首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Encapsulated microbubbles coupled with magnetic nanoparticles, one kind of hybrid agents that can integrate both ultrasound and magnetic resonance imaging/therapy functions, have attracted increasing interests in both research and clinic communities. However, there is a lack of comprehensive understanding of their dynamic behaviors generated in diagnostic and therapeutic applications. In the present work, a hybrid agent was synthesized by integrating superparamagnetic iron oxide nanoparticles (SPIOs) into albumin-shelled microbubbles (named as SPIO-albumin microbubbles). Then, both the stable and inertial cavitation thresholds of this hybrid agent were measured at varied SPIO concentrations and ultrasound parameters (e.g., frequency, pressure amplitude, and pulse length). The results show that, at a fixed acoustic driving frequency, both the stable and inertial cavitation thresholds of SPIO-albumin microbubble should decrease with the increasing SPIO concentration and acoustic driving pulse length. The inertial cavitation threshold of SPIO-albumin microbubbles also decreases with the raised driving frequency, while the minimum sub- and ultra-harmonic thresholds appear at twice and two thirds resonance frequency, respectively. It is also noticed that both the stable and inertial cavitation thresholds of SonoVue microbubbles are similar to those measured for hybrid microbubbles with a SPIO concentration of 114.7 μg/ml. The current work could provide better understanding on the impact of the integrated SPIOs on the dynamic responses (especially the cavitation activities) of hybrid microbubbles, and suggest the shell composition of hybrid agents should be appropriately designed to improve their clinical diagnostic and therapeutic performances of hybrid microbubble agents.  相似文献   

2.
The optical, structural, and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids were investigated at 397.5, 532, and 795 nm. The TEM and spectral measurements have shown temporal dynamics of size distribution of Ag nanoparticles in solutions. The thermal-induced self-defocusing dominated in the case of high pulse repetition rate as well as in the case of nanosecond pulses. In the case of low pulse repetition rate, the self-focusing (γ = 3 × 10−13 cm2 W−1) and saturated absorption (β = −1.5 × 10−9 cm W−1) of picosecond and femtosecond radiation were observed in these colloidal solutions. The nonlinear susceptibility of Ag nanoparticles ablated in water was measured to be 5 × 10−8 esu (at λ = 397.5 nm).  相似文献   

3.
超顺磁性氧化铁纳米粒子与造影剂微泡结合形成磁性微泡,用于产生多模态造影剂,以增强医学超声和磁共振成像.将装载有纳米磁性颗粒的微泡包膜层看作由磁流体膜与磷脂膜组合而成的双层膜结构,同时考虑磁性纳米颗粒体积分数a对膜密度及黏度的影响,从气泡动力学基本理论出发,构建多层膜结构磁性微泡非线性动力学方程.数值分析了驱动声压和频率等声场参数、颗粒体积分数、膜层厚度以及表面张力等膜壳参数对微泡声动力学行为的影响.结果表明,当磁性颗粒体积分数较小且a≤0.1时,磁性微泡声响应特性与普通包膜微泡相似,微泡的声频响应与其初始尺寸和驱动压有关;当驱动声场频率f为磁性微泡共振频率f0的2倍(f=2f0)时,微泡振动失稳临界声压最低;磁性颗粒的存在抑制了泡的膨胀和收缩但抑制效果非常有限;磁性微泡外膜层材料的表面张力参数K及膜层厚度d也会影响微泡的振动,当表面张力参数及膜厚取值分别为0.2—0.4 N/m及50—150 nm时,可观察到气泡存在不稳定振动响应区.  相似文献   

4.
于洁  郭霞生  屠娟  章东 《物理学报》2015,64(9):94306-094306
随着生命科学及现代医学的发展, 一体化无创精准诊疗已经日益成为人们关注的焦点问题, 而关于超声造影剂微泡的非线性效应的相关机理、动力学建模及其在超声医学领域中的应用研究也得到了极大的推动. 本文对下列课题进行了总结和讨论, 包括: 1)基于Mie散射技术和流式细胞仪对造影剂微泡参数进行定征的一体化解决方案; 2)通过对微泡包膜的黏弹特性进行非线性修正, 构建新的包膜微泡动力学模型; 3)探索造影剂惯性空化阈值与其包膜参数之间的相关性; 以及4)研究超声联合造影剂微泡促进基因/药物转染效率并有效降低其生物毒性的相关机理.  相似文献   

