首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the characterisation and the optimisation of hybridisation assays based on a novel, rapid and sensitive micro-analytical, gravity-driven, flow device is reported. This device combines a special chip containing eight polymer microchannels, with a portable, computer-controlled instrument. The device is used as a platform for affinity experiments using oligonucleotide-modified paramagnetic particles. In our approach, both hybridisation and labelling events are performed on streptavidin-coated paramagnetic microparticles functionalized with a biotinylated capture probe. Modified particles, introduced in the microchannel inlet of the chip, accumulate near the electrode surface by virtue of a magnetic holder. After hybridisation with the complementary sequence, the hybrid is labelled with an alkaline phosphatase conjugate. The electrochemical substrate for alkaline phosphatase revelation is p-aminophenyl phosphate. Solutions and reagents are sequentially passed through the microchannels, until enzyme substrate is added for in situ signal detection. Upon readout, the magnet array is flipped away, beads are removed by addition of regeneration buffer, and the so-regenerated chip is ready for further analysis. This protocol has been applied to the analytical detection of specific DNA sequences of Legionella pneumophila, with an RSD=8.5% and a detection limit of 0.33 nM.  相似文献   

2.
In the present study, we investigated the properties of PNA and LNA capture probes in the development of an electrochemical hybridization assay. Streptavidin-coated paramagnetic micro-beads were used as a solid phase to immobilize biotinylated DNA, PNA and LNA capture probes, respectively. The target sequence was then recognized via hybridization with the capture probe. After labeling the biotinylated hybrid with a streptavidin–enzyme conjugate, the electrochemical detection of the enzymatic product was performed onto the surface of a disposable electrode. The assay was applied to the analytical detection of biotinylated DNA as well as RNA sequences. Detection limits, calculated considering the slope of the linear portion of the calibration curve in the range 0–2 nM were found to be 152, 118 and 91 pM, coupled with a reproducibility of the analysis equal to 5, 9 and 6%, calculated as RSD%, for DNA, PNA and LNA probes respectively, using the DNA target. In the case of the RNA target, the detection limits were found to be 51, 60 and 78 pM for DNA, PNA and LNA probes respectively.  相似文献   

3.
MicroRNAs (miRNAs, miRs) are naturally occurring small RNAs (approximately 22 nucleotides in length) that have critical functions in a variety of biological processes, including tumorigenesis. They are an important target for detection technology for future medical diagnostics. In this paper we report an electrochemical method for miRNA detection based on paramagnetic beads and enzyme amplification. In particular, miR 222 was chosen as model sequence, because of its involvement in brain, lung, and liver cancers. The proposed bioassay is based on biotinylated DNA capture probes immobilized on streptavidin-coated paramagnetic beads. Total RNA was extracted from the cell sample, enriched for small RNA, biotinylated, and then hybridized with the capture probe on the beads. The beads were then incubated with streptavidin–alkaline phosphatase and exposed to the appropriate enzymatic substrate. The product of the enzymatic reaction was electrochemically monitored. The assay was finally tested with a compact microfluidic device which enables multiplexed analysis of eight different samples with a detection limit of 7 pmol L?1 and RSD?=?15 %. RNA samples from non-small-cell lung cancer and glioblastoma cell lines were also analyzed.  相似文献   

