首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A rapid method for the simultaneous identification and quantification of pesticide residues in edible seaweed has been developed. Target analytes were three pyrethroid, a carbamate and two organophosphorus pesticides. The procedure consists of a pressurized liquid extraction (PLE) with integrated clean-up, followed by gas chromatography coupled to tandem mass spectrometry. Five PLE parameters were investigated using a screening design: temperature, static extraction time, number of cycles, percent of flush volume and quantitative composition of the n-hexane/ethyl acetate extraction solvent. The effect of the in-cell clean-up with Florisil® and graphitized carbon black adsorbents was investigated using a Doehlert response surface design. Large volumes of sample extracts were injected using a programmed-temperature vaporizer (PTV-LVI) to improve both sensitivity and selectivity of measurements. Quantification was carried by the internal standard method with surrogate deuterated standards. The method showed excellent linearity (R2 > 0.999) and precision (relative standard deviation, RSD ≤ 8%) for all compounds, with detection limits ranging from 0.3 pg g−1 for chlorpyrifos-ethyl, to 3.0 pg g−1 for carbaryl (23.1 pg g−1 for deltamethrin). Recoveries in real seaweed samples were within the range 82–108%. The method was satisfactory validated for the analysis of wild and cultivated edible seaweeds. The presence of pyrethroid and organophosphorus pesticides in some of the samples was evidenced.  相似文献   

2.
Heon-Woo Lee 《Talanta》2007,71(1):62-67
A simple, rapid, and sensitive high-performance liquid chromatography (HPLC)-electrospray ionization (ESI) tandem mass spectrometric method (LC-MS/MS) has been developed for simultaneous determination of cilazapril levels and its active metabolite, cilazaprilat, in human plasma using enalapril as internal standard. The acquisition was performed in the multiple reaction monitoring mode; monitoring the transitions: m/z 418.4 > 211.1 for cilazapril and m/z 390.3 > 211.1 for cilazaprilat. The method involves a simple single-step liquid-liquid extraction with ethyl acetate. The analyte was chromatographed on an YMC C8 reversed-phase chromatographic column by isocratic elution with 10 mM ammonium formate buffer-methanol (10:90, v/v; pH 3.2 with formic acid). Numerous compounds did not interfere with specific multiple reaction monitoring in tandem mass spectrometric detection following C8 reversed-phase chromatographic separation under conditions that eluted cilazapril, cilazaprilat, and enalapril within 2 min. This method was validated over 0.1-500 ng ml−1 of cilazapril and 0.5-50 ng ml−1 of cilazaprilat. Cilazapril and cilazaprilat were stable in standard solution and in plasma samples under typical storage and processing conditions. The assay was successfully applied to a pharmacokinetic study of cilazapril given as a single oral dose (5 mg) to healthy volunteers.  相似文献   

3.
Development and validation of a method for simultaneous identification and quantification of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabinol (CBN), and metabolites 11-hydroxy-THC (11-OH-THC) and 11-nor-9-carboxy-THC (THCCOOH) in oral fluid. Simultaneous analysis was problematic due to different physicochemical characteristics and concentration ranges. Neutral analytes, such as THC and CBD, are present in ng/mL, rather than pg/mL concentrations, as observed for the acidic THCCOOH biomarker in oral fluid. THCCOOH is not present in cannabis smoke, definitively differentiating cannabis use from passive smoke exposure. THC, 11-OH-THC, THCCOOH, CBD, and CBN quantification was achieved in a single oral fluid specimen collected with the Quantisal™ device. One mL oral fluid/buffer solution (0.25 mL oral fluid and 0.75 mL buffer) was applied to conditioned CEREX® Polycrom™ THC solid-phase extraction (SPE) columns. After washing, THC, 11-OH-THC, CBD, and CBN were eluted with hexane/acetone/ethyl acetate (60:30:20, v/v/v), derivatized with N,O-bis-(trimethylsilyl)trifluoroacetamide and quantified by two-dimensional gas chromatography electron ionization mass spectrometry (2D-GCMS) with cold trapping. Acidic THCCOOH was separately eluted with hexane/ethyl acetate/acetic acid (75:25:2.5, v/v/v), derivatized with trifluoroacetic anhydride and hexafluoroisopropanol, and quantified by the more sensitive 2D-GCMS–electron capture negative chemical ionization (NCI-MS). Linearity was 0.5–50 ng/mL for THC, 11-OH-THC, CBD and 1–50 ng/mL for CBN. The linear dynamic range for THCCOOH was 7.5–500 pg/mL. Intra- and inter-assay imprecision as percent RSD at three concentrations across the linear dynamic range were 0.3–6.6%. Analytical recovery was within 13.8% of target. This new SPE 2D-GCMS assay achieved efficient quantification of five cannabinoids in oral fluid, including pg/mL concentrations of THCCOOH by combining differential elution, 2D-GCMS with electron ionization and negative chemical ionization. This method will be applied to quantification of cannabinoids in oral fluid specimens from individuals participating in controlled cannabis and Sativex® (50% THC and 50% CBD) administration studies, and during cannabis withdrawal.  相似文献   

