首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For selenium speciation analysis, the hyphenation of chromatographic separation with element-specific detection has proved a useful technique. A powerful separation system, which is capable of resolving several biologically and environmentally important selenium compounds in a single column, is greatly needed. However, that has been difficult to achieve. In this paper eight selenium compounds, namely, selenite [Se(IV)], selenate [Se(VI)], selenocystine (SeCys), selenourea (SeUr), selenomethionine (SeMet), selenoethionine (SeEt), selenocystamine (SeCM) and trimethylselenonium ion (TMSe+), were separated by using mixed ion-pair reagents containing 2.5 mM sodium 1-butanesulfonate and 8 mM tetramethylammonium hydroxide as a mobile phase. The separation of these anionic, cationic and neutral organic selenium compounds on a LiChrosorb RP18 reversed-phase column took only 18 min at a flow-rate of 1.0 ml/min with isocratic elution, and baseline separation among the six organic Se compounds was achieved. Inductively coupled plasma mass spectrometry (ICP-MS) was employed as element-specific detection. A comparison of ICP-MS signal intensity obtained with a Barbington-type nebulizer and with an ultrasonic nebulizer (USN) was made. Different signal enhancement factors were observed for the various selenium compounds when a USN was used. The speciation technique was successfully applied to the study on chemical forms of selenium in a selenium nutritional supplement. Selenomethionine was found to be the predominant constituent of selenium in the supplement.  相似文献   

2.
Determination of inorganic oxyanions of As and Se by HPLC-ICPMS   总被引:1,自引:0,他引:1  
Sathrugnan K  Hirata S 《Talanta》2004,64(1):237-243
A liquid chromatographic separation of inorganic oxyanions of As (As(V) and As(III)) and Se (Se(VI) and Se(IV)) using mixed ion-pairing reagents followed by ICPMS detection is described. The separation was accomplished in less than 4 min on Capcell C18 RP column using mixed ion-pairing modifier containing 5 mM of butane sulfonic acid (BSA), 2 mM malonic acid, 0.30 mM hexane sulfonic acid (HSA) and 0.5% methanol of pH 2.5. All four species were resolved with retention times of 2.4, 2.6, 3.0, and 3.1 min for Se(VI), As(V), As(III), and Se(IV), respectively. The detection limits were less than 0.08 and 0.77 μg l−1 for arsenic and selenium species, respectively. The relative standard deviation of the proposed method for arsenic (at 2.5 μg l−1) and selenium (at 10 μg l−1) was less than 3.7 and 4.8%, respectively. The technique was used to determine inorganic oxyanions of As and Se in water samples (tap, well, and river) and extracts of coal fly ash and sediment. Low power microwave digestion was employed for extraction from fly ash and sediment samples.  相似文献   

3.
Zheng J  Shibata Y  Furuta N 《Talanta》2003,59(1):27-36
Analytical methods for the speciation of nine selenium species (selenite, selenate, selenourea, trimethylselenonium ion, selenocystamine, selenocystine, selenocysteine, selenomethionine and selenoethionine) that are commonly encountered in biological and environmental samples were developed. Good separation was achieved by either a mixed ion-pair reversed phase chromatography (LiChrosorb RP 18, 2.5 mM 1-butanesulfonate-8 mM tetramethylammonium hydroxide-4 mM malonic acid-0.05% methanol, pH 4.5) or a conventional ion-pair reversed phase chromatography (Inertsil ODS, 10 mM tetraethylammonium hydroxide-4.5 mM malonic acid, pH 6.8) with on-line ICP-MS detection. Using a 20-μl sample loop, low detection limits around 1 ng ml−1 expressed as Se were achieved for the examined selenium species. The methods were used for the determination of selenoamino acids in a selenium nutritional supplement. The developed methods were found to be rather robust. No alteration of the separation was observed when the protease enzymatic extracts were analyzed without dilution. Both water extracts and enzymatic extracts were chromatographed first with the mixed ion-pair reversed phase chromatographic system, then the major chromatographic peaks were collected and analyzed by the second ion-pair reversed phase chromatographic system for a further verification of their identity. Selenomethionine was found to be the major selenium species in the supplement. A major unknown species, probably Se-adenosylhomocysteine, could be determined in the extracts. A biological reference material, Dolt-2, was also examined for the selenoamino acids. Selenocystine and selenomethionine could be detected in its enzymatic extract, suggesting that Dolt-2 may be used as a reference material for the identification of selenoamino acids in biological and environmental samples. As selenoethionine does not occur naturally in the investigated samples, it is added as an internal standard in this study.  相似文献   