4.
A microfluidic biosensor with electrochemical detection for the quantification of nucleic acid sequences was developed. In contrast to most microbiosensors that are based on fluorescence for signal generation, it takes advantage of the simplicity and high sensitivity provided by an amperometric and coulorimetric detection system. An interdigitated ultramicroelectrode array (IDUA) was fabricated in a glass chip and integrated directly with microchannels made of poly(dimethylsiloxane) (PDMS). The assembly was packaged into a Plexiglas housing providing fluid and electrical connections. IDUAs were characterized amperometrically and using cyclic voltammetry with respect to static and dynamic responses for the presence of a reversible redox couple-potassium hexacyanoferrate (ii)/hexacyanoferrate (iii) (ferri/ferrocyanide). A combined concentration of 0.5 microM of ferro/ferricyanide was determined as lower limit of detection with a dynamic range of 5 orders of magnitude. Background signals were negligible and the IDUA responded in a highly reversible manner to the injection of various volumes and various concentrations of the electrochemical marker. For the detection of nucleic acid sequences, liposomes entrapping the electrochemical marker were tagged with a DNA probe, and superparamagnetic beads were coated with a second DNA probe. A single stranded DNA target sequence hybridized with both probes. The sandwich was captured in the microfluidic channel just upstream of the IDUA via a magnet located in the outside housing. Liposomes were lysed using a detergent and the amount of released ferro/ferricyanide was quantified while passing by the IDUA. Optimal location of the magnet with respect to the IDUA was investigated, the effect of dextran sulfate on the hybridization reaction was studied and the amount of magnetic beads used in the assay was optimized. A dose response curve using varying concentrations of target DNA molecules was carried out demonstrating a limit of detection at 1 fmol assay(-1) and a dynamic range between 1 and 50 fmol. The overall assay took 6 min to complete, plus 15-20 min of pre-incubation and required only a simple potentiostat for signal recording and interpretation.  相似文献   

5.
An indicator-based and indicator-free magnetic assays connected with a disposable pencil graphite electrode (PGE) were successfully developed, and also compared for the electrochemical detection of DNA hybridization. The oxidation signals of echinomycin (ECHI) and electroactive DNA bases, guanine and adenine, respectively were monitored in the presence of DNA hybridization by using differential pulse voltammetry (DPV) technique. The biotinylated probe was immobilized onto the magnetic beads (magnetic particles, microspheres) and hybridization with its complementary target at the surface of particles within the medium was exhibited successfully using electrochemical sensor system. For the selectivity studies, the results represent that both indicator-based and indicator-free magnetic assays provide a better discrimination for DNA hybridization compared to duplex with one-base or more mismatches. The detection limits (S/N = 3) of the magnetic assays based on indicator or indicator-free were found in nM concentration level of target using disposable sensor technology with good reproducibility. The characterization and advantages of both proposed magnetic assays connected with a disposable electrochemical sensor are also discussed and compared with those methods previously reported in the literature.  相似文献   

6.
The aim of this work is the preparation of DNA‐sensing architectures based on gold nanoparticles (AuNPs) in conjunction with an enzyme‐amplified detection to improve the analytical properties of genosensor. In order to assess the utility of study as DNA‐sensing devices, a thiolated DNA capture probe sequence was immobilized on the gold nanoparticle modified surface. After labeling of the biotinylated hybrid with a streptavidin‐alkaline phosphatase conjugate, the electrochemical detection of the enzymatic product was performed on the surface of a disposable electrode. Two different enzymatic substrates to detect the hybridization event were studied. In the first case, the enzyme catalyzed the hydrolysis of α‐naphthyl phosphate; the product is electroactive and has been detected by means of differential pulse voltammetry (DPV). In the second one, the enzyme catalyzed the precipitation of an insoluble and insulating product on the sensing interface. In this case, the electrochemical transduction of the hybridization process was performed by electrochemical impedance spectroscopy (EIS).  相似文献   