4.
This paper describes the use of dilute nitric acid for the extraction and quantification of arsenic species. A number of extractants (e.g. water, 1.5 M orthophosphoric acid, methanol-water and dilute nitric acid) were tested for the extraction of arsenic from marine biological samples, such as plants that have proved difficult to quantitatively extract. Dilute 2% (v/v) nitric acid was found to give the highest recoveries of arsenic overall and was chosen for further optimisation. The optimal extraction conditions for arsenic were 2% (v/v) HNO3, 6 min−1, 90 °C. Arsenic species were found to be stable under the optimised conditions with the exception of the arsenoriboses which degraded to a product eluting at the same retention time as glycerol arsenoribose. Good agreement was found between the 2% (v/v) HNO3 extraction and the methanol-water extraction for the certified reference material DORM-2 (AB 17.1 and 16.2 μg g−1, respectively, and TETRA 0.27 and 0.25 μg g−1, respectively), which were in close agreement with the certified concentrations of AB 16.4 ± 1.1 μg g−1 and TETRA 0.248 ± 0.054 μg g−1.To preserve the integrity of arsenic species, a sequential extraction technique was developed where the previously methanol-water extracted pellet was further extracted with 2% (v/v) HNO3 under the optimised conditions. Increases in arsenic recoveries between 13% and 36% were found and speciation of this faction revealed that only inorganic and simple methylated species were extracted.  相似文献   

5.
A new separation method based on a novel reversed-phase sequential injection chromatography (SIC) technique was used for simultaneous determination of ambroxol hydrochloride and doxycycline in pharmaceutical preparations in this contribution.The coupling of short monolith with SIA system results in an implementation of separation step to until no-separation low-pressure method.A Chromolith® Flash RP-18e, 25-4.6 mm column (Merck, Germany) and a FIAlab® 3000 system (USA) with a six-port selection valve and 5 ml syringe were used for sequential injection chromatographic separations in our study. The mobile phase used was acetonitrile-water (20:90, v/v), pH 2.5 adjusted with 98% phosphoric acid, flow rate 0.48 ml min−1, UV detection was at 213 nm.The validation parameters have shown good results: linearity of determination for both compounds including internal standard (ethylparaben) >0.999; repeatability of determination (R.S.D.) in the range 0.5-5.4% at three different concentration levels, detection limits in the range 0.5-2.0 μg ml−1, and recovery from the pharmaceutical preparation in the range 99.3-99.9%. The chromatographic resolution between peak compounds was >5.0 and analysis time was <9 min under the optimal conditions. The method was found to be applicable for routine analysis of the active compounds ambroxol hydrochloride and doxycycline in various pharmaceutical preparations.  相似文献   