5.
High rate femtosecond (fs) laser ablation of the organic salt 4-N,N-dimethylamino-4-N-methyl-stilbazolium tosylate (DAST), an organic crystal with very high optical nonlinearities has been demonstrated. The threshold fluence and the ideal fluence range for damage free ablation for the wavelengths 550, 600, and 775 nm have been determined and the quality of the produced grooves has been investigated. The threshold fluences are in the order of 10–70 mJ/cm2 and the ideal fluence range for damage free ablation is ranging from 30 to 300 mJ/cm2, depending on the wavelength. The optimal focussing for ablation has been investigated and first results towards the structuring of a ridge waveguide are presented. We conclude that this method is most promising for waveguide patterning of DAST surfaces for integrated optics applications.  相似文献   

6.
To study the solid Cu ablation in vacuum, two different laser sources operating at 1064 and 308 nm wavelength are employed at similar values of laser fluences. The infrared laser is a Q-switched Nd:Yag having 9 ns pulse width (INFN-LNS, Catania), while the ultraviolet one is a XeCl excimer having 20 ns pulse width (INFN-LEA, Lecce). Both experiments produced a narrow angular distribution of the ejected material along the normal to the target surface. The ablation showed a threshold laser power density, of about 7 and 3 J/cm2 at 1064 and 308 nm, respectively, below which the ablation effect was negligible. The laser interaction produces a plasma at the target surface, which expands very fast in the vacuum chamber. Time-of-flight (TOF) measurements of the ion emission indicated an average ion velocity of the order of 4.7×104 and 2.3×104 m/s for the infrared and ultraviolet radiation, respectively. We also estimated approximately the corresponding temperature of the plasma from which ions originated, i.e. about 106 and 105 K for IR and UV wavelength, respectively. A discussion of the analysis of the ablation mechanism is presented. At the used laser power densities the produced Cu ions showed ionisation states between 1+ and 5+ in both cases.  相似文献   

7.
The oscillation and destruction of microbubbles under ultrasound excitation form the basis of contrast enhanced ultrasound imaging and microbubble assisted drug and gene delivery. A typical microbubble has a size of a few micrometers and consists of a gas core encapsulated by a shell. These bubbles can be driven into surface mode oscillations, which not only contribute to the measured acoustic signal but can lead to bubble destruction. Existing models of surface model oscillations have not considered the effects of a bubble shell. In this study a model was developed to study the surface mode oscillations in shelled bubbles. The effects of shell viscosity and elasticity on the surface mode oscillations were modeled using a Boussinesq-Scriven approach. Simulation was conducted using the model with various bubble sizes and driving acoustic pressures. The occurrence of surface modes and the number of ultrasound cycles needed for the occurrence were calculated. The simulation results show a significant difference between shelled bubbles and shell free bubbles. The shelled bubbles have reduced surface mode amplitudes and a narrower bubble size range within which these modes develop compared to shell free bubbles. The clinical implications were also discussed.  相似文献   

8.
A powerful experimental approach to measure the size distribution of bubbles active in sonoluminescence and/or sonochemistry is a technique based on pulsed ultrasound and sonoluminescence emission. While it is an accepted technique, it is still lacking an understanding of the effect of various experimental parameters, including the duration of the pulse on-time, the nature of the dissolved gas, the presence of a gas flow rate, etc. The present work, focusing on Ar-saturated water sonicated at 362 kHz, shows that increasing the pulse on-time leads to the measurement of coalesced bubbles. Reducing the on-time to a minimum and/or adding sodium dodecyl sulfate to water allows to reducing coalescence so that natural active cavitation bubble sizes can be measured. A radius of 2.9–3.0 µm is obtained in Ar-saturated water at 362 kHz. The effects of acoustic power and possible formation of a standing-wave on coalescence and measured bubble sizes are discussed.  相似文献   

9.
Pulsed laser cleaning was demonstrated to be an efficient way for removing submicron particles from the nickel-phosphorus (NiP) surface both experimentally and theoretically. Experimentally, it is found that using KrF excimer laser with a pulse width of 23 ns the cleaning threshold is about 20 mJ / cm2 for removing quartz particles from the NiP surface and laser cleaning efficiency increases rapidly with increasing laser fluence. The theoretical analysis shows that the peak cleaning force (per unit area) is larger than the adhesion force (per unit area) for submicron quartz particles on the NiP surface when it is irradiated by excimer laser with a fluence above 10 mJ / cm2. Therefore, it is possible to remove submicron quartz particles from NiP surfaces by laser irradiation. The difference between the cleaning force (per unit area) and the adhesion force (per unit area) increases with increasing laser fluence, leading to a higher cleaning efficency for quartz particles on the NiP surface.  相似文献   