7.
In this paper, we describe a new method of automated sample preparation for multiplexed biological analysis systems that use flow cytometry fluorescence detection. In this approach, color-encoded microspheres derivatized to capture particular biomolecules are temporarily trapped in a renewable surface separation column to enable perfusion with sample and reagents prior to delivery to the detector. This method provides for separation of the biomolecules of interest from other sample matrix components as well as from labeling solutions. After sample preparation, the beads can be released from the renewable surface column and delivered to a flow cytometer for direct on-bead analysis one bead at a time. Using mixtures of color-encoded beads derivatized for various analytes yields suspension arrays for multiplexed analysis. Development of this approach required a new technique for automated capture and release of the color-encoded microspheres within a fluidic system. We developed a method for forming a renewable filter and demonstrate its use for capturing microspheres that are too small to be easily captured in previous flow cells for renewable separation columns. The renewable filter is created by first trapping larger beads in the flow cell, and then smaller beads are captured either within or on top of the bed of larger beads. Both the selective microspheres and filter bed are automatically emplaced and discarded for each sample. A renewable filter created with 19.9 μm beads was used to trap 5.6 μm optically encoded beads with trapping efficiencies of 99%. The larger beads forming the renewable filter did not interfere with the detection of color-encoded 5.6 μm beads by the flow cytometer fluorescence detector. The use of this method was demonstrated with model reactions for a variety of bioanalytical assay types including a one-step capture of a biotinylated label on Lumavidin beads, a two-step sandwich immunoassay, and a one-step DNA binding assay. A preliminary demonstration of multiplexed detection of two analytes using color-encoded beads was also demonstrated. The renewable filter for creating separation columns containing optically encoded beads provides a general platform for coupling renewable surface methods for sample preparation and analyte labeling with flow cytometry detectors for suspension array multiplexed analyses.  相似文献   

8.
A microfluidic biosensor based on nucleic acid sequence recognition   总被引:2,自引:0,他引:2  
The development of a generic semi-disposable microfluidic biosensor for the highly sensitive detection of pathogens via their nucleic acid sequences is presented in this paper. Disposable microchannels with defined areas for capture and detection of target pathogen RNA sequence were created in polydimethylsiloxane (PDMS) and mounted onto a reusable polymethylmethacrylate (PMMA) stand. Two different DNA probes complementary to unique sequences on the target pathogen RNA serve as the biorecognition elements. For signal generation and amplification, one probe is coupled to dye encapsulated liposomes while the second probe is coupled to superparamagnetic beads for target immobilization. The probes hybridize to target RNA and the liposome–target-bead complex is subsequently captured on a magnet. The amount of liposomes captured correlates directly to the concentration of target sequence and is quantified using a fluorescence microscope. Dengue fever virus serotype 3 sequences and probes were used as a model analyte system to test the sensor. Probe binding and target capture conditions were optimized for sensitivity resulting in a detection limit of as little as 10 amol L–1 (10 pmol L–1) . Future biosensors will be designed to incorporate a mixer and substitute the fluorescence detection with an electrochemical detection technique to provide a truly portable microbiosensor system.  相似文献   

9.
This paper reported the development of a microfludic device for the rapid detection of viable and nonviable microbial cells through dual labeling by fluorescent in situ hybridization (FISH) and quantum dots (QDs)-labeled immunofluorescent assay (IFA). The coin sized device consists of a microchannel and filtering pillars (gap = 1-2 μm) and was demonstrated to effectively trap and concentrate microbial cells (i.e. Giardia lamblia). After sample injection, FISH probe solution and QDs-labeled antibody solution were sequentially pumped into the device to accelerate the fluorescent labeling reactions at optimized flow rates (i.e. 1 and 20 μL/min, respectively). After 2 min washing for each assay, the whole process could be finished within 30 min, with minimum consumption of labeling reagents and superior fluorescent signal intensity. The choice of QDs 525 for IFA resulted in bright and stable fluorescent signal, with minimum interference with the Cy3 signal from FISH detection.  相似文献   