6.
A multi-residue method for the determination of organochlorine pesticides in fish feed samples was developed and optimized. The method is based on a cleanup step of the extracted fat, carried out by liquid–liquid extraction on diatomaceous earth cartridge with n-hexane/acetonitrile (80/20, v/v) followed by solid phase extraction (SPE) with silica gel–SCX cartridge, before the identification and quantification of the residues by gas chromatography–triple quadrupole tandem spectrometry (GC–MS/MS). Performance characteristics, such as accuracy, precision, linear range, limits of detection (LOD) and quantification (LOQ), for each pesticide were determined. Instrumental LODs ranged from 0.01 to 0.11 μg L−1, LOQs were in the range of 0.02–0.35 μg L−1, and calibration curves were linear (r2 > 0.999) in the whole range of explored concentrations (5–100 μg L−1). Repeatability values were in the range of 3–15%, evaluated from the relative standard deviation of six samples spiked at 100 μg kg−1 of fat, and in compliance with that derived by the Horwitz's equation. No matrix effects or interfering substances were observed in fish feed analyses. The proposed method allowed high recoveries (92–116%) of spiked extracted fat samples at 100 μg kg−1, and very low LODs (between 0.02 and 0.63 μg kg−1) and LOQs (between 0.05 and 2.09 μg kg−1) determined in fish feed samples.  相似文献   

7.
A new method for the determination of ochratoxin A and T-2 toxin in alcoholic beverages (wine and beer) by hollow fiber liquid microextraction was optimized. The extraction step was followed by ultra high-pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The extraction procedure was based on the extraction of mycotoxins from the sample to the organic solvent (1-octanol) immobilized in the fiber, and afterwards, they were desorbed in a mixture of acetonitrile/water (80:20, v/v) at pH 7 prior to chromatographic determination. Different variables affecting the extraction process such as organic solvent, salt content, extraction time and desorption solution were studied. The developed method was validated in wine and beer, using white wine and alcoholic beer as representative matrices for both types of samples. Relative recoveries higher than 70% were obtained for the selected mycotoxins. Good linearity (R2 > 0.993) was obtained and quantification limits (0.02-0.09 μg L−1) below European regulatory levels were achieved. Repeatability, expressed as relative standard deviation, was always lower than 12%, whereas interday precision was lower than 21%. The proposed method was applied to the analysis of several types of wines and beers and ochratoxin A was detected in a rosé wine at 1.1 μg L−1.  相似文献   

8.
A simple, rapid and sensitive high-performance liquid chromatography method was developed for the analysis of the sesquiterpene lactone 15-deoxygoyazensolide (LAC15-D) in rat plasma samples. The chromatographic separation was achieved on a LiChrospher® RP18 column using methanol:water (50:50, v/v) containing 0.6% acetic acid as mobile phase, at a flow rate of 0.7 mL min−1. UV detection was carried out at 270 nm. Phenytoin was used as internal standard. Prior to the analysis, the rat plasma samples were submitted to liquid-liquid extraction with dichloromethane. The mean absolute recoveries were 73% with R.S.D. values lower than 3.5. The method was linear over the 6.0-2000 ng mL−1 concentration range and the quantification limit was 6.0 ng mL−1. Within-day and between-day assay precision and accuracy were studied at three concentration levels (15, 300 and 480 ng mL−1) and were lower than 15%. The validated method was used to measure the plasmatic concentration of LAC15-D in rats that received a single intraperitoneal dose of 30 mg kg−1.  相似文献   

9.
A new method based on enzymatic probe sonication extraction prior to high-performance liquid chromatography (HPLC) has been developed for the determination of 11 antibiotics (drugs) and the main metabolites of five of them in fish tissue and mussel samples. The analytes belong to four different classes of antibiotics (sulfonamides, tetracyclines, penicillins and amphenicols). The analysed compounds were sulfadiazine (SDI) and N4-acetylsulfadiazine (NDI) metabolite, sulfamethazine (SMZ) and N4-acetylsulfamethazine (NMZ), sulfamerazine (SMR) and N4-acetylsulfamerazine (NMR), sulfamethoxazole (SMX), trimetroprim (TMP), amoxicillin (AMX) and its main metabolite amoxicilloic acid (AMA), ampicillin (AMP) and its main metabolite ampicilloic acid (APA), chloramphenicol (CLF), thiamphenicol (TIF), oxytetracycline (OXT) and chlortetracycline (CLT).The main factors affecting the extraction efficiency (type of enzyme, type and volume of extractant, ultrasounds power and extraction time) were optimised in tissue of hake (Merluccius merluccius), anchovy (Engraulis encrasicolus), mussel (Mytilus sp.) and wedge sole (Solea solea). The extraction was carried out using an extraction time of 5 min with 5 mL of water and subsequent clean-up with dichloromethane.High-performance liquid chromatography (HPLC) with diode array (DAD) and fluorescence (FLD) detectors was used for the determination of the antibiotics. The separation of the analysed compounds was conducted by means of a Phenomenex® Gemini C18 (150 mm × 4.6 mm I.D., particle size 5 μm) analytical column with LiChroCART® LiChrospher® C18 (4 mm × 4 mm, particle size 5 μm) guard-column. Analysed drugs were determined using formic acid 0.1% (v/v) in water and acetonitrile in gradient elution mode as mobile phase. The proposed method was also evaluated by a laboratory assay consisting of the determination of the targeted analytes in samples of Cyprinus carpio which had previously administered the antibiotics.  相似文献   

