首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The constant-volume combustion energy, △cU (DADE, s, 298.15 K), the thermal behavior, and kinetics and mechanism of the exothermic decomposition reaction of 1,1-diamino-2,2-dinitroethylene (DADE) have been investigated by a precise rotating bomb calorimeter, TG-DTG, DSC, rapid-scan fourier transform infrared (RSFT-IR) spectroscopy and T-jump/FTIR, respectively. The value of △cHm (DADE, s, 298.15 K) was determined as (-8518.09±4.59) j·g^-1. Its standard enthalpy of combustion, △cU (DADE, s, 298.15 K), and standard enthalpy of formation, △fHm (DADE, s, 298.15 K) were calculated to be (-1254.00±0.68) and (- 103.98±0.73) kJ·mol^-1, respectively The kinetic parameters (the apparent activation energy Ea and pre-exponential factor A) of the first exothermic decomposition reaction in a temperature-programmed mode obtained by Kissinger's method and Ozawa's method, were Ek=344.35 kJ·mol^-1, AR= 1034.50 S^-1 and Eo=335.32 kJ·mol^-1, respectively. The critical temperatures of thermal explosion of DADE were 206.98 and 207.08 ℃ by different methods. Information was obtained on its thermolysis detected by RSFT-IR and T-jump/FTIR.  相似文献   

2.
Low-temperature heat capacities of octahydrated barium dihydroxide, Ba(OH)2·8H2O(s), were measured by a precision automated adiabatic calorimeter in the temperature range from T=78 to 370 K. An obvious endothermic process took place in the temperature range of 345-356 K. The peak in the heat capacity curve was correspondent to the sum of both the fusion and the first thermal decomposition or dehydration. The experimental molar heat capacifies in the temperature ranges of 78-345 K and 356-369 K were fitted to two polynomials. The peak temperature, molar enthalpy and entropy of the phase change have been determined to be (355.007±0.076) K, (73.506±0.011) kJ·ol^-1 and (207.140±0.074) J·K^-1·mol^-1, respectively, by three series of repeated heat capacity measurements in the temperature region of 298-370 K. The thermodynamic functions, (Hr-H298.15 k )and (Sr-S298.15k), of the compound have been calculated by the numerical integral of the two heat-eapacity polynomials. In addition, DSC and TG-DTG techniques were used for the further study of thermal behavior of the compound. The latent heat of the phase change became into a value larger than that of the normal compound because the melfing process of the compound must be accompanied by the thermal decomposition or dehydration of 71-120.  相似文献   

3.
The thermal behavior and non-isothermal decomposition kinetics of [Cu(en)2H2O](FOX-7)2·H2O (en=ethylenediamine) were studied with DSC and TG-DTG methods.The kinetic equation of the exothermal process is dα/dt=(10^17.92/β)4α^3/4exp(-1.688×10^5/RT).The self-accelerating decomposition temperature and critical temperature of the thermal explosion are 163.3 and 174.8 ℃,respectively.The specific heat capacity of [Cu(en)2H2O](FOX-7)2·H2O was determined with a micro-DSC method,with a molar heat capacity of 661.6 J·mol^-1·K^-1 at 25 ℃.Adiabatic time-to-explosion was also estimated as 23.2 s.[Cu(en)2H2O](FOX-7)2·H2O is less sensitive.  相似文献   

4.
Low-temperature heat capacities of the solid compound Zn(C4H7O5)2(s) were measured in a temperature range from 78 to 374 K, with an automated adiabatic calorimeter. A solid-to-solid phase transition occurred in the temperature range of 295?322 K. The peak temperature, the enthalpy, and entropy of the phase transition were determined to be (316.269±1.039) K, (11.194±0.335) kJ?mol-1, and (35.391±0.654) J?K-1?mol-1, respectively. The experimental values of the molar heat capacities in the temperature regions of 78?295 K and 322?374 K were fitted to two polynomial equations of heat capacities(Cp,m) with reduced temperatures(X) and [X = f(T)], with the help of the least squares method, respectively. The smoothed molar heat capacities and thermodynamic functions of the compound, relative to that of the standard reference temperature 293.15 K, were calculated on the basis of the fitted polynomials and tabulated with an interval of 5 K. In addition, the possible mechanism of thermal decomposition of the compound was inferred by the result of TG-DTG analysis.  相似文献   