10.
Time-resolved spectral blue shifts of 100-fs laser pulses caused by ionization of atmospheric density N2 and noble gases subjected to high (1014 W/cm2 to 1016 W/cm2) light intensities are examined. Included are data for two experiments: self-shifting of the ionizing laser pulses for varying peak intensities, pressures (1-5 atm), and gas species; and time-resolved blue shifts of a weak copropagating probe pulse for the same range of ionization conditions. The self-shift data reveal a universal, reproducible pattern in the shape of the blueshifted spectra: as laser intensity, gas pressure, or atomic number increase, the self-blueshifted spectra develop from a near replica of the incident pulse spectrum into a complex structure consisting of two spectral peaks. The time-resolved data reveal different temporal dependence for each of these two features. A quantitative model for a simplified cylindrical focal geometry is presented  相似文献   

11.
A photo-ionized lithium source is developed for plasma acceleration applications. A homogeneous column of lithium neutral vapor with a density of 2×1015-3 is confined by helium gas in a heat-pipe oven. A UV laser pulse ionizes the vapor. In this device, the length of the neutral vapor and plasma column is 25 cm. The plasma density was measured by laser interferometry in the visible on the lithium neutrals and by CO2 laser interferometry on the plasma electrons. The maximum measured plasma density was 2.9×10 14 cm-3, limited by the available UV fluence (≈83 mJ/cm2), corresponding to a 15% ionization fraction. After ionization, the plasma density decreases by a factor of two in about 12 μs. These results show that such a plasma source is scaleable to lengths of the order of 1 m and should satisfy all the requirements for demonstrating the acceleration of electrons by 1 GeV in a 1-GeV/m amplitude plasma wake  相似文献   

12.
Ultrasound contrast agents consist of microbubbles with diameters in the micrometer range. Excited by ultrasound, these bubbles exhibit highly nonlinear oscillation. While well developed physical models for microbubble oscillation exist, the efficiency of pulse sequences for sensitive microbubble detection is discussed based on simple mathematical models of general nonlinearity. Typically, Taylor series are used to model microbubble nonlinearity for the development of detection schemes. Recently, pulse sequences were proposed which exploit nonlinear memory of microbubbles, a property that cannot be modeled by a Taylor series but can be explained using a Volterra series. Therefore, this paper discusses and evaluates the usage of Volterra series for the modeling of the scattering behavior of contrast agent microbubbles. A numerically stable linear estimation algorithm is implemented to determine a third order Volterra model for a free gas bubble with a resting radius . For insonification pressures up to 100 kPa, the identified model allowed for a mean-square error of less than −16 dB with respect to the reference signal. Analysis of the response to narrowband signals showed that the achievable mean-square error is further reduced for the bandwidth available to typical ultrasound transducers used for clinical diagnostics.  相似文献   

13.
The interaction of 180 fs, 775 nm laser pulses with aluminium under a flowing stream of helium at ambient pressure have been used to study the material re-deposition, ablation rate and residual surface roughness. Threshold fluence Fth0.4 J cm−2 and the volume ablation rate was measured to be 30<V<450 μm3 per pulse in the fluence range 1.4<F<21 J cm−2. The presence of helium avoids gas breakdown above the substrate and leads to improved surface micro-structure by minimising surface oxidation and debris re-deposition. At 1 kHz rep. rate, with fluence F>7 J cm−2 and >85 W cm−2 average power density, residual thermal effects result in melt and debris formation producing poor surface micro-structure. On the contrary, surface micro-machining at low fluence F1.4 J cm−2 with low power density, 3 W cm−2 produces much superior surface micro-structuring with minimum melt and measured surface roughness Ra1.1±0.1 μm at a depth D50 μm. By varying the combination of fluence/scan speed during ultra-fast ablation of aluminium at 1 kHz rep. rate, results suggest that maintaining average scanned power density to <5 W cm−2 combined with single pulse fluence <4 J cm−2 produces near optimum micro-structuring. The debris under these conditions contains pure aluminium nanoparticles carried with the helium stream.  相似文献   

14.
《中国物理 B》2021,30(9):98701-098701
Based on a femtosecond laser plasma-induced hard x-ray source with a high laser pulse energy( 100 mJ) at 10 Hz repetition rate,we present a time-resolved x-ray diffraction system on an ultrafast time scale.The laser intensity is at relativistic regime(2 × 10~(19) W/cm~2),which is essential for effectively generating K_α source in high-Z metal material.The produced copper K_α radiation yield reaches to 2.5 × 10~8 photons/sr/shot.The multilayer mirrors are optimized for monochromatizating and two-dimensional beam shaping of K_α emission.Our experiment exhibits its ability of monitoring the transient structural changes in a thin film SrCoO_(2.5) crystal.It is demonstrated that this facility is a powerful tool to perform dynamic studies on samples and adaptable to the specific needs for different particular applications with high flexibility.  相似文献   

