首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption and conformation transformation of bovine serum albumin (BSA) on a reversed-phase octadecylsilyl group based on silica reversed-phase chromatographic column were studied in the temperature of 12–50°C. The thermodynamic and extrathermodynamic data were determined and compared to each other. The results showed that when temperature was below 20°C, BSA existed only in its native conformation state A; whereas when temperature was over 20°C, parts of the conformation state A changed to state B. In transformation process, endothermal and nonspontaneous reaction occurred and the entropy change was favorable for the transformation; while in adsorption process, the reaction was exothermal and spontaneous and driven simultaneously by enthalpy and entropy change. The compensation temperature in the conformation transformation of BSA was significantly less than that in the adsorption of the two conformation states. This phenomenon demonstrated the big difference during the two processes.  相似文献   

2.
通过测定不同温度范围的热力学平衡常数、焓变、熵变、自由能变和补偿温度,研究了枯草杆菌α-淀粉酶在几种色谱介质上的热力学和超热力学。结果表明,在RP-C18反相介质、Zn2+螯合的Sepharose fast-flow亲和介质和WCX-1阳离子交换介质上,当温度分别在13-30和30-50℃范围时,它们的lnKSL分别随绝对温度的倒数线性变化;而在PEG-400和修饰的PEG-400疏水色谱介质上,当温度分别在13-40和13-30℃范围时,它们的lnKSL分别随绝对温度的倒数线性减小,但当温度分别高于40℃和30℃时,它们则随绝对温度的倒数剧烈减小。通过研究不同温度范围的焓变、熵变、自由能变和α-淀粉酶构象变化之间的关系,发现在RP-C18反相和Zn2+螯合的Sepharose fast-flow亲和介质上在30- 50 ℃温度范围内,在WCX-1阳离子交换介质上在13-30 ℃温度范围内,α-淀粉酶的吸附过程由焓变和熵变共同所支配,而在Zn2+螯合的Sepharose fast-flow亲和介质上在13- 30 ℃温度范围内,在WCX-1阳离子交换介质上在30-50 ℃温度范围和在PEG-400 和修饰的PEG-400疏水色谱介质上在13-65 ℃温度范围时,α-淀粉酶的吸附过程仅仅由熵变所控制。最后,通过α-淀粉酶在这些色谱体系中的补偿温度进一步发现,它们的焓变仅仅只能通过它们构象变化所引起的熵变所补偿。  相似文献   

3.
Poly(methacryloyl‐L ‐alanine‐methyl ester) (1) has an optically active side chain and consists of thermoshrinking hydrogels upon crosslinking. We synthesized an uncrosslinked polymer of 1 by the γ‐ray polymerization method. For the prepared polymer, variable‐temperature circular dichroism (CD) and 1H NMR spectra were studied, and we found conformational changes in the optically active side chains during the thermally induced phase transition. Intense CD spectra reveal ordered conformation in the side chain of 1 below the phase transition temperature (∼28 °C). A well‐resolved 1H NMR spectrum of 1 at 0 °C shows that the conformational angles in the polymer side chain are fixed at low‐energy minima. With increasing temperature, the frozen side chain starts rotating vigorously and takes an unordered orientation. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2671–2677, 2000  相似文献   

4.
Poly(acryloyl‐L ‐proline‐methyl ester) ( 1 ) has optically active side chain, and constitutes thermoresponsive hydrogels upon crosslinking. In this study, we have prepared uncrosslinked polymer of 1 with a 10‐kGy irradiation dose of γ‐ray. For this polymer, 1 , variable temperature circular dichroism (CD) and 1H NMR spectra have been studied in the range of 0–30 °C. The intense CD spectrum at 0 °C suggests that the side chains in 1 have an ordered orientation. The CD intensity decreases gradually with increasing temperature. The decreased intensity of CD spectra indicates that the disordering occurs for the side‐chain orientation. The CD band shape changes discontinuously at 20 °C. In the 1H NMR spectra, signals disappear above 20 °C. These spectral change at 20 °C indicate that the phase transition occurs at around 20 °C from swollen to shrunken phase. Even after the phase transition, the CD spectra are still changing with isochromic point at 212 nm. It appears that the side‐chain conformation is still changing from one state to the other state in the shrunken phase polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4524–4530, 2000  相似文献   