10.
Reske T  Mix M  Bahl H  Flechsig GU 《Talanta》2007,74(3):393-397
This communication reports about how single-stranded 136 base polymerase chain reaction (PCR) products labeled with electrochemically active osmium tetroxide bipyridine can be detected voltammetrically by hybridization with probe strands immobilized on gold electrodes. These electroactive ssDNA targets have been obtained by means of Lambda Exonuclease treatment of the double-stranded PCR products followed by hybridization of the remaining single strands with short protective strands and covalent labeling with osmium tetroxide bipyridine. Square-wave voltammetric signals of these osmium labels have been obtained only upon hybridization with the immobilized probe strands. An optimal 50 °C hybridization temperature has been found with a saturation of the probe layer at 30 min hybridization time and 7.5 nmol/l target concentration. The blank capture probe layer alone did not yield any signal. Unprotected strands produced almost no interference. Such double-selective switch-on electrochemical hybridization assays hold great promise for the specific detection of PCR products.  相似文献   

11.
Methods based on metal nanotags have been developed for metallobioassay of nucleic acids, but most involve complicated labeling or stripping procedures and are unsuitable for routine use. Herein, we report the proof-of-concept of a novel and label-free metallobioassay for ultrasensitive electronic determination of human immunodeficiency virus (HIV)-related gene fragments at an ultralow concentration based on target-triggered long-range self-assembled DNA nanostructures and DNA-based hybridization chain reaction (HCR). The signal is amplified by silver nanotags on the DNA duplex. The assay mainly consists of capture probe, detection probe, and two different DNA hairpins. In the presence of target DNA, the capture probe immobilized on the sensor sandwiches target DNA with the 3′ end of detection probe. Another exposed part of detection probe at the 5′ end opens two alternating DNA hairpins in turn, and propagates a chain reaction of hybridization events to form a nicked double-helix. Finally, numerous silver nanotags are immobilized onto the long-range DNA nanostructures, each of which produces a strong electronic signal within the applied potentials. Under optimal conditions, the target-triggered long-range DNA nanostructures present good electrochemical behaviors for the detection of HIV DNA at a concentration as low as 0.5 fM. Importantly, the outstanding sensitivity can make this approach a promising scheme for development of next-generation DNA sensors without the need of enzyme labeling or fluorophore labeling.  相似文献   

12.
Genomagnetic electrochemical assays of DNA hybridization   总被引:1,自引:0,他引:1  
Wang J  Xu D  Erdem A  Polsky R  Salazar MA 《Talanta》2002,56(5):931-938
An electrochemical genomagnetic hybridization assay has been developed to take advantage of a new and efficient magnetic separation/mixing process, the amplification feature of enzyme labels, and single-use thick-film carbon transducers operated in the pulse-voltammetric mode. It represents the first example of coupling a magnetic isolation with electrochemical detection of DNA hybridization. The new protocol employs an enzyme-linked sandwich solution hybridization, with a magnetic-particle labeled probe hybridizing to a biotinylated DNA target that captures a streptavidin-alkaline phosphatase (AP). The alpha-naphthol product of the enzymatic reaction is quantitated through its well-defined, low-potential (+0.1 V vs. Ag/AgCl) differential pulse-voltammetric peak at the disposable screen-printed electrode. The efficient magnetic isolation is particularly attractive for electrical detection of DNA hybridization which is commonly affected by the presence of non-hybridized nucleic acid adsorbates. The new biomagnetic processing combines such magnetic separation with a low-volume magnetic mixing, and allows simultaneous handling of 12 samples. The attractive bioanalytical behavior of the new enzyme-linked genomagnetic electrical assay is illustrated for the detection of DNA segments related to the breast-cancer BRCA1 gene.  相似文献   