10.
A highly sensitive and selective liquid chromatography-mass spectrometry (LC-MS) method has been developed for the determination of epirubicin in serum and cell specimens using daunorubicin as an internal standard. Using atmospheric pressure chemical ionisation (APCI), the epirubicin metabolites were readily distinguishable by their fragmentation pattern in the mass spectrometer. Selected reaction monitoring (SRM) mode was employed for quantitation of epirubicin and the metabolites. Following extraction, chromatography was performed on a C18 column with a mobile phase consisting of water-acetonitrile-formic acid, pH 3.2, with a flow rate of 200 μl/min. The limit of detection (LOD) and the limit of quantitation (LOQ) of this method in serum were determined to be 1.0 and 2.5 ng/ml, respectively. Linearity of the method was verified over the concentration range of 2.5-2000 ng/ml, with a high correlation coefficient (R2 ≥ 0.998). For the extraction procedure, an aliquot of 500 μl serum, spiked with internal standard, was extracted using a chloroform-2-isopropanol (2:1, v/v) mixture. The method has been applied to the analysis of epirubicin in cancer cell samples and the identification of known and unknown metabolites in clinical trial patient serum samples.  相似文献   

11.
A simple and sensitive multi-residue method for the determination of 115 veterinary drugs and pharmaceuticals, belonging in more than 20 different classes, in butter, milk powder, egg and fish tissue has been developed. The method involves a simple generic solid–liquid extraction step (solvent extraction, SE) with 0.1% formic acid in aqueous solution of EDTA 0.1% (w/v)–acetonitrile (ACN)–methanol (MeOH) (1:1:1, v/v) with additional ultrasonic-assisted extraction. Precipitation of lipids and proteins was promoted by subjecting the extracts at very low temperature (−23 °C) for 12 h. Further cleanup with hexane ensures fat removal from the matrix. Analysis was performed by liquid chromatography coupled with electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS). Two separate runs were performed for positive and negative ionization in multiple reaction monitoring mode (MRM). Particular attention was devoted to extraction optimization: different sample-to-extracting volume ratios, different concentrations of formic acid in the extraction solvent and different ultrasonic extraction temperatures were tested in butter, egg and milk powder samples. The method was also applied in fish tissue samples. It was validated, on the basis of international guidelines, for all four matrices. Quantitative analysis was performed by means of standard addition calibration. For over 80% of the analytes, the recoveries were between 50% and 120% in all matrices studied, with RSD values in the range of 1–18%. Limits of detection (LODs) and quantification (LOQs) ranged from 0.008 μg kg−1 (oxfendazole in butter) to 3.15 μg kg−1 (hydrochlorthiazide in egg). The evaluated method provides reliable screening, quantification, and identification of 115 veterinary drug and pharmaceutical residues in foods of animal origin and has been successfully applied in real samples.  相似文献   