5.
Differential scanning calorimetry (DSC) and thermally stimulated current (TSC) were used to characterize human‐bone collagen. DSC glass‐transition and denaturation temperatures of the collagen in a dehydrated state were 90 and 215 °C, respectively. By TSC, the main relaxation mode, labeled α and located around 90 °C, could be attributed to the dielectric manifestation of the glass transition. The corresponding molecular movements are cooperative with a compensation temperature close to the denaturation temperature. At low temperatures and in a hydrated state, a second mode labeled β2 was observed at −110 °C. Dehydration shifted this mode to higher temperatures, revealing a weak mode labeled γ at −150 °C. This γ mode was attributed to motions of aliphatic side chains. An analysis of low‐temperature elementary spectra allowed us to assign the β2 mode to structural water movements and revealed an additional compensation phenomenon in the temperature range (−80 to −50 °C). Because the compensation temperature of this mode was close to the collagen glass‐transition temperature, the corresponding mode β1 was attributed to polar side‐chain motions, precursors of a collagen glass transition. Finally, around ambient temperature, three sharp peaks were attributed to hydrogen bonds breaking. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 987–992, 2000  相似文献   

6.
The temperature‐responsive poly (N, N‐diethylacrylamide) (pDEAAm) with narrower molecular weight distribution was prepared by the atom transfer radical polymerization and characterized by 1HNMR and gel permeation chromatography. The temperature‐responsive “tadpole‐shaped” BSA–pDEAAm hybrids were fabricated via a free Cys‐34 residue of bovine serum albumin (BSA) site specifically binding to the end group disulfide bonds of pDEAAm and characterized by native‐polyacrylamide gel electrophoresis (Native‐PAGE) and matrix‐assisted laser desorption/ionization time of flight mass spectrometry. Their temperature‐responsive behaviors were measured by ultraviolet‐visible spectra (UV‐Vis). The lower critical solution temperature (LCST) of the pDEAAm was identified as 28°C, and the LCST of BSA–pDEAAm hybrids was identified as 31°C. The morphologies of BSA–pDEAAm hybrids self‐assembled in the aqueous solutions with two different temperatures at 25 °C and 40°C were investigated by transmission electron microscopy. Below the LCST of BSA–pDEAAm hybrids, the separate spherical nanoparticles were observed. In contrast, bundles and clusters were observed above the LCST of BSA–pDEAAm hybrids. The results suggested that the self‐assembly morphology of BSA–pDEAAm hybrids depended upon the pDEAAm block in BSA–pDEAAm hybrids, and the morphology transitions were effected by the LCST of BSA–pDEAAm hybrids. It would be expected to be used in biomedicine and materials science. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Self‐assembly and mechanical properties of triblock copolymers in a mid‐block selective solvent are of interest in many applications. Herein, we report physical assembly of an ABA triblock copolymer, [PMMA–Pn BA–PMMA] in two different mid‐block selective solvents, n‐butanol and 2‐ethyl‐1‐hexanol. Gel formation resulting from end‐block associations and the corresponding changes in mechanical properties have been investigated over a temperature range of ?80 °C to 60 °C, from near the solvent melting points to above the gelation temperature. Shear‐rheometry, thermal analysis, and small‐angle neutron scattering data reveal formation and transition of structure in these systems from a liquid state to a gel state to a percolated cluster network with decrease in temperature. The aggregated PMMA end‐blocks display a glass transition temperature. Our results provide new understanding into the structural changes of a self‐assembled triblock copolymer gel over a large length scale and wide temperature range. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 877–887  相似文献   

