Cp(2)Co][Pd(II)((1)L(ISQ))((1)L(IP))] (3); ((1)L(IBQ))(0) represents the neutral, diamagnetic quinone form. Complex 1 was oxidized with 2 equiv of [NO]BF(4), affording green crystals of diamagnetic [Pd(II)((1)L(IBQ))(2)](3)(BF(4))(4){(BF(4))(2)H}(2).4CH(2)Cl(2) (5). Oxidation of [Ni(II)((1)L(ISQ))(2)] (S = 0) in CH(2)Cl(2) solution with 2 equiv of Ag(ClO(4)) generated crystals of [Ni(II)((1)L(IBQ))(2)(ClO(4))(2)].2CH(2)Cl(2) (6) with an S = 1 ground state. Complexes 1-5 constitute a five-membered complete electron-transfer series, [Pd((1)L)(2)](n) (n = 2-, 1-, 0, 1+, 2+), where only species 4, namely, diamagnetic [Pd(II)((1)L(IP))(2)](2-), has not been isolated; they are interrelated by four reversible one-electron-transfer waves in the cyclic voltammogram. Complexes 1, 2, 3, 5, and 6 have been characterized by X-ray crystallography at 100 K, which establishes that the redox processes are ligand centered. Species 2 and 3 exhibit ligand mixed valency: [Pd(II)((1)L(ISQ))((1)L(IBQ))](+) has localized ((1)L(IBQ))(0) and ((1)L(ISQ))(*)(-) ligands in the solid state, whereas in [Pd(II)((1)L(ISQ))((1)L(IP))](-) the excess electron is delocalized over both ligands in the solid-state structure of 3. Electronic and electron spin resonance spectra are reported, and the electronic structures of all members of this electron-transfer series are established.  相似文献   

10.
Air-stable rhenium(V) oxo complexes are formed when [ReOCl(3)(PPh(3))(2)] is treated with N-heterocyclic carbenes of the 1,3-dialkyl-4,5-dimethylimidazol-2-ylidene type, L(R) (R = Me, Et, i-Pr). Complexes of the compositions [ReO(2)(L(R))(4)](+), [ReOCl(L(R))(4)](2+), or [ReO(OMe)(L(R))(4)](2+) can be isolated depending on the alkyl substituents at the nitrogen atoms of the ligands and the reaction conditions applied. Despite the steric overcrowding of the equatorial coordination spheres of the metal atoms by each of the four carbene ligands, stable complexes with six-coordinate rhenium atoms are obtained. Steric demands of the alkyl groups allow control of the stability of the mono-oxo intermediates. Air-stable cationic complexes of the compositions [ReOCl(L(Me))(4)](2+), [ReOCl(L(Et))(4)](2+), and [ReO(OMe)(L(Me))(4)](2+) have been isolated, whereas reactions of [ReOCl(3)(PPh(3))(2)] or other rhenium(V) precursors with the more bulky 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene (L(i)(-)(Pr)) directly yield the dioxo complex [ReO(2)(L(i)(-)(Pr))(4)](+). X-ray structures of [ReO(2)(L(i)(-)(Pr))(4)][ReO(4)], [ReO(2)(L(i)(-)(Pr))(4)][PF(6)], [ReO(2)(L(Me))(4)][ReO(4)](0.45)[PF(6)](0.55), [ReO(MeOH)(L(Me))(4)][PF(6)](2), and [ReOCl(L(Et))(4)][PF(6)](2) show that the equatorial coordination spheres of the rhenium atoms are essentially planar irrespective of the steric demands of the individual carbene ligands.  相似文献   

11.
Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state between 300 and 1.8 K.  相似文献   

12.
A series of copper(II) complexes with substituted phenanthroline ligands has been synthesized and characterized electronically and structurally. The compounds that have been prepared include the monosubstituted ligand complexes of the general formula [Cu(5-R-phen)(2)(CH(3)CN)](BF(4))(2), where R = NO(2), Cl, H, or Me, and the disubstituted ligand complex [Cu(5,6-Me(2)-phen)(2)(CH(3)CN)](BF(4))(2). The complexes [Cu(5-NO(2)-phen)(2)(CH(3)CN](BF(4))(2) (1), [Cu(5-Cl-phen)(2)(CH(3)CN)](BF(4))(2) (2), [Cu(o-phen)(2)(CH(3)CN)](BF(4))(2) (3), and [Cu(5-Me-phen)(2)(CH(3)CN)](BF(4))(2) (4) each crystallize in the space group C2/c with compounds 1, 2, and 4 comprising an isomorphous set. The disubstituted complex [Cu(5,6-Me(2)-phen)(2)(CH(3)CN)](BF(4))(2) (5) crystallizes in the space group P2(1)/c. Each structure is characterized by a distorted trigonal bipyramidal arrangement of ligands around the central copper atom with approximate or exact C(2) symmetry. The progression from electron-withdrawing to electron-donating substituents on the phenanthroline ligands correlates with less accessible reduction potentials for the bis-chelate complexes.  相似文献   