5.
Low-temperature heat capacities of the solid compound NaCuAsO4·1.5H2O(s)were measured using a precision automated adiabatic calorimeter over a temperature range of T=78 K to T=390 K.A dehydration process occurred in the temperature range of T=368-374 K.The peak temperature of the dehydration was observed to be TD=(371.828±0.146)K by means of the heat-capacity measurement.The molar enthalpy and entropy of the dehydration were ΔDHm=(18.571±0.142)kJ/mol and ΔDSm=(49.946±0.415)J/(K·mol),respectively.The experimental values of heat capacities for the solid(Ⅰ)and the solid-liquid mixture(Ⅱ)were respectively fitted to two polynomial equations by the least square method.The smoothed values of the molar heat capacities and the fundamental thermodynamic functions of the sample relative to the standard reference temperature 298.15 K were tabulated at an interval of 5 K.  相似文献   

6.
Low-temperature heat capacities of the compound Ni(C4H7O5)2·2H2O(S) have been measured with an auto- mated adiabatic calorimeter. A thermal decomposition or dehydration occurred in 350--369 K. The temperature, the enthalpy and entropy of the dehydration were determined to be (368.141 ±0.095) K, (18.809±0.088) kJ·mol ^-1 and (51.093±0.239) J·K^-1·mol^-1 respertively. The experimental values of the molar heat capacities in the temperature regions of 78-350 and 368-390 K were fitted to two polynomial equations of heat capacities (Cp,m) with the reduced temperatures (X), [X=f(T)], by a least squares method, respectively. The smoothed molar heat capacities and thermodynamic functions of the compound were calculated on the basis of the fitted polynomials. The smoothed values of the molar heat capacities and fundamental thermodynamic functions of the sample relative to the standard reference temperature 298.15 K were tabulated with an interval of 5 K.  相似文献   

7.
TG-DTG technique and Harcourt-Esson integrated equation were used to study the dehydration process of zinc phosphate tetrahydrate α-Zn3(PO4)2·4H2O nanoparticle and its thermal decomposition kinetics. The results show that there are three stages of dehydration between 300 and 800 K during the thermal decomposition of α-Zn3(PO4)2·4H2O nanoparticle. The first stage is controlled by chemical reaction with an activation energy of 69.48 kJ·mol^-1 and a pre-exponential factor of 1.77×10^6 s^-1. The second is controlled by nucleation and growth with an activation energy of 78.74 kJ·mol^-1 and a pre-exponential factor of 5.86×10^9 s^-1. The third is controlled by nucleation and growth with an activation energy of 141.5 kJ·mol^-1 and a pre-exponential factor of 1.01×10^12 s^-1. The kinetic compensative effects not only exist in Arrhenius equation but also in Harcourt-Esson equation. Activation energy E is dependent on both the decomposition fraction α and temperature T.  相似文献   

8.
Low-temperature heat capacities of 2-chloro-N,N-dimethylnicotinamide were precisely measured with a high-precision automated adiabatic calorimeter over the temperature range from 82 K to 380 K. The compound was observed to melt at (342.15±0.04) K. The molar enthalpy AfusionHm, and entropy of fusion, △fusionSm, as well as the chemical purity of the compound were determined to be (21387±7) J·mol^-1, (62.51±0.01) J·mol^-1·K^-1, (0.9946±0.0005) mass fraction, respectively. The extrapolated melting temperature for the pure compound obtained from fractional melting experiments was (342.25±0.024) K. The thermodynamic function data relative to the reference temperature 298.15 K were calculated based on the heat capacity measurements in the temperature range from 82 to 325 K. The thermal behavior of the compound was also investigated by different scanning calorimetry.  相似文献   