8.
A simple mechanism regulating polymer mobility is demonstrated to determine initial and final growth states of solid‐state microcellular foams. This mechanism, governed by the extent of plasticization of the polymer by the dissolved gases, is examined with a mass balance model and results from foam growth experiments. Polycarbonate was exposed to CO2, which acted as both a plasticizing gas and a physical blowing agent driving foam growth. The polycarbonate specimens were saturated to the equilibrium gas concentration at 25 °C for CO2 pressures of 1–6 MPa in 1‐MPa increments. Equilibrated specimens were heated in a glycerin bath until thermal equilibrium was reached, and a steady foam structure was attained. Glycerin bath temperatures of 30–150 °C in 10 °C increments were examined. Using knowledge of gas solubility, the equation of state for CO2, the effective glass‐transition temperature as a function of gas concentration, and a model for mass balance within a solid‐state foam, we demonstrate that foam growth terminates when sufficient gas is driven from the polycarbonate matrix into the foam cells. The foam cell walls freeze at the elevated bath temperature because of gas transport from the polycarbonate matrix and the associated rise in the polymer glass‐transition temperature to that of the heated bath. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 868–880, 2001  相似文献   

9.
The enzymatically degradable poly(N‐isopropylacrylamide‐co‐acrylic acid) hydrogels were prepared using 4,4‐bis(methacryloylamino)azobenzene (BMAAB) as the crosslinker. It was found that the incorporated N‐isopropylacrylamide (NIPAAm) monomer did not change the enzymatic degradation of hydrogel, but remarkably enhanced the loading of protein drug. The hydrogels exhibited a phase transition temperature between 4°C (refrigerator temperature) and 37°C (human body temperature). Bovine serum albumin (BSA) as a model drug was loaded into the hydrogels by soaking the gels in a pH 7.4 buffer solution at 4°C, where the hydrogel was in a swollen status. The high swelling of hydrogels at 4°C enhanced the loading of BSA (loading capability, ca. 144.5 mg BSA/g gel). The drug was released gradually in the pH 7.4 buffer solution at 37°C, where the hydrogel was in a shrunken state. In contrast, the enzymatic degradation of hydrogels resulted in complete release of BSA in pH 7.4 buffer solution containing the cecal suspension at 37°C (cumulative release: ca. 100 mg BSA/g gel after 4 days). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The conformational changes occurring in isotactic polypropylene during the melting and crystallization processes have been carefully investigated using FT‐Raman spectroscopy at temperatures below, at, and above the polymer melting point. Results confirmed the retention of some crystallinity up to +210 °C, which is 50 °C above the melting point. It was found that, at temperatures just above the melting point (1–10 °C), there is still some short range order of at least 12 monomer units long in certain regions of the melt. At 10 °C above the melting point, the short range order drops below 12 monomer units resulting in the disappearance of the Raman band at 841 cm–1. Vice versa, the experimental measurements show that the iPP melt system is stable when the persistence length of helical sequences is less than 12 monomer units. As soon as the helix length exceeds 12 units, the 31 helix conformation extends quickly and then crystallization occurs. These results are discussed in terms of Imai's microphase separation theory and it agreed very well with it. Also, from our observations for correlation splitting, Raman bands related to conformational states were identified. This analysis indicates the existence of three different conformational states at 808, 830, and 841 cm–1. The 808 cm–1 band was assigned to helical chains within crystals (representing crystalline phase). The 841 cm–1 band was shown to be composed of a band at 841 cm–1, assigned to shorter chains in helical conformation with isomeric defects (representing the isomeric defect phase), and a broader band at 830 cm–1 assigned to chains in nonhelical conformation (representing the melt‐like amorphous phase). This indicates the detection of a three‐phase structure in iPP, where a third phase could be due to the presence of defect regions within the crystalline region, or due to the presence of an amorphous–crystal interphase. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2173–2182, 2006  相似文献   