12.
S. Losada  M.T. Galceran 《Talanta》2009,80(2):839-91
A fast and simple method for the analysis of polybrominated diphenyl ethers (PBDEs) in fish samples was developed using a one-step extraction and clean-up by means of pressurized liquid extraction (PLE) combined with gas chromatography-ion trap tandem mass spectrometry (GC-ITMS-MS). The selective PLE method provided to obtain ready-to-analyse extracts without any additional clean-up step, using a sorbent as fat retainer inside the PLE cell. Several PLE operating conditions, such as solvent type, extraction temperature and time, number of cycles and type of fat retainer, were studied. Using Florisil as fat retainer, maximum recoveries of PBDEs (83-108%) with minimum presence of matrix-interfering compounds were obtained using a mixture of n-hexane:dichloromethane 90:10 (v/v) as solvent, an extraction temperature of 100 °C and a static extraction time of 5 min in combination with three static cycles. Quality parameters of the method were established using standards and fish samples. Limits of detection and quantification ranged from 10 to 34 pg g−1 wet weight and between 34 and 68 pg g−1 wet weight, respectively. In addition, good linearity (between 1 and 500 ng ml−1) and high precision (RSD % < 15%) were achieved. The method was validated using the standard reference material SRM-1945 (whale blubber) and was then applied to the analysis of PBDEs in fish samples.  相似文献   

13.
Sequential injection chromatography system equipped with miniaturized 10 mm monolithic column was used for fast simultaneous determination of two pesticides—fenoxycarb (FC) and permethrin (PM). The system was composed of a commercial sequential injection analysis (SIA) system (FIAlab® 3000, 6-port selection valve and 5.0 mL syringe pump), commercially available column Chromolith™ RP-18e (10 mm × 4.6 mm i.d.) (Merck®, Germany) and CCD UV-vis detector (USB 2000, Ocean-optics) with 1.0 cm Z-flow cell, absorbance was monitored at 225 nm. The mobile phase used for analysis was acetonitrile/water (60:40, v/v), flow rates were 0.6 mL min−1 for elution of fenoxycarb and 1.2 mL min−1 for elution of permethrin. For each analysis 4.8 mL of mobile phase was used. The chromatographic resolution between both compounds was >8 and analysis time was <6.5 min under the optimal conditions. Limits of detection were determined at 2.0 μg mL−1 for fenoxycarb and 1.0 μg mL−1 for permethrin. Samples were prepared by diluting with mobile phase and injected volume was 10 μL for each analysis. Developed method was applied to analysis of both pesticides in veterinary pharmaceutical foams and sprays ARPALIT® Neo (Aveflor, Czech Republic). SIC method was compared with validated method (HPLC, reverse phase 100 mm monolithic column, gradient elution).  相似文献   

14.
In this work, a novel method is described for the determination of bromhexine in biological fluids using molecularly imprinted solid-phase extraction as the sample cleanup technique combined with high performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and bromhexine as the template molecule. The novel imprinted polymer was used as a solid-phase extraction sorbent for the extraction of bromhexine from human serum and urine. Various parameters affecting the extraction efficiency of the polymer have been evaluated. The optimal conditions for molecularly imprinted solid-phase extraction (MISPE) consisted of conditioning 1 mL methanol and 1 mL of deionized water at neutral pH, loading of 5 mL of the water sample (25 μg L−1) at pH 6.0, washing using 2 mL acetonitrile/acetone (1/4, v/v) and elution with 3× 1 mL methanol/acetic acid (10/1, v/v). The MIP selectivity was evaluated by checking several substances with similar molecular structures to that of bromhexine. Results from the HPLC analyses showed that the calibration curve of bromhexine using MIP from human serum and urine is linear in the ranges of 0.5-100 and 1.5-100 μg L−1 with good precisions (3.3% and 2.8% for 5.0 μg L−1), respectively. The recoveries for serum and urine samples were higher than 92%.  相似文献   