15.
A recently developed ultrasound technique is evaluated by measuring the behavior of a cavitation bubble that is induced in water by a femtosecond laser pulse. The passive acoustic emission during optical breakdown is used to estimate the location of the cavitation bubble's origin. In turn, the position of the bubble wall is defined based on the active ultrasonic pulse-echo signal. The results suggest that the developed ultrasound technique can be used for quantitative measurements of femtosecond laser-induced microbubbles.  相似文献   

16.
Thus far, studies conducted to assess the safety of diagnostic ultrasound have employed sinusoidal sound fields. To evaluate the influence of nonlinearly distorted acoustic fields, this article compares the responses of microbubbles of variable size, exposed to (1) a sinusoidal pulse and (2) a sawtooth pulse. The nonlinear oscillations of a spherical bubble in a viscous compressible liquid stimulated into motion by an ultrasonic pulse are predicted, using a theoretical model for bubble dynamics. The maximum gas pressures inside the bubble when it collapses under the influence of a sinusoid or a sawtooth are deduced. Experimental work on Drosophila larvae exposed to sinusoidal and to sawtooth fields is consistent with the theoretical analysis.  相似文献   

17.
随着光电对抗和超短脉冲激光技术的发展,研究超短脉冲激光与单晶硅相互作用具有非常重要的理论和实际意义.为了进一步明确532 nm皮秒脉冲激光对单晶硅的损伤机理,本文开展了532 nm皮秒脉冲激光辐照单晶硅的损伤效应实验研究,测定了损伤阈值,明确了损伤机理,探讨了低通量下的脉冲累积效应.首先,利用波长为532 nm、脉冲宽...  相似文献   

18.
The interaction of a pulsed TE-CO2-laser (10.6 μm wavelength, 7 μs pulse length, 0.7 J pulse energy, 107 W/cm2 power density, 100 kW mean power) with metals in air was investigated. Laser-supported absorption phenomena and material ablation processes are compared to those of conventional pulsed TEA-CO 2-lasers. Of interest were the time-dependent plasma formation and the evolution of the shock waves. To achieve a time resolution better than 10 ns, a pulsed dye laser was used as a light source for the shadow photography  相似文献   

19.
Phase-change contrast agents (PCCAs) consist of liquid perfluorocarbon droplets that can be vaporized into gas-filled microbubbles by pulsed ultrasound waves at diagnostic pressures and frequencies. These activatable contrast agents provide benefits of longer circulating times and smaller sizes relative to conventional microbubble contrast agents. However, optimizing ultrasound-induced activation of these agents requires coordinated pulse sequences not found on current clinical systems, in order to both initiate droplet vaporization and image the resulting microbubble population. Specifically, the activation process must provide a spatially uniform distribution of microbubbles and needs to occur quickly enough to image the vaporized agents before they migrate out of the imaging field of view. The development and evaluation of protocols for PCCA-enhanced ultrasound imaging using a commercial array transducer are described. The developed pulse sequences consist of three states: (1) initial imaging at sub-activation pressures, (2) activating droplets within a selected region of interest, and (3) imaging the resulting microbubbles. Bubble clouds produced by the vaporization of decafluorobutane and octafluoropropane droplets were characterized as a function of focused pulse parameters and acoustic field location. Pulse sequences were designed to manipulate the geometries of discrete microbubble clouds using electronic steering, and cloud spacing was tailored to build a uniform vaporization field. The complete pulse sequence was demonstrated in the water bath and then in vivo in a rodent kidney. The resulting contrast provided a significant increase (>15 dB) in signal intensity.  相似文献   

20.
Thin silica-titania films doped with CdS and PbS nanocrystals have been prepared by the sol-gel route. Their nonlinear properties have been studied using the techniques of degenerated four-wave mixing and m-lines with picosecond (ps) and nanosecond laser pulses. Depending on wavelength, doping level, and laser pulse duration, high negative nonlinearity was found for CdS-doped (n2 = -2 x 10-8 cm2 per kW) and PbS-doped films (-10-10 to -2 x 10-7 cm2 per kW). The response time of the nonlinearity was below 35 ps. Saturation of the nonlinearity was observed. Straight, monomode channel waveguides have been fabricated on these films. The influence of MIE-scattering due to the nanoparticles is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号