4.
The purpose of the work described in this paper was to develop an easy and quick in-vitro method for comparing the bioavailability of selenium in cows’ milk after different cow feed. The study focuses on bioavailability differences resulting from the use of different selenium species (organic selenium as selenised yeast and sodium selenite) for supplementation of forage. A procedure for determination of selenium in cows’ milk and dialysates, by hydride-generation atomic-fluorescence spectrometry (HG-AFS) after microwave-assisted acid digestion, was optimised. The results show it is possible to obtain cows’ milk enriched with selenium at different concentration without altering the original composition of the milk. The bioavailability was statistically greater for cows’ milk obtained after supplementation of forage with organic selenium at levels of 0.4 and 0.5 μg Se g−1 than for that obtained after supplementation with inorganic and organic selenium at levels of 0.2 and 0.3 μg Se g−1.  相似文献   

5.
Summary The eleven Environmental Protection Agency (EPA) priority phenolic compounds have been determined by solid-phase extraction (SPE) coupled on-line to supercritical-fluid chromatography (SFC) with diodearray detection. The variables affecting chromatographic separation were optimized and the analytes were separated at 40 °C in two diol columns connected in series; a gradient of methanol, as modifier, and CO2 was used as mobile phase. Under these conditions, all the compounds studied were separated to baseline in less than 13 min. PLRP-S and LiChrolut EN were tested as sorbents in a 10×3 mm i.d. laboratory-packed precolumn for solid-phase extraction. An ion-pair reagent, tetrabutylammonium bromide (TBA), was used in the extraction process to increase break-through volumes. The performance of the method was checked with tap and river waters and the pre-concentration of 20 mL of sample in a PLRP-S pre-column enabled phenolic compounds to be determined at low μg L−1 levels with limits of detection ranging between 0.4 and 2 μg L−1. The repeatability and reproducibility between days (n=3) for real samples spiked at 10 μg L−1 were lower than 10%.  相似文献   

6.
Speciation analysis of four selenium species (selenite, selenate, selenocystine, and selenomethionine) has been performed by on-line coupling of liquid chromatography (LC), UV decomposition, hydride generation (HG), and atomic-fluorescence spectrometry (AFS). Because only selenite (SeIV) can generate hydrides, on-line conversion of organic and inorganic selenium species is discussed. Preliminary study showed that the use of only UV light was not sufficient to reduce selenate, because no absorption is observed for this compound at the main wavelength of the low-pressure mercury lamp (253.7 nm). Thus, new conditions based on addition of a reducing reagent (I) were developed. Mechanisms of action are proposed to explain selenium species conversions. Because of their compatibility with on-line treatment, phosphate buffers were used for chromatographic separation on an anion exchange column (Hamilton PRP-X100). Detection limits (19–60 pg Se) and repeatability of the technique were close to those obtained by conventional quadrupole ICPMS. Applications to real samples such as water and oysters are presented and emphasize the robustness of the system.  相似文献   

7.
A sensitive and non chromatographic analytical procedure for the separation of inorganic selenium species in natural water has been performed. A combination of APDC coprecipitation and determination by an absolute thin layer Energy dispersive X-ray fluorescence spectrometry method was used. The influence of various analytical parameters such as element concentration, oxidation states and pH on the recoveries of Se (IV) was examined. The presence of organic matter and bicarbonate anions, typical components in Cuban groundwater samples, was also tested. Negligible matrix effects were observed. At pH 4 a 100% recovery was found for Se (IV). The coprecipitation recovery of the oxidized selenium species (Se (VI)) was null for the selected concentration range (5–100 μg L−1). When the Se (VI) was reduced by heating the solution with 4 mol L−1 HCl, quantitative recovery was also obtained. The determination of total selenium was conducted by the application of the oxidation–reduction process and the analytical procedure for Se (IV). Se (VI) content was calculated as the difference between total selenium and Se (IV). The detection limit was 0.13 μg L−1. The relative standard deviation was lower than 3.5% for 5 μg L−1 of Se (IV). The trueness of the method was verified by using standardized hydride generation-atomic absorption spectrometry technique. The results obtained using the EDXRF technique were in good agreement with the ones determined by HG-AAS. The proposed method was applied to the determination of Se (IV) in surface water and groundwater samples.  相似文献   