9.
Chirai sodium zincophosphate nanocrystalline has been prepared and characterized. The standard molar enthaipy of the following reaction 12Na3PO4·12H2O(s)+ 12ZnSO4·7H2O(s)= Na12(Zn12P12O48)·12H2O(s)+ 12Na2SO4(s)+216H2O(1) was determined by solution reaction calorimetric at 298.15 K, and calculated to be 33.666±0.195 kl/mol. From the results and other auxiliary quantities, the standard enthalpy of formation for sodium zincophosphate nanocrystalline was derived to be △fHm^⊙ [Na12(Zn12P12O48)·12H2O(s), 298.15 K] =- 24268.494 ± 0.815 kJ/mol.  相似文献   

10.
T-jump/FT-IR spectroscopy was used to study the rapid thermal decomposition activity of [Pb2(TNR)2(CHZ)2(H2O)2]·4H2O and Cd(CHZ)2(TNR)(H2O) under 0.1 MPa Ar atmosphere. The results show that the main gaseous products of [Pb2(TNR)2(CHZ)2(H2O)2]·4H2O are NH3, H2O and HONO, while CO and NO are the major gaseous products of flash pyrolysis of Cd(CHZ)2(TNR)(H2O). Thus Cd(CHZ)2(TNR)(H2O) is not an eco-friendly and chemically compatible primary explosive. Both compounds liberate volatile metal carbonate, oxide and isocyanate compounds. The combustion temperature and products of the two compounds were calculated by Real code. The results of theoretical calculation show that the combustion temperature of [Pb2(TNR)2(CHZ)2(H2O)2].4H2O is higher than that of Cd(CHZ)2(TNR)(H2O), there is no HNCO in the combus- tion products and the amount of NO is less than the experiment result from T-jump/FTIR.  相似文献   

11.
The heat capacities of four RE isothiocyanate hydrates,Sm( NCS)3 6H2O,Gd( NCS)3 6H2O,Yb(NCS)3 6H2O and Y( NCS)3 6H2O,have been measured from 13 to 300 K with a fully-automated adiabatic calorimeter No obvious thermal anomaly was observed for the above-mentioned compounds in the experimental tem-peiatnre ranges.The polynomial equations for calculating the heat capacities of the four compounds in the range of 13-300K were obtained by the least-squares fitting based on the experimental Cp data.The Cp values below 13 K were estimated by using the Debye-Einstem heat capacity functions.The standard molar thermodynamic functions were calculated from 0 to 300 K.Gibbs energies of formation were also calculated.  相似文献   

12.
Hydrothermal synthesis and X-ray characterized 3D supramolecular networks were constructed by [Co(HnicO)2·(H2O)2] (HnicOH=2-hydroxynicofinic acid) (1) as building block via abundant dimeric homomeric (N--H…O) and unusually cyclic tetrameric heteromeric (O-H…O) hydrogen-bonds. It is noted that there exist unusually linear metal-water chains comprised of tetrameric units linked by vertexes sharing cobalt centers through hydrogen-bonding. TG-DTG curves illustrated that thermal decomposition was completed by two steps, one is the loss of two terminal water molecules in the range of 156--234℃, and the other is the pyrolysis of HnicO ligand in the range of 234--730 ℃. The standard molar enthalpy of formation of the complex was determined to be (-1845.43± 2.77) kJ·mol^-1 by a rotary-bomb combustion calorimeter.  相似文献   

13.
A supramolecular compound (C6H6NO2)3(C6H5NO2)(PW12O40)·2H2O including the Keggin-type [PW1O40]3- polyanion, [HC6H5NO2]+ (protonated pyridine-4-carboxylic acid molecule), C6H5NO2 (pyridine-4-carboxylic acid molecule) and two free H20 molecules has been synthesized by the hydrothermal method and characterized by elemental analysis, IR spectra, single-crystal X-ray diffraction and powder X-ray diffraction. The crystal belongs to orthorhombic, space group Pnnm with a = 1.0483(3), b = 1.4368(6), c = 2.0526(7) nm, V= 3.0918(18) nm3,Z = 2, F(000) = 3004, Mr= 3406.07, Dc= 1.757 g.m-3,μ = 41.241 mm-1, the final R = 0.0387 and wR = 0.1089 for 2091 observed reflections withI〉 2σ(I). A total of 30431 reflections were collected, of which 3083 were independent (Rint = 0.0605). S is 1.182. The title compound presents a 3-D structure via intermolecular hydrogen bonds among [PW12O40]3- polyanions and pyridine-4-carboxylic acid ligands. The ultraviolet and luminescence spectra have been studied at room temperature, of which the purple fluorescent emission is located at 363 nm when excited at 264 nm. Fluorescent emission of the compound derives from the π-π* transitions in the pyridine-4-carboxylic acid ligands.  相似文献   