13.
An electrochemiluminescence (ECL) biosensor for simultaneous detection of adenosine and thrombin in one sample based on bifunctional aptamer and N-(aminobutyl)-N-(ethylisoluminol) functionalized gold nanoparticles (ABEI-AuNPs) was developed. A streptavidin coated gold nanoparticles modified electrode was utilized to immobilize biotinylated bifunctional aptamer (ATA), which consisted of adenosine and thrombin aptamer. The ATA performed as recognition element of capture probe. For adenosine detection, ABEI-AuNPs labeled hybridization probe with a partial complementary sequence of ATA reacted with ATA, leading to a strong ECL response of N-(aminobutyl)-N-(ethylisoluminol) enriched on ABEI-AuNPs. After recognition of adenosine, the hybridization probe was displaced by adenosine and ECL signal declined. The decrease of ECL signal was in proportion to the concentration of adenosine over the range of 5.0 × 10−12–5.0 × 10−9 M with a detection limit of 2.2 × 10−12 M. For thrombin detection, thrombin was assembled on ATA modified electrode via aptamer–target recognition, another aptamer of thrombin tagged with ABEI-AuNPs was bounded to another reactive site of thrombin, producing ECL signals. The ECL intensity was linearly with the concentration of thrombin from 5 × 10−14 M to 5 × 10−10 M with a detection limit of 1.2 × 10−14 M. In the ECL biosensor, adenosine and thrombin can be detected when they coexisted in one sample and a multi-analytes assay was established. The sensitivity of the present biosensor is superior to most available aptasensors for adenosine and thrombin. The biosensor also showed good selectivity towards the targets. Being challenged in real plasma sample, the biosensor was confirmed to be a good prospect for multi-analytes assay of small molecules and proteins in biological samples.  相似文献   

14.
An electrochemical DNA genosensor constructed by using rough gold as electrode support is reported in this work. The electrode surface nanopatterning was accomplished by repetitive square-wave perturbing potential (RSWPP). A synthetic 25-mer DNA capture probe, modified at the 5′ end with a hexaalkylthiol, able to hybridize with a specific sequence of lacZ gene from the Enterobacteriaceae bacterial family was assembled to the rough gold surface. A 25 bases synthetic sequence fully complementary to the thiolated DNA capture probe and a 326 bases fragment of lacZ containing a fully matched sequence with the capture probe, which was amplified by a specific asymmetric polymerase chain reaction (aPCR), were employed as target sequences. The hybridization event was electrochemically monitored by using two different indicators, hexaammineruthenium (III) chloride showing an electrostatic DNA binding mode, and pentaamineruthenium-[3-(2-phenanthren-9-yl-vinyl)-pyridine] (in brief RuL) which binds to double stranded DNA (dsDNA) following an intercalative mechanism. After optimization of the different variables involved in the hybridization and detection reactions, detection limits of 5.30 pg μL−1 and 10 pg μL−1 were obtained for the 25-mer synthetic target DNA and the aPCR amplicon, respectively. A RSD value of 6% was obtained for measurements carried out with 3 different genosensors prepared in the same manner.  相似文献   

15.
This paper describes specific electrochemical enterobacteriaceae lac Z gene DNA sensors based on immobilization of a thiolated 25 base single stranded probe onto disposable screen printed gold electrodes (gold SPEs). Two configurations have been evaluated. In the first one, the capture probe was attached to the electrode surface through its ? SH moiety, while mercaptohexanol (MCH) was used as spacer for the displacement of nonspecifically adsorbed oligonucleotide molecules. The hybridization event between the probe and target DNA sequences was detected at ?0.20 V by square‐wave voltammetry (SWV), using methylene blue (MB) as electrochemical indicator. The second genosensor configuration involved modification of gold high temperature SPEs with a 3,3′‐dithiodipropionic acid di(N‐succinimidyl ester) (DTSP) self‐assembled monolayer (SAM). Moreover, 2‐aminoethanol was used as blocking agent, and further modification with avidin allowed binding of the biotinylated enterobacteriaceae lac Z gene DNA probe. An enzyme amplified detection scheme was applied, based on the coupling of streptavidin‐peroxidase to the biotinylated complementary target, after the hybridization process, and immobilization of tetrathiafulvalene (TTF) as redox mediator atop the modified electrode. The amperometric response obtained at ?0.15 V after the addition of hydrogen peroxide was used to detect the hybridization process. Experimental variables concerning sensors composition and electrochemical transduction were evaluated in both cases. A better precision and reproducibility in the fabrication process, as well as a higher sensitivity were achieved using the biotinylated probe‐based sensor configuration. A limit of detection of 0.002 ng/μL was obtained without any preconcentration step.  相似文献   