11.
Three poly(4‐trimethylsilylstyrene)‐block‐polyisoprenes (TIs), the molecular weights of which were 82,000, 152,000 and 291,000 (TI‐82K, TI‐152K, and TI‐291K), were synthesized by sequential anionic polymerizations. The component polymers were a miscible pair that presented a lower critical solution temperature phase diagram if blended. The TI phase behavior was investigated with transmission electron microscopy. The order–disorder transition could be observed at a temperature between 200 °C (the ordered state) and 150 °C (the disordered state) for the block copolymer TI‐152K. The block copolymer TI‐82K presented the disordered state at 200 °C, whereas TI‐291K was in the ordered state at 150 °C. With the Flory–Huggins interaction parameter between poly(4‐trimethylsilylstyrene) and polyisoprene, which was evaluated by small‐angle neutron scattering for the block copolymers, the TI phase behavior could be reasonably explained by mean‐field theory. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1214–1219, 2005  相似文献   

12.
The dynamic heat capacity and glass‐transition temperature of polystyrene (PS)/poly(vinyl acetate‐co‐butyl acrylate) (VAc–BA) (50:50 w/w) structured latex films as a function of annealing time at 70, 77, and 85 °C were examined with modulated‐temperature differential scanning calorimetry. The PS and poly(vinyl acetate‐con‐butyl acrylate) components were considered to be the cores and shells, respectively, in the structured latex. The dynamic heat capacity decreased with time. The glass‐transition temperatures of the PS and VAc–BA phases shifted to higher values after annealing. The results of thermogravimetry showed that there existed about 1.8% residual water in the films. The mean free volume and relative concentration of holes at room temperature (before and after annealing) and 85 °C, as a function of time, were obtained with positron annihilation lifetime spectroscopy (PALS). The PALS results indicated no significant change in free volume during annealing. It is believed that the loss, by diffusion, of residual water mainly caused a decrease in heat capacity and an increase in the glass‐transition temperatures. As little as 1.8% residual water in the structured latex films had a significant influence on the thermal properties. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1659–1664, 2001  相似文献   

13.
Thermosensitive diethylene glycol‐derived poly(L ‐glutamate) homopolypeptides (i.e., poly‐L ‐EG2‐Glu) with different molecular weights (MW) (Mn,GPC = 5380–32520) were synthesized via the ring‐opening polymerization (ROP) of EG2‐L ‐glutamate N‐carboxyanhydride (EG2‐Glu‐NCA) in N,N‐dimethylformamide solution at 50 °C. Their molecular structure, conformation transition, liquid crystal (LC) phase behavior, lower critical solution temperature (LCST) transition, and morphology evolution were thoroughly characterized by means of FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, wide angle X‐ray diffraction, polarized optical microscope, transmission electron microscope, and dynamic light scattering. In solid state, the homopolypeptide poly‐L ‐EG2‐Glu presented a conformation transition from α‐helix to β‐sheet with increasing their MW at room temperature, while it mainly assumed an α‐helix of 80–86% in aqueous solution. Poly‐L ‐EG2‐Glu showed a thermotropic LC phase with a transition temperature of about 100 °C in solid state, while it gave a reversible LCST transition of 34–36 °C in aqueous solution. The amphiphilic homopolypeptide poly‐L ‐EG2‐Glu self‐assembled into nanostructures in aqueous solution, and their critical aggregation concentrations decreased with increasing MW. Interestingly, their morphology changed from spherical micelles to worm‐like micelles, then to fiber micelles with increasing MW. This work provides a simple method for the generation of different nanostructures from a thermosensitive biodegradable homopolypeptide. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
The aquation of K‐[Co(dien)(en)Cl]2+ was followed spectrophotometrically within the temperature range (40–60°C) in water, water–isopropyl alcohol, and water–tert‐butyl alcohol media of varying solvent composition up to 50 and 60 vol% of the organic solvent component respectively. The nonlinear plot of log k vs. D?1s was attributed to the differential solvation of the initial and transition states. The variation of ΔH, ΔS, and ΔG with the mole fraction of the organic component was analyzed and discussed. The isokinetic temperatures were found to be 330 and 317 K for water–isopropyl alcohol and water–tert‐butly alcohol mixtures respectively, indicating that the aquation reaction is entropy controlled. The application of free energy cycle at 25°C for the aquation reaction in both co‐solvents suggests that the transition state is more stable than the initial one. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 1–6, 2002  相似文献   