14.
A novel energetic combustion catalyst, 4-amino-3,S-dinitropyrazole copper salt ([Cu(adnp)2(H2O)2]), was synthesized in a yield of 93.6% for the first time. The single crystal of [Cu(adnp)2(H2O)2] was determined by single crystal X-ray diffraction. It crystallizes in a triclinic system, space group p^-1 with crystal parameters a = 5.541(3) A, b = 7.926(4) A, c = 10.231(5) A,β = 101.372(8)°, V = 398.3(3) A3, Z = 1, μ = 1.467 mm^-1, F(0 0 0) = 243, and Dc = 2.000 g cm^-3. The thermal behavior and non-isothermal decomposition reaction kinetics of [Cu(adnp)2(H2O)2] were studied by means of different heating rate differential scanning calorimetry (DSC). The kinetic equation of major exothermic decomposition reaction for [Cu(adnp)2(H2O)2] was obtained. The entropy of activation (△S≠), enthalpy of activation (△H≠), free energy of activation (△G≠), the self-accelerating decomposition temperature (TSADT) and the critical temperature of thermal explosion (Tb) are 59.42 j mol^-1 K^-1, 169.5 kJ mol^-1, 1141.26 kJ mol ^-1 457.3 K and 468.1 K, respectively.  相似文献   

15.
A new heterometallic 4f-3d complex [Y(C6NO2H5)3(H2O)2]n(1.5nZnCl4)·nH2O(1), was synthesized via a hydrothermal reaction and structurally characterized. Complex 1 crystallized in the monoclinic system with space group P21/c: a=0.94847(9) nm, b=2.0947(2) nm, c=1.6001(2) nm, β=104.467(2)°, V=3.0781(5) nm3, Mr=823.04, Dc=1.776 g/cm3, S=1.009, μ(Mo Kα)=3.603 mm-1, F(000)=1632, R=0.0787, and wR=0.2273. Complex 1, with four formula units in a cell, was characteristic of a one-dimensional polycationic chain-like structure. Photoluminescent investigation showed that the title complex displayed a strong emission in the blue region, which was attributed to the intraligand π-π* transition of the nicotinic ligands. Optical absorption spectrum of complex 1 revealed the presence of a wide optical bandgap of 4.17 eV.  相似文献   

16.
Compounds [Sm(m-CIBA)3phen]2.2H20 and [Sm(p-CIBA)3phen]2·2H20(m-CIBA=m-chlorobenzoate, pClBA=p-chlorobenzoate, phen=l,10-phenanthroline) were prepared. The dehydration processes and kinetics of these compounds were studied from the analysis of the DSC curves using a method of processing the data of thermal analysis kinetics. The Arrhenius equation for the dehydration process can be expressed as lnk=-38.65-243.90×l0^3/RT for [Sm(m-CIBA)3phen]2·2H2O, and lnk=38.70-172.22×103/RT for [Sm(p-CIBA)3phen]2·2H2O. The values of △H^1, △G^1, and △S^1 of dehydration reaction for the title comnonnds are determined respectively.  相似文献   