8.
Summary The separation of inorganic anions (NO3 , NO2 , Cl, Br, I, SO4 2−, S2O3 2−) by ion-interaction chromatography mediated with a specific dye has been investigated. Chromatography was performed on a LiChrospher RP-18 colum dynamically coated with crystal violet, using acetonitrile-water buffered with phthalate as the mobile phase. The presence of the dye in the eluent enabled indirect spectrophotometric detection of the analytes, which have no significant UV absorption. Retention data were collected for the different anions by varying the composition of the mobile phase according to a full factorial experimental design. A theoretical model for the retention of singly- and doubly-charged analytes, on the basis of the two main processes of ion-exchange and ion-pair formation, has been proposed and validated with the experimental data.  相似文献   

9.
High-performance liquid chromatography (HPLC) coupled to an ICP-MS with an octapole reaction system (ORS) has been used to carry out quantitative speciation of selenium (Se) and arsenic (As) in the stream waters of a refining process. The argon dimers interfering with the 78Se and 80Se isotopes were suppressed by pressurizing the octapole chamber with 3.1 mL min−1 H2 and 0.5 mL min−1 He. Four arsenic species arsenite—As(III), arsenate (As(V)), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)—and three inorganic Se species—selenite Se(IV), selenate Se(VI), and selenocyanate (SeCN)—were separated in a single run by ion chromatography (IC) using gradient elution with 100 mmol L−1 NH4NO3, pH 8.5, adjusted by addition of NH3, as eluent. Repeatabilities of peak position and of peak area evaluation were better than 1% and about 3%, respectively. Detection limits (as 3σ of the baseline noise) were 81, 56, and 75 ng L−1 for Se(IV), Se(VI), and SeCN, respectively, and 22, 19, 25, and 16 ng L−1 for As(III), As(V), MMA, and DMA, respectively. Calibration curve R 2 values ranged between 0.996 and 0.999 for the arsenic and selenium species. Column recovery for ion chromatography was calculated to be 97 ± 6% for combined arsenic species and 98 ± 3% for combined selenium species. Because certified reference materials for As and Se speciation studies are still not commercially available, in order to check accuracy and precision the method was applied to certified reference materials, BCR 714, BCR 1714, and BCR 715 and to two different refinery samples—inlet and outlet wastewater. The method was successfully used to study the quantitative speciation of selenium and arsenic in petroleum refinery wastewaters.  相似文献   

10.
R. Naidu  Z. L. Chen 《Chromatographia》2001,54(7-8):495-500
Summary Indirect UV detection in capillary zone electrophoresis (CZE) is frequently used for the determination of inorganic anions and carboxylic acids. However, there are few reports on direct UV detection of these solutes in real samples. This paper describes the use of direct UV detection of inorganic anions and organic acids in environmental samples using co-electroosmotic capillary zone electrophoresis (co-CZE) at 185 nm. The best separation and detection of the solutes was achieved using a fused silica capillary with an electrolyte containing 25 mM phosphate, 0.5 mM tetradecyltrimethylammonium bromide (TTAB) and 15% acetonitrile (v/v) at pH 6.0. Four common inorganic anions (Cl, NO2 , NO3 and SO4 2−) and 11 organic acids (oxalic, formic, fumaric, tartaric, malonic, malic, citric, succinic, maleic, acetic, and lactic acid), were determined simultaneously in 15 min. Linear calibration plots for the test solutes were obtained in the range 0.02–0.5 mM with detection limits ranging from 1–9 μM depending on the analyte. The proposed method was successfully used to determine inorganic anions and carboxylic acids in soil and plant tissue extracts with direct injection of the sample.  相似文献   