15.
2,7‐Di‐t‐butyldibenzofulvene (tBu2DBF), a bulky dibenzofulvene derivative, was polymerized using n‐butyllithium as initiator in tetrahydrofuran at ?78 °C and in toluene at 0 °C. tBu2DBF afforded mainly oligomers up to trimer even at [monomer]0/[initiator]0 = 20 ([monomer]0 = 0.2 M) at ?78 °C and 0 °C, indicating that this monomer is much less reactive than dibenzofulvene (DBF), its parent compound. The reaction at the same [monomer]0/[initiator]0 ratio at an elevated [monomer]0 gave a small amount of insoluble polymer. The oligomers indicated a hypochromic effect in the absorption spectra and only monomer emission in the fluorescent spectra. The conformation of the trimer and the dimer was examined by means of NOESY NMR spectra and semiempirical calculations. In the trimer conformation, the fluorene moieties of the central and the initiation‐side monomeric units were found to be closely stacked on top of each other, while the termination‐side monomeric unit appeared to be in a faster conformational dynamics compared with the other monomeric units. Although the dimer seemed to have a relatively flexible conformation, a π‐stacked structure appeared to be involved in the conformational dynamics to show hypochromicity. The results of this study suggest that the reported intramolecular excited dimer (excimer) formation of the poly‐ and oligo(DBF)s [J Am Chem Soc 2003, 125, 15474] is based on a slight, local conformational change upon photo absorption, leading to a closer π‐stacked alignment of two neighboring fluorene units than that in the ground state. Such a local conformational transition may be difficult for the tBu2DBF trimer because of steric repulsion of the t‐butyl groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 561–572, 2006  相似文献   

16.
The reaction mechanism, thermodynamic and kinetic properties for diazotization and nitration of 3,5‐diamino‐1,2,4‐triazole were studied by a density functional theory. The geometries of the reactants, transition states, and intermediates were optimized at the B3LYP/6‐31G (d, p) level. Vibrational analysis was carried out to confirm the transition state structures, and the intrinsic reaction coordinate (IRC) method was used to explore the minimum energy path. The single‐point energies of all stagnation points were further calculated at the B3LYP (MP2)/6‐311+G (2d, p) level. The statistical thermodynamic method and Eyring transition state theory with Wigner correction were used to study the thermodynamic and kinetic characters of all reactions within 0–25°C. Two reaction channels are computed, including the diazotization and nitration of 3‐NH2 or 5‐NH2, and there are six steps in each channel. The reaction rate in each step is increased with temperature. The last step in each channel is the slowest step. The first, second, and fifth steps are exothermic reactions, and are favored at lower temperature in the thermodynamics. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