17.
The novel mixed-ligand neutral compound [Mo3O4(C2O4)2bipy-(H2O)3]·EtOH·2H2O(bipy = 2,2′-bipyridine) has been prepared by the reaction of oxalic acid elution of Mo(IV) and bipy, and characterized by single-crystal X-ray diffraction analysis and IR. The crystal is of triclinic, space groups P1^- with a = 9.5520(2), b = 10.3730(1), c = 13.5722(2)A, a = 74.940(12),β = 80.772(14),γ= 69.898(11)°, V = 1215.73(11)A^3, Z = 2, C16H24Mo3N2O18, Mr = 820.19, Dc = 2.241 g/cm^3,μ = 1.616 mm^-1, F(000) = 808, T = 293(2) K, the final R = 0.0424 and wR = 0.0939 for 4119 observed reflections with I 〉 2σ(I). The trinuclear unit is coordinated by mixed ligands of oxalate and bipy. The intermolecular hydrogen bonding interactions among adjacent [Mo3O4(C2O4)2·bipy(H2O)3] extend the compound into a three-dimensional supramolecular framework. The uncoordinated water molecules and ethal molecules act as space-fillers and consolidate the whole architecture through hydrogen bonding interactions.  相似文献   

18.
The heat capacities of 3 - (2,2-dichloroethenyl) -2,2-dimethylcyclopropanecarboxylic acid ( a racemic mixture,molar ratio of cis-/trans-structure is 35/65) in a temperature range from 78 to 389 K were measured with a precise automatic adiabatic calorimeter. The sample was prepared with a purity of 98.75% ( molar fraction). A solid-liquid fusion phase transition was observed in the experimental temperature range. The melting point, Tm, enthalpy and entropy of fusion, △fusHm, △fusSm, of the acid were determined to be ( 331.48 ± 0.03 ) K, ( 16. 321 ± 0.031 ) kJ/mol,and (49.24 ± 0.19) J/( K·mol), respectively. The thermodynamic functions of the sample, HT - H298.15, ST -S298.15 and GT - G298.15, were reported at a temperature intervals of 5 K. The thermal decomposition of the sample was studied using thermogravimetric (TG) analytic technique, the thermal decomposition starts at ca. 418 K and ends at ca. 544 K, the maximum decomposition rate was obtained at 510 K. The order of reaction, preexponential factor and activation energy are n =0.23, A =7. 3 × 107 min -1, E =70.64 KJ/mol, respectively.  相似文献   

19.
Low-temperature heat capacities of the solid compound Zn(C4H7O5)2(s) were measured in a temperature range from 78 to 374 K, with an automated adiabatic calorimeter. A solid-to-solid phase transition occurred in the temperature range of 295?322 K. The peak temperature, the enthalpy, and entropy of the phase transition were determined to be (316.269±1.039) K, (11.194±0.335) kJ?mol-1, and (35.391±0.654) J?K-1?mol-1, respectively. The experimental values of the molar heat capacities in the temperature regions o...  相似文献   

20.
A new energetic compound based on the tetrazole-1-acetic acid (tza) and potassium(I) salt, K2(tza)2(H2O), was synthesized and characterized by elemental analysis and FT-IR spectrum. Its crystal structure was determined by single-crystal X-ray diffraction analysis. The results show that the crystal belongs to the orthorhombic system, space group Pna21 with a = 1.11972(17) nm, b = 0.46647(7) nm, c = 2.5158(4) nm, V = 1.3140(3) nm3, K2C6H8N8O5, Mr = 350.40 g·mol-1, Dc = 1.771 g·cm-3, μ(MoKα) = 0.759 mm-1, F(000) = 712, Z = 4, R = 0.023 and wR = 0.0527 for 2961 observed reflections (I > 2σ(I)). The K(I) cation is six-coordinated with four O atoms from three carboxylate groups, one O atom from one H2O molecule and one N atom from tetrazolyl ring, in which each tza is coordinated in a tridentate chelating bridging coordination mode. The thermal decomposition mechanism of the title complex was studied by DSC and TG-DTG techniques. Under nitrogen atmosphere at a heating rate of 10 K·min-1, the thermal decomposition of the complex contains one main exothermic process between 191.7 and 243.8 ℃ in the DSC curve. Its combustion heat was mensurated by oxygen bomb calorimetry. The non-isothermal kinetics parameters were calculated by the Kissinger's method and Ozawa-Doyle's method, respectively. The sensitivity properties of K2(tza)2(H2O) were also determined with standard methods, which was very sensitive to flame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号