16.
Engineered nucleic acid probes containing recognition and signaling functions find growing interest in biosensor design. In this paper, we developed a novel electrochemical biosensor for sensitive and selective detecting of Hg2+ based on a bifunctional oligonucleotide signal probe combining a mercury-specific sequence and a G-quadruplex (G4) sequence. For constructing the electrochemical Hg2+ biosensor, a thiolated, mercury-specific oligonucleotide capture probe was first immobilized on gold electrode surface. In the presence of Hg2+, a bifunctional oligonucleotide signal probe was hybridized with the immobilized capture probe through thymine–mercury(II)–thymine interaction-mediated surface hybridization. The further interaction between G4 sequence of the signal probe and hemin generated a G4–hemin complex, which catalyzed the electrochemical reduction of hydrogen peroxide, producing amplified readout signals for Hg2+ interaction events. This electrochemical Hg2+ biosensor was highly sensitive and selective to Hg2+ in the concentration of 1.0 nM to 1 μM with a detection limit of 0.5 nM. The new design of bifunctional oligonucleotide signal probes also provides a potential alternative for developing simple and effective electrochemical biosensors capable of detecting other metal ions specific to natural or artificial bases.  相似文献   

17.
The development of an electrochemical genosensor involving DNA biotinylated capture probe immobilized on streptavidin coated paramagnetic beads and microfluidic based platform for the detection of P53 gene PCR product is reported. The novelty of this work is the combination of a sensitive electrochemical platform and a proper microfluidic system with a simple and effective enzyme signal amplification technology, ELISA, for detection of target DNA sequence and single nucleotide mutation in p53 tumor suppressor gene sequence. The biosensor has been applied to detect the PCR amplified samples and the results shows that it can discriminate successfully perfect matched DNA from mutant form.  相似文献   

18.
There are only a few examples in which beads are employed for heterogeneous assays on microfluidic devices, because of the difficulties associated with packing and handling these in etched microstructures. This contribution describes a microfluidic device that allows the capture, preconcentration, and controlled manipulation of small beads (<6 microm) in etched microchannels using fluid flows only. The chips feature planar diverging and converging channel elements connected by a narrow microchannel. Creation of bi-directional liquid movement by opposing electro-osmotic and pressure-driven flows can lead to the generation of controlled recirculating flow at these elements. Small polymer beads can actually be captured in the controlled rotating flow patterns. The clusters of freely moving beads that result can be perfused sequentially with different solutions. A preliminary binding curve was determined for the reaction of streptavidin-coated beads and fluorescein-labelled biotin, demonstrating the potential of this bead-handling approach for bioanalysis.  相似文献   

19.
A simple DNA diagnosis method using microfluidics has been developed which requires simple and straightforward procedures such as injection of sample and probe DNA solutions. This method takes advantage of the highly accurate control of fluids in microchannels, and is superior to DNA microarray diagnosis methods due to its simplicity, highly quantitative determination, and high-sensitivity. The method is capable of detecting DNA hybridization for molecules as small as a 20 mer. This suggests the difference in microfluidic behavior between single strand DNA (ssDNA) and double stranded DNA (dsDNA). In this work, influence of both the inertial force exerted on DNA molecules and the diffusion of DNA molecules was investigated. Based on the determination of these parameters for both ssDNA and dsDNA by experiments, a numerical model describing the phenomena in the microchannel was designed. Computational simulation results using this model were in good agreement with previously reported experimental results. The simulation results showed that appropriate selection of the analysis point and the design of microchannel structure are important to bring out the diffusion and inertial force effects suitably and increase the sensitivity of the detection of DNA hybridization, that is, the analytical performance of the microfluidic DNA chip.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号