13.
Four new potentially polytopic nitrogen donor ligands based on the 1,3,5-triazine fragment, L(1)-L(4) (L(1) = 2-chloro-4,6-di(1H-pyrazol-1-yl)-1,3,5-triazine, L(2) = N,N'-bis(4,6-di(1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)ethane-1,2-diamine, L(3) = 2,4,6-tris(tri(1H-pyrazol-1-yl)methyl)-1,3,5-triazine, and L(4) = 2,4,6-tris(2,2,2-tri(1H-pyrazol-1-yl)ethoxy)-1,3,5-triazine) have been synthesized and characterized. The X-ray crystal structure of L(3) confirms that its molecular nature consists of a 1,3,5-triazine ring bearing three tripodal tris(pyrazolyl) arms. L(1), L(2), and L(4) react with Cu(I), Cu(II), Pd(II) and Ag(I) salts yielding mono-, di-, and oligonuclear derivatives: [Cu(L(1))(Cy(3)P)]ClO(4), [{Ag(2)(L(2))}(CF(3)SO(3))(2)]·H(2)O, [Cu(2)(L(2))(NO(3))(2)](NO(3))(2)·H(2)O, [Cu(2)(L(2))(CH(3)COO)(2)](CH(3)COO)(2)·3H(2)O, [Pd(2)(L(2))(Cl)(4)]·2H(2)O, [Ru(L(2))(Cl)(OH)]·CH(3)OH, [Ag(3)(L(4))(2)](CF(3)SO(3))(3) and [Ag(3)(L(4))(2)](BF(4))(3). The interaction of L(3) with Ag(I), Cu(II), Zn(II) and Ru(II) complexes unexpectedly produced the hydrolysis of the ligand with formation, in all cases, of tris(pyrazolyl)methane (TPM) derivatives. In detail, the already known [Ag(TPM)(2)](CF(3)SO(3)) and [Cu(TPM)(2)](NO(3))(2), as well as the new [Zn(TPM)(2)](CF(3)SO(3))(2) and [Ru(TMP)(p-cymene)]Cl(OH)·2H(2)O complexes have been isolated. Single-crystal XRD determinations on the latter derivatives confirm their formulation, evidencing, for the Ru(II) complex, an interesting supramolecular arrangement of the anions and crystallization water molecules.  相似文献   

14.
The two new ligands L(fur) and L(th) consist of two chelating pyrazolyl-pyridine termini connected to furan-2,5-diyl or thiophene-2,5-diyl spacers via methylene groups. Reaction of these with a range of transition metal dications that prefer octahedral coordination affords a series of unusual structures which are all based on a 2M : 3L ratio. [M(8)(L(fur))(12)]X(16) (M = Co, Cu, X = BF(4); and M = Zn, X = ClO(4)) are octanuclear cubes with approximate D(4) symmetry in which two cyclic tetranuclear helicate M(4)L(4) units are connected by four additional 'pillar' ligands. In contrast [Ni(4)(L(fur))(6)](BF(4))(8) is a centrosymmetric molecular square consisting of two dinuclear Ni(2)L(2) units of opposite chirality that are connected by a pair of additional L(fur) ligands such that the four edges of the Ni(4) square are spanned by alternately two and one bridging ligands. [M(4)(L(th))(6)](BF(4))(8) (M = Co, Ni, Cu) are likewise molecular squares with similar structures to [Ni(4)(L(fur))(6)](BF(4))(8) with the significant difference that the two crosslinked double helicate M(2)L(2) units are now homochiral. The Cd(II) complexes both behave quite differently to the first-row metal complexes, with [Cd(L(fur))(BF(4))](BF(4)) being a simple mononuclear complex with a single ligand in which the furan oxygen atom is weakly interacting with the Cd(II) centre. In contrast, in {[Cd(2)(L(th))(3)](BF(4))(4)}(∞), where this quasi-pentadentate coordination mode of the ligand is not possible because thiophene is too poor an electron donor, the ligand reverts to bis-bidentate bridging coordination to afford a one-dimensional chain consisting of an infinite sequence of crosslinked, homochiral, Cd(2)(L(th))(2) double helicate units.  相似文献   

15.
The octanuclear coordination cage [Ni(8)(L(14Naph))(12)](BF(4))(16) has the core structure of a 'cuneane'--a toplogical isomer of a cube--with a metal ion at each of the eight vertices and bridging ligand spanning each of the twelve edges; this is the only possible 8-vertex polyhedron other than a cube that will form a cage in which each metal is connected to three others.  相似文献   