15.
This work presents novel approach in low-pressure chromatography flow systems—two-column Sequential Injection Chromatography (2-C SIC) and its comparison with gradient elution chromatography on the same instrument. The system was equipped with two different chromatographic columns (connected to selection valve in parallel design) for isocratic separation and determination of all components in composed anti-inflammatory pharmaceutical preparation (tablets). The sample was first injected on the first column of length 30 mm where less retained analytes were separated and then the sample was injected on the second column of length 10 mm where more retained analytes were separated. The SIC system was based on a commercial SIChrom™ manifold (8-port high-pressure selection valve and medium-pressure syringe pump with 4 mL reservoir) (FIAlab®, USA) with two commercially available monolithic columns the “first column” Chromolith® Flash RP-18e (25 mm × 4.6 mm i.d. with guard column 5 mm × 4.6 mm i.d.) and the “second column” Chromolith® RP-18e (10 mm × 4.6 mm i.d.) and CCD UV-vis detector USB 4000 with micro-volume 1.0 cm Z flow cell. Two mobile phases were used for analysis (one for each column). The mobile phase 1 used for elution of paracetamol, caffeine and salicylic acid (internal standard) was acetonitrile/water (10:90, v/v, the water part of pH 3.5 adjusted with acetic acid), flow rate was 0.9 mL min−1 (volume 3.0 mL of mobile phase per analysis). The mobile phase 2 used for elution of propyphenazone was acetonitrile/water (30:70, v/v); flow rate was 1.2 mL min−1 (volume 1.5 mL of mobile phase per analysis). Absorbance was monitored at 210 nm. Samples were prepared by dissolving of one tablet in 30% acetonitrile and 10 μL of filtered supernatant was injected on each column (2 × 10 μL). The chromatographic resolution between all compounds was >1.45 and analysis time was 5.5 min under the optimal conditions. Limits of detection were determined at 0.4 μg mL−1 for paracetamol, at 0.5 μg mL−1 for caffeine and at 0.7 μg mL−1 for propyphenazone. The new two-column chromatographic set-up developed as an alternative approach to gradient elution chromatography shows evident advantages (time and solvent reduction more than one-third) as compared with single-column gradient SIC method with Chromolith® Flash RP-18 (25 mm × 4.6 mm i.d. with guard column 5 mm × 4.6 mm i.d.).  相似文献   

16.
19-Nortestosterone (nandrolone) major metabolites in human urine are excreted as sulfoconjugated and glucuroconjugated forms. A sensitive and selective liquid chromatography/tandem mass spectrometry (LC/MS/MS) method in negative ESI mode was developed for direct quantification of 19-norandrosterone sulfate (19-NAS) and 19-noretiocholanolone sulfate (19-NES). For both sulfoconjugates, the [M−H] ion at m/z 355 and the fragment ion at m/z 97 were used as the precursor and product ions, respectively. The purification method involved a complete and rapid separation of sulfates and glucuronides in two extracts after loading the sample on a weak anion exchange solid phase extraction support (SPE Oasis® WAX). Then, sulfates were separated by LC (Uptisphere® ODB, 150 mm × 3.0 mm, 5 μm) and analyzed on a linear trap and a triple quadrupole mass spectrometer. The lower limit of detection (LLOD) and lowest limit of quantification (LLOQ) were of 100 pg mL−1 and 1 ng mL−1, respectively. Assay validation demonstrated good performances in terms of trueness (92.0-104.9%), repeatability (0.6-7.2%) and intermediate precision (1.3-10.8%) over the range of 1-2500 ng mL−1. Finally, 19-NAS and 19-NES in urine samples collected after intake of 19-norandrostenedione (nandrolone precursor) were quantified. This assay may be easily implemented to separate glucuronide and sulfate steroids from urine specimens prior to quantification by LC/MS/MS.  相似文献   

17.
This work describes an on-line molecularly imprinted solid-phase extraction (MISPE) method for spectrophotometric determination of nicotine in urine samples of smokers. This method is based on manganese (VII) to manganese (VI) reduction in an alkaline medium, promoted by nicotine. Two wash solutions (1:4 (v/v) acetonitrile:sodium hydroxide - pH 11.4, and nitric acid - pH 2.5) were employed to circumvent interferences. Aqueous solutions containing nicotine plus different possible concomitants (cotinine, anabasine, norcotinine and caffeine) were tested individually. The analytical calibration curve was prepared in urine samples collected from non-smokers and spiked with nicotine standard from 1.1 to 60 μmol L−1 (r2 > 0.998). The limit of quantification and the analytical frequency were 1.1 μmol L−1 and 11 h−1, respectively. The precision, evaluated using 3, 10 and 30 μmol L−1 nicotine in urine, was 10, 10 and 4% (intra-day precision) and 12, 13 and 5% (inter-day precision), respectively. Accuracy was checked through high performance liquid chromatography and the results did not present significant differences at the 95% confidence level according to the Student's t-test.  相似文献   