17.
The supramolecular crystal structure in poly(vinylidene fluoride) (PVDF) solution‐cast films is studied through changing crystallization conditions in two solvents of different structures and polarities. The crystalline‐state chain conformations of isothermally solution‐crystallized PVDF in N, N‐dimethylacetamide (DMAc), and cyclohexanone are studied through the specific FTIR absorption bands of α, β, and γ phase crystals. There are no changes in the FTIR spectra of cyclohexanone solution‐crystallized films in the temperature range of 50–120 °C. In the case of DMAc solution‐crystallized films, low temperature crystallization mainly results in formation of trans states (β and γ phases), whereas at higher temperatures gauche states become more populated (α phase). This is due to the variations in solvent polarity and ability to induce a specific conformation in PVDF chains, through the changes in chain coil dimensions. This indicates that in spite of cyclohexanone solutions, the intermolecular interactions between PVDF and DMAc are temperature‐sensitive and more important in stabilizing conformations of PVDF in crystalline phase than temperature dependence of PVDF chain end‐to‐end distance <r2>. The high‐resolution 19F NMR spectroscopy also showed little displacement in PVDF characteristic chemical shifts probably due to changes in PVDF chain conformation resulting from temperature variations. Upon uniaxial stretching of the prepared films under certain conditions, contribution of trans state becomes more prominent, especially for the originally higher α phase‐containing films. Due to formation of some kink bands during film stretching and phase transformation, α phase absorption bands are still present in infrared spectra. Besides, uniaxial stretching greatly enhances piezoelectric properties of the films, maybe due to formation of oriented β phase crystals, which are of more uniform distribution of dipole moments. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3487–3495, 2004  相似文献   

18.
A series of novel aromatic polyamides with pyrenylamine in the backbone were prepared from a newly synthesized dicarboxylic acid monomer, N,N‐di(4‐carboxyphenyl)‐1‐aminopyrene, and various aromatic diamines via the phosphorylation polyamidation technique. These polyamides were readily soluble in many organic solvents and could be solution‐cast into tough and amorphous films. They had useful levels of thermal stability with glass‐transition temperatures in the range of 276–342 °C and 10% weight loss temperatures in excess of 500 °C. The dilute N‐methyl‐2‐pyrrolidone (NMP) solutions of these polymers exhibited fluorescence maxima around 455–540 nm with quantum yields up to 56.9%. The polyamides also showed remarkable solvatochromism of the emission spectra. Their films showed reversible electrochemical oxidation and reduction accompanied by strong color changes from colorless neutral state to purple oxidized state and to yellow reduced state. The polyamide 4g containing the pyrenylamine units in both diacid and diamine sides exhibited easily accessible p‐ and n‐doped states, together with multicolored electrochromic behaviors. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
TEM micrographs show that the PA grafts of PS‐g‐PA6 graft copolymers, which are obtained directly by extracting homo‐PA6 out from the homo‐PA6/PS‐g‐PA6 blends, are in the form of wormlike structure. The wormlike PA6 domains can shrink into droplets after annealing at 250 °C for 15 min. The diameter of the droplet determined by TEM and SAXS is in the range of 50–60 nm. This article reports on a unique crystallization behavior of the PA6 grafts in PS‐g‐PA6 graft copolymers. In a DSC cooling scan, PA6 grafts do not crystallize from the melt with a cooling rate of 10 °C/min. However, there is a cold crystallization peak around 65 °C in the subsequent heating scan. This cold crystallization phenomenon, which has not yet been reported in the literature till now, follows well the homogeneous nucleation mechanism and is depressed at relatively slow cooling rates (2 °C/min) or even completely eliminated after annealing within a specific temperature range. It may be caused by the slow diffusion or transport rate of the less flexible PA6 grafts to the crystal fronts when crystallization takes place around its glass transition temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 65–73, 2010  相似文献   

20.
Effects of temperature on self‐interaction of human‐like collagen (HLC) were investigated by hydrophobic interaction chromatography, calorimetric measurement, and sodium dodecyl sulphate‐polyacrylamide gel electrophoresis (SDS‐PAGE) analysis. Results show that three types of interaction roles may exist between HLC molecules at 3–50°C, which were divided into three narrower temperature ranges. In temperature range from 3–22°C, hydrogen bonding plays a key role in the formation of a gelatinous aggregate. In the range of 22–38°C, hydrophobic bonds accompanied by hydrogen bonds are involved in the formation compact aggregates. When temperature is above 38°C the hydrophobic effect formed in the HLC monomer results in the loss of its ability to self‐interact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号