11.
A novel, fast, and cheap nonchromatographic method for direct speciation of dissolved inorganic and organic selenium species in environmental and biological samples was developed by flow injection (FI) dual-column preconcentration/separation on-line coupled with ICP-MS determination. In the developed technique, the first column packed with nanometer-sized Al(2)O(3) could selectively adsorb the inorganic selenium [Se(IV), Se(VI)], and the retained inorganic selenium could be eluted by 0.2 mol l(-1) NaOH, while the organic Se [selenocystine (SeCys(2)) and selenomethionine (Se-Met)] was not retained. On the other hand, the second column packed with mesoporous TiO(2) chemically modified by dimercaptosuccinic acid (DMSA) could selectively adsorb Se(IV) and SeCys(2) and barely adsorb Se(VI) and Se-Met. When the sample solution was passed through the column 1, separation of inorganic selenium and organic selenium could be achieved first. Then, the effluent from column 1 was successively introduced into the column 2 and the speciation of organic selenium could be attained due to the different adsorption behaviors of Se-Met and SeCys(2) on DMSA modified TiO(2). After that, the eluent from column 1 contained Se(IV), and Se(VI) was adjusted to desired pH and injected into column 2, and the speciation of Se(IV) and Se(VI) could also be realized thanks to their different retention on column 2. The parameters affecting the separation were investigated systematically and the optimal separation conditions were established. The detection limits obtained for Se(IV), Se(VI), Se-Met and SeCys(2) were 45-210 ng l(-1) with precisions of 3.6-9.7%. The proposed method has been successfully applied for the speciation of dissolved inorganic and organic selenium in environmental and biological samples. In order to validate the methodology, the developed method was also applied to the speciation of selenium in certified reference material of SELM-1 yeast, and the determined values were in good agreement with the certified values.  相似文献   

12.
用流动相离子色谱法(MPIC),以两性化合物与离子对试剂的混合溶液为流动相,在C18柱上抑制电导检测分析气溶胶中常规无机阴离子和有机酸。实验采用氢氧化四丁基铵(TBAOH)为离子对试剂,与两性化合物3-(N-吗啉)-1-丙磺酸(MOPS)混合,加入Na2CO3无机添加剂作流动相,其浓度为1mmol/L TBAOH/5mmol/LMOPS/0.5mmol/LNa2CO3。分离柱采用硅质C18柱,抑制电导检测。可以较好地分离和检测常见的无机和有机阴离子。该方法具有较好的重现性和线性关系,F^-、Cl^-、NO2^-、Br^-、C3H3O3^-、NO3^-的回收率分别为102.0%、104.6%、102.4%、97.8%、97.75%和102.5%;检出限分别为0.017、0.014、0.0048、0.036、0.16和0.017mg/L。  相似文献   

13.
Summary Capillary electrophoresis-amperometric detection is evaluated for simultaneous determination of rutin and forsythin. The cyclic voltammogram, hydrodynamic voltammogram, effect of pH, buffer concentration and SDS, and percent organic modifier on separation and detection were studied. Conditions were optimized as follows: 1.2 V detection potential; separation at 12 kV; 5 s at 15 kV for sample injection time and sample injection voltage; mobile phase 20 mM boric acid buffer; pH 8.4, containing 40 mM SDS and 10% (v/v) acetontrile. The method gave low detection limit as 0.001 mg mL−1 and 0.0005 mg mL−1 (S/N=3), wide linear range 0.005–0.5 mg mL−1 for rutin and forsythin, respectively. The relative standard deviations of peak current and migration time for 8 consecutive injections of the standard solution containing 0.1 mg mL−1 each compound were 4.78%, 3.63% and 6.40%, 2.95% for rutin and forsythin, respectively. In addition, levels of the two compounds in traditional Chinese herbal drugs were easily determined.  相似文献   