18.
This work reports a fast and simple liquid chromatographic method for the simultaneous determination of five banned fat-soluble synthetic colorants, namely Sudan I-IV and Para-Red, in spice samples. The analytes were successfully separated isocratically in less than 5 min on the new narrow bore monolithic column, FastGradient® Chromolith (50 mm × 2.0 mm i.d.) using a mobile phase of 0.1% (v/v) HCOOH/acetonitrile (35/65%, v/v) at a flow rate of 1.5 mL min−1. All colorants were detected at 506 nm. The main parameters (mobile phase composition, flow rate, injection volume) affecting the separation were studied. The proposed method was thoroughly validated in terms of linearity, LODs, precision and accuracy. The method was applied to the determination of the studied azo-dyes in various spices (paprika, chilli and mixed spice powders) after ultrasound-assisted extraction. Satisfactory recoveries, ranging from 92% to 109% were obtained.  相似文献   

19.
Sevgi Tatar Ulu 《Talanta》2007,72(3):1172-1177
A sensitive and specific high-performance liquid chromatography (HPLC) method has been developed and validated for the quantification of mexiletine (MEX) in human plasma and urine. It uses solid-phase extraction (SPE) followed by an automated reversed-phase HPLC with a pre-column derivatization with 4-chloro-7-nitrobenzofurazan (NBD-CI) and UV-vis Absorbance detection. The process was set as: the UV-vis Absorbance wavelength was set at 458 nm. Chromatographic separation was performed on a Phenomenex-C18 Column (Aqua, 150 mm × 4.6 mm i.d. with 5 μm particle size) with the mobile phase consisting of acetonitrile and water (80:20, v/v), and the flow rate was set at 1.0 mL min−1. Calibration of the overall analytical procedure gave a linear signal (r > 0.9998) over a MEX concentration range of 0.2-2.0 μg mL−1 in human plasma and urine. The detection limit in plasma and urine was 0.1 μg mL−1. Intra- and inter-day precision of the assay at three concentrations within this range were 0.31-2.50%. The high specificity and sensitivity have been achieved by this fast method (total run-time <6 min). The method has been successfully validated in human plasma and urine and it has been shown to be precise, accurate and reliable.  相似文献   

20.
Polyclonal antibodies against microcystin-LR (MC-LR), a cyclic heptapeptide toxin, were generated in rabbits using MC-LR-BSA. An enzyme-linked immunosorbent assay (ELISA) was developed for the characterization of the antibodies and their potential use for analytical purposes. The concentration of MC-LR that inhibits 50% of antibody-antigen binding (IC50) was 0.5 μg L−1 for the indirect ELISA format and 0.9 μg L−1 for the direct ELISA, using MC-LR-horseradish peroxidase conjugate. The limit of detection corresponding to IC80 was found to be 0.06 μg L−1, well below the Word Health Organization level for drinking water of 1 μg L−1. The direct competitive ELISA was applied to water samples and was shown useful for screening purposes. The developed anti-microcystin antibodies were immobilized on solid supports for use in selective solid phase extraction (SPE) systems, prior to liquid chromatography (LC) quantification. An immunoaffinity cartridge (IAC), a Sepharose®-based cartridge incorporating 2 mg of antibodies allowed the selective and quantitative recovery of a mixture of 0.2 μg of MCs showing potential use in sample preparation of real matrices. When applied to water and green algae samples, average recoveries from Sepharose®-based cartridges were in the range of 86-113% for water samples and 85-92% for blue-green algae samples. Selectivity of the IAC clean-up was proven by comparison with non-specific solid phase extraction using octadecylsilica (ODS) sorbent. Results obtained using LC/UV after IAC clean-up agreed well with results obtained using liquid chromatography and mass spectrometry detection (LC/MS and LC/MS/MS) after SPE-C18 clean-up, allowing therefore to validate the resulting technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号