16.
Lin PC  Chen HY  Chen PY  Chiang MH  Chiang MY  Kuo TS  Hsu SC 《Inorganic chemistry》2011,50(21):10825-10834
The decarbonylation reaction of ferric carbonyl dicationic [Cp(2)Fe(2)(μ-SEt)(2)(CO)(2)](BF(4))(2) [1(BF(4))(2)] carried out in refluxing acetonitrile affords a binuclear iron-sulfur core complex [Cp(2)Fe(2)(μ-SEt)(2)(CH(3)CN)(2)](BF(4))(2) [2(BF(4))(2)] containing two acetonitrile coordinated ligands. The treatment of 2(BF(4))(2) with 2 equiv of the 1,4-diisocyanobenzene (1,4-CNC(6)H(4)NC) results in the formation of the diisocyanide complex [Cp(2)Fe(2)(μ-SEt)(2)(1,4-CNC(6)H(4)NC)(2)](BF(4))(2) [3(BF(4))(2)]. The rectangular tetranuclear iron thiolate aryldiisocyanide metallocyclophane complex [Cp(4)Fe(4)(μ-SEt)(4)(μ-1,4-CNC(6)H(4)NC)(2)](BF(4))(4) [4(BF(4))(4)] has been synthesized by a self-assembly reaction between equimolar amounts of 2(BF(4))(2) and 1,4-diisocyanobenzene or by a stepwise route involving mixing of a 1:1 molar ratio of complexes 2(BF(4))(2) and 3(BF(4))(2). Chemical reduction of 4(BF(4))(4) by KC(8) was observed to produce the reduction product 4(BF(4))(2). The spectroscopic and electrochemical properties of the iron-sulfur core complexes 1(PF(6))(2), 3(BF(4))(2), 4(BF(4))(4), and 4(BF(4))(2) were determined. Finally, differences between the redox control cavities of rectangular tetranuclear iron thiolate aryldiisocyanide complexes are revealed by a comparison of the X-ray crystallographically determined structures of complexes 4(BF(4))(4) and 4(BF(4))(2).  相似文献   

17.
1,2,4,5-Tetrakis(phenyselenomethyl)benzene (L) has been synthesized by reaction of in situ generated PhSe(-) with 1,2,4,5-tetrakis(bromomethyl)benzene in N(2) atmosphere. Its first bimetallic complexes and a bis-pincer complex having compositions [(η(3)-C(3)H(5))(2)Pd(2)(L)][ClO(4)](2) (1) [Pd(2)(C(5)H(5)N)(2)(L)][BF(4)](2) (2) and [(η(6)-C(6)H(6))(2)Ru(2)(L)Cl(2)][PF(6)](2) (3) have been synthesized by reacting L with [Pd(η(3)-C(3)H(5))Cl](2), [Pd(CH(3)CN)(4)][BF(4)](2) and [(η(6)-C(6)H(6))(2)RuCl(2)](2) respectively. The structures of ligand L and its all three complexes have been determined by X-ray crystallography. In 1 and 3, ligand L forms with two organometallic species seven membered chelate rings whereas in 2 it ligates in a bis-pincer coordination mode. The geometry around Pd in 1 or 2 is close to square planar whereas in 3, Ru has pseudo-octahedral half sandwich "Piano-Stool" geometry. The Pd-Se bond distances are in the ranges 2.4004(9)-2.4627(14) ? and follow the order 1 > 2, whereas Ru-Se bond lengths are between 2.4945(16) and 2.5157(17) ?. The 1 and 2 have been found efficient catalysts for Heck reaction of aryl halides with styrene and methyl acrylate. The 2 is superior to 1. The TON and TOF values (per Pd) are up to ~47500 and ~2639 h(-1) respectively.  相似文献   