14.
刘小兰  高薇  梁超  乔俊琴  王康  练鸿振 《色谱》2021,39(9):1021-1029
在离子对反相液相色谱(IP-RPLC)分析中,溶质保留受对离子(counter ion)的影响比较受人关注,但鲜有研究流动相中缓冲盐类型和离子对试剂中非对离子(non-counter ion)对溶质保留行为的影响。鉴于此,该文以14种磺酸化合物为研究对象,甲醇为有机调节剂,分别考察了3种缓冲盐体系(磷酸二氢铵、氯化铵和乙酸铵)和5种离子对试剂体系(四丁基溴化铵、四丁基磷酸二氢铵、四丁基硫酸氢铵、四丁基硝酸铵和四丁基乙酸铵)下强离解酸性化合物的IP-RPLC保留行为,通过比较不同流动相条件下得到的溶质log kw(100%水相作流动相时的保留因子)、S(线型溶剂强度模型线性回归得到的常数),以及CHI(色谱疏水指数,log kw/S),寻找保留行为规律。研究表明,流动相中的缓冲盐类型和离子对试剂非对离子均会影响化合物的log kwS值,所有化合物在氯化铵缓冲盐体系下具有最大的log kw值。相对于无机阴离子,离子对试剂中弱离解性有机阴离子(乙酸根)的存在有利于增加磺酸化合物的S值。通过对比不同条件下的保留行为,推测磺酸化合物的IP-RPLC保留机理中同时存在着离子对模型和动态离子交换模型。与log kw和S值不同,化合物的CHI值受缓冲盐类型以及离子对试剂非对离子的影响较弱。此外,研究发现化合物的表观正辛醇/水分配系数(log D)与log kwS、CHI之间均具有良好的线性相关性。不同缓冲溶液和不同离子对试剂非对离子条件下获得的log kwS值存在着一定的差异,而CHI值相对稳定,因此,CHI更适用于IP-RPLC中定量结构-保留行为关系模型的建立。  相似文献   

15.
A sensitive and rapid liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) method has been developed and validated for the determination of mizolastine in human plasma using dipyridamole as the internal standard (I.S.). Plasma samples were simply pretreated with methanol for deproteinization. Chromatographic separation was performed on an Agilent Zorbax C18 column with a mobile phase of 10 mM ammonium acetate buffer containing 0.1% formic acid–methanol (20:80, v/v) at a flow rate of 1 mL min−1. The electrospray ionization (ESI) interface was employed in a single quadrupole mass spectrometer. The analytes were protonated in the positive ESI interface and detected in single ion monitoring (SIM) mode. Chromatographic separation was achieved in less than 3.5 min. The linearity was established over the range of 0.5–600 ng mL−1. The lower limited of quantification (LLOQ) of the method was 0.5 ng mL−1. The intra- and inter-run standard deviations were both less than 11.2%. The method was applied to study the pharmacokinetics of the mizolastine sustained-release tablets in healthy volunteers.  相似文献   

16.
A highly sensitive method was developed for the simultaneous separation and determination of organic and inorganic selenium species in rice by ion‐pairing reversed‐phase chromatography combined with inductively coupled plasma tandem mass spectrometry. To achieve a good separation of these species, a comparison between anion‐exchange chromatography and ion‐pairing reversed‐phase chromatography was performed. The results indicated that ion‐pairing reversed‐phase chromatography was more suitable due to better separation and higher sensitivity for all analytes. In this case, a StableBond C18 column proved to be more robust or to have a better resolution than other C18 columns, when 0.5 mM tetrabutylammonium hydroxide and 10 mM ammonium acetate at pH 5.5 were used as the mobile phase. Moreover, an excellent sensitivity was obtained in terms of interferences by means of tandem mass spectrometry in the hydrogen mode. The detection limits were 0.02–0.12 μg/L, and recoveries of five selenium species were 75–114%, with relative standard deviations ≤ 9.4%. This method was successfully applied to the analysis of rice samples. Compared with previous studies, the proposed method not only gave comparable results when used for measuring selenium‐enriched rice, but it can provide greater sensitivity for the detection of low concentrations of selenium species in rice.  相似文献   