18.
Using the achiral diazine ligands bearing two bidentate pyridylimino groups as sources of conformational chirality, five azido-bridged coordination polymers are prepared and characterized crystallographically and magnetically. The chirality of the molecular units is induced by the coordination of the diazine ligands in a twisted chiral conformation. The use of L(1) (1,4-bis(2-pyridyl)-1-amino-2,3-diaza-1,3-butadiene) and L(2) (1,4-bis(2-pyridyl)-1,4-diamino-2,3-diaza-1,3-butadiene) induces spontaneous resolution, yielding conglomerates of chiral compounds [Mn(3)(L(1))(2)(N(3))(6)](n) (1) and [Mn(2)(L(2))(2)(N(3))(3)](n)(ClO(4))(n).nH(2)O (2), respectively, where triangular (1) or double helical (2) chiral units are connected into homochiral one-dimensional (1D) chains via single end-to-end (EE) azido bridges. The chains are stacked via hydrogen bonds in a homochiral fashion to yield chiral crystals. When L(3) (2,5-bis(2-pyridyl)-3,4-diaza-2,4-hexadiene) is employed, a partial spontaneous resolution occurs, where binuclear chiral units are interlinked into fish-scale-like homochiral two-dimensional (2D) layers via single EE azido bridges. The layers are stacked in a heterochiral or homochiral fashion to yield simultaneously a racemic compound, [Mn(2)(L(3))(N(3))(4)](n) (3a), and a conglomerate, [Mn(2)(L(3))(N(3))(4)](n).nMeOH (3b). On the other hand, the ligand without amino and methyl substituents (L(4), 1,4-bis(2-pyridyl)-2,3-diaza-1,3-butadiene) does not induce spontaneous resolution. The resulting compound, [Mn(2)(L(4))(N(3))(4)](n) (4), consists of centrosymmetric 2D layers with alternating single diazine, single EE azido, and double end-on (EO) azido bridges, where the chirality is destroyed by the centrosymmetric double EO bridges. These compounds exhibit very different magnetic behaviors. In particular, 1 behaves as a metamagnet built of homometallic ferrimagnetic chains with a unique "fused-triangles" topology, 2 behaves as a 1D antiferromagnet with alternating antiferromagnetic interactions, 3a and 3b behave as spin-canted weak ferromagnets with different critical temperatures, and 4 also behaves as a spin-canted weak ferromagnet but exhibits two-step magnetic transitions.  相似文献   

19.
Treatment of L(2)MCl(2) (M = Pt, Pd; L(2) = Ph(2)PCMe(2)PPh(2) (dppip), Ph(2)PNMePPh(2) (dppma)) with AgX (X = OTf, BF(4), NO(3)) in wet CH(2)Cl(2) yields the dinuclear dihydroxo complexes [L(2)M(mu-OH)](2)(X)(2), the mononuclear aqua complexes [L(2)M(OH(2))(2)](X)(2), the mononuclear anion complexes L(2)MX(2), or mixtures of complexes. Addition of aromatic amines to these complexes or mixtures gives the dinuclear diamido complexes [L(2)Pt(mu-NHAr)](2)(BF(4))(2), the mononuclear amine complexes [L(2)M(NH(2)Ar)(2)](X)(2), or the dinuclear amido-hydroxo complex [Pt(2)(mu-OH)(mu-NHAr)(dppip)(2)](BF(4))(2). Deprotonation of the Pd and Pt amine or diamido complexes with M'N(SiMe(3))(2) (M' = Li, Na, K) gives the diimido complexes [L(2)M(mu-NAr)](2) associated with M' salts. Structural studies of the Li derivatives indicate association through coordination of the imido nitrogen atoms to Li(+). Deprotonation of the amido-hydroxo complex gives the imido-oxo complex [Pt(2)(mu-O)(mu-NAr)(dppip)(2)].LiBF(4).LiN(SiMe(3))(2), and deprotonation of the dppip Pt hydroxo complex gives the dioxo complex [Pt(mu-O)(dppip)](2).LiN(SiMe(3))(2).2LiBF(4).  相似文献   

20.
The transmetallation of the palladacyclopentadiene complex Pd{C(COOMe)C(COOMe)C(COOMe)C(COOMe)}(bipy) with the dicationic Pd(II) complex [Pd(bipy)(CH(3)CN)(2)][BF(4)](2) afforded a terminally σ-palladated diene complex [Pd(2){μ-η(1):η(1)-C(COOMe)C(COOMe)C(COOMe)C(COOMe)}(bipy)(2)(CH(3)CN)(2)][BF(4)](2). It was revealed by X-ray crystallographic analysis that replacement of the acetonitrile ligands in a terminally σ-palladated diene complex with PPh(3) ligands resulted in the conformation change of the σ-palladated diene moiety from skewed s-cis to planar s-trans. Treatment of a bis-triphenylphosphine dipalladium complex [Pd(2)(PPh(3))(2)(CH(3)CN)(4)][PF(6)](2) with dimethoxyacetylene dicarboxylate (DMAD) (1 equiv.) in acetonitrile resulted in the insertion of DMAD to the Pd-Pd bond to afford [Pd(2){μ-η(1):η(1)-C(COOMe)C(COOMe)}(PPh(3))(2)(CH(3)CN)(4)][PF(6)](2). Addition of the second DMAD gave the ylide-type complex [Pd(2){μ-η(2):η(3)-C(COOMe)C(COOMe)C(COOMe)C(COOMe)(PPh(3))}(PPh(3))(2)(CH(3)CN)(3)][PF(6)](2) of which the structure was determined by X-ray crystallographic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号