17.
A modified ion-pairing liquid chromatography method is developed for the analysis of 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA) and their phenolic metabolites in water and soil samples. The separation and determination of all compounds of interest can be performed with a mobile phase containing 30% acetonitrile and 10 mM tetrabutylammonium hydroxide as the ion-pairing reagent. Separation of the two phenoxyacids is strongly affected by the pH of the mobile phase, which has to be buffered to pH 7.2 with phosphoric acid. The increase in the hydrophobicity of the sample solvent results in wider peaks for the two phenoxyacids, which reduces the resolution in their separation. The evaluation of different methanol:water solvent mixtures shows that no baseline separation for the two phenoxyacids is obtained when the methanol content in the mixture is higher than 60%.  相似文献   

18.
This work investigates for the first time the potential of mixed-mode (anion-exchange with reversed-phase) high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (ICP-MS) for the simultaneous retention and selective separation of a range of inorganic and organically-bound selenium (Se) species. Baseline separation and detection of selenocystine (SeCys2), Se-methyl-selenocysteine (SeMC), selenomethionine (SeMet), methylseleninic acid (MSA), selenite, γ-glutamyl-methyl-selenocysteine (γ-glutamyl-SeMC), and selenate in a Se standard mixture by mixed-mode HPLC-ICP-MS was achieved by switching between two citrate mobile phases of different pH and ionic strength within a single chromatographic run of 20 min. Limits of detection obtained for these Se species ranged from 80 ng kg?1 (for SeMC) to 123 ng kg?1 (for selenate). Using this approach as developed for selenium speciation, an adequate separation of inorganic and organic As compounds was also achieved. These include arsenite, arsenate, arsenobetaine (AsB) and dimethylarsenic acid (DMA), which may coexist with Se species in biological samples. Application of the newly proposed methodology to the investigation of the elemental species distribution in watercress (used as the model sample) after enzymatic hydrolysis or leaching in water by accelerated solvent extraction (ASE) was addressed. Only SeMet, SeMC and selenate could be tentatively identified in watercress extracts by mixed-mode HPLC-ICP-MS and retention time matching with standards. Recoveries (n = 3) of these Se species from samples spiked with standards averaged 102% (for SeMC), 94.9% (for SeMet) and 98.3% (for selenate). Verification of the presence of SeMet and SeMC in an enzymatic watercress extract was achieved by on-line HPLC-ESI MS/MS in selected reaction monitoring (SRM) mode.  相似文献   

19.
Summary The retention behaviour of some substituted benzoic acids was tested on reversed-phase pre-coated plates in the presence of ammonium bromide and various tetraalkylammonium compounds with different alkyl chain lengths.It could be shown that the Rf values of the test compounds decrease in the absence and in the presence of ion-pair reagents with increasing water content of the eluent. The Rf values of the strongly acidic substituted benzoic acids decrease with both increasing concentration of the ion-pair reagent and with increasing chain length of the tetraalkylammonium compounds.Changing the inorganic counter-ions had no real influence on the separation and the size of Rf values when using tetramethylammonium compounds as ion-pair reagents.  相似文献   

20.
A method was developed for the determination of tetraethyl ammonium (TEA) by reversed-phase ionpair chromatography with indirect ultraviolet detection. Chromatographic separation was achieved on a reversed-phase C18 column using background ultraviolet absorbing reagent - ion-pair reagent - organic solvent as mobile phase. The effects of the background ultraviolet absorbing reagents, detection wavelength, ion-pair reagents, organic solvents and column temperature on the determination method were investigated and the retention rules discussed. Results found that TEA could be successfully analyzed by using 0.7 μmol/L 4-aminophenol hydrochloride and 0.15 μmol/L 1-heptanesulfonic acid sodium mixed with 20% (v/v) methanol asmobile phase at a UV detection wavelength of 230 nm. Under these conditions, the retention time of tetraethyl ammonium was 2.85 min. The detection limit (S/N = 3) for TEA was 0.06 mg/L. The relative standard deviations (n = 5) for peak area and retention time were 0.35% and 0.02%, respectively. The method has been successfully applied to the determination of synthesized tetraethyl ammonium bromide. Recovery of tetraethyl ammonium after spiking was 99.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号