首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Casticin (3′,5‐dihydroxy‐3, 4′,6,7‐tetramethoxyflavone) has been revealed to possess various kinds of pharmacological activities, including immunomodulatory, anti‐hyperprolactinemia, anti‐tumor and neuroprotetective activities. In order to gain an understanding of the biotransformation of casticin in vivo, a systematic method based on liquid chromatography–electrospray ionization tandem mass spectrometry (LC‐ESI‐MSn) was developed to identify the metabolites of casticin in rats after oral administration of single dose of casticin at 200 mg/kg. By comparing their changes in molecular masses (ΔM), retention times and spectral patterns with those of the parent drug, the parent compound and 25 metabolites were identified in rat plasma, urine and six selected tissues. This is the first systematic metabolism study of casticin in vivo. The results indicated that methylation, demethylation, glucuronidation and sulfation were the main biotransformation pathways of casticin in vivo. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Salvianolic acid A (SalA) is one of the main active constituents in Salvia miltiorrhiza (Danshen). Although the pharmacokinetics of SalA in rats after intravenous (i.v.) administration of Danshen injection has been reported, the information relevant to the metabolites of SalA in vivo is absent so far. In this study, by means of liquid chromatography with time‐of‐flight mass spectrometry (LC/TOFMS) and liquid chromatography with ion trap mass spectrometry (LC/MSn) techniques, the unknown metabolites of SalA in rat plasma after i.v. administration of the purified SalA at the dose of 20 mg/kg body weight were identified. A liquid‐liquid extraction method was established to separate the metabolites from the plasma and the chromatographic separations were performed on a Xterra MS C18 column (100 mm × 4.6 mm i.d., 3.5 µm) with acetonitrile/methanol/water/formic acid (20.5:19.5:64: 0.05, v/v/v/v) as the mobile phase at a constant flow rate of 0.2 mL/min. Based on the data obtained from the LC/TOFMS determination (the total ion chromatograms, MS spectra and extracted ion chromatograms), in combination with the characteristic fragment ions acquired from the LC/MSn determination, five metabolites were identified as SalA‐monoglucuronide, monomethyl‐SalA‐monoglucuronide, mono‐methyl‐SalA, dimethyl‐SalA and dimethyl‐SalA‐monoglucuronide, and the possible chemical structures were deduced. The results indicated that SalA might mainly undergo two metabolic pathways in vivo in rats, which were methylation and glucuronidation. The present studies have laid a solid foundation for the metabolic mechanism of SalA in vivo. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
In order to illustrate the main biotransformation pathways of vaccarin in vivo, metabolites of vaccarin in rats were identified using a specific and sensitive high‐performance liquid chromatography–electrospray ionization linear ion trap mass spectrometry (LTQ XL?) method. The rats were administered a single dose (200 mg/kg) of vaccarin by oral gavage. By comparing their changes in molecular masses (ΔM), retention times and spectral patterns with those of the parent drug, the parent compound and six metabolites were found in rat urine after oral administration of vaccarin. The parent compound and five metabolites were detected in rat plasma. In heart, liver and kidney samples, respectively, one, four and three metabolites were identified, in addition to the parent compound. Three metabolites, but no trace of parent drug, were found in the rat feces. This is the first systematic metabolism study of vaccarin in vivo. The biotransformation pathways of vaccarin involved methylation, hydroxylation, glycosylation and deglycosylation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Isopropyl 3‐(3,4‐dihydroxyphenyl)‐2‐hydroxypropanoate (IDHP) is an investigational new drug having the capacity for treating ailments in the cardiovascular and cerebrovascular system. In this work, a rapid and sensitive method using high‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (HPLC‐ESI‐Q‐TOF‐MS) was developed to reveal the metabolic profile of IDHP in rats after oral administration. The method involved pretreatment of the samples by formic acid–methanol solution (v/v, 5:95), chromatographic separation by an Agilent Eclipse XDB‐C18 column (150 × 4.6 mm i.dx., 5 μm) and online identification of the metabolites by Q‐TOF‐MS equipped with electrospray ionizer. A total of 16 metabolites from IDHP, including four phase I metabolites and 12 phase II metabolites, were detected and tentatively identified from rat plasma, urine and feces. Among these metabolites, Danshensu (DSS), a hydrolysis product of IDHP, could be further transformed to 11 metabolites. These results indicated that DSS was the main metabolite of IDHP in rats and the major metabolic pathways of IDHP in vivo were hydrolysis, O‐methylation, sulfation, glucuronidation and reduction. The results also demonstrated that renal route was the main pathway of IDHP clearance in rat. The present study provided valuable information for better understanding the efficacy and safety of IDHP. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Farfarae Flos, the dried flower buds of Tussilago farfara L., is usually used to treat coughs, bronchitic and asthmatic conditions as an important traditional Chinese medicine. Tussilagone and methl butyric acid tussilagin ester are seen as representatives of two kinds of active substances. In addition, the pyrrolizidine alkaloids, mainly senkirkine and senecionine, present in the herb can be hepatoxic. In this study, a rapid and sensitive ultra‐high‐performance liquid chromatography coupled with hybrid triple quadrupole time‐of‐flight mass spectrometry method was successfully applied to identify the metabolites of tussilagone, methl butyric acid tussilagin ester, senkirkine and senecionine. A total of 35, 37, 18 and nine metabolites of tussilagone, methl butyric acid tussilagin ester, senkirkine and senecionine in rats were tentatively identified. Hydrolysis, oxidation, reduction and demethylation were the major metabolic reactions for tussilagone and methl butyric acid tussilagin ester. The main biotransformation routes of senkirkine and senecionine were identified as demethylation, N‐methylation, oxidation and reduction. This study is the first reported analysis and characterization of the metabolites and the proposed metabolic pathways might provide further understanding of the metabolic fate of the chemical constituents after oral administration of Farfarae Flos extract in vivo.  相似文献   

6.
Tanshinol borneol ester (DBZ) is a potential drug candidate composed of danshensu and borneol. It shows anti‐ischemic and anti‐atherosclerosis activity. However, little is known about its metabolism in vivo. This research aimed to elucidate the metabolic profile of DBZ through analyzing its metabolites using high‐performance liquid chromatography combined with electrospray ionization quadrupole time‐of‐flight mass spectrometry. Chromatographic separation was performed on an Agilent TC‐C18 column (150 × 4.6 mm, 5.0 μm) with gradient elution using methanol and water containing 0.2% (v/v) formic acid as the mobile phase. Metabolite identification involved analyzing the retention behaviors, changes in molecular weights and MS/MS fragment patterns of DBZ and its metabolites. As a result, 20 potential metabolites were detected and tentatively identified in rat plasma, urine and feces after administration of DBZ. DBZ could be metabolized to O‐methylated DBZ, DBZ‐O‐glucuronide, O‐methylated DBZ‐O‐glucuronide, hydroxylated DBZ and danshensu. Danshensu, a hydrolysis product of DBZ, could further be transformed into 12 metabolites. The proposed method was confirmed to be a reliable and sensitive alternative for characterizing metabolic pathways of DBZ and providing valuable information on its druggability.  相似文献   

7.
Dioscin (DIS), one of the most abundant bioactive steroidal saponins in Dioscorea sp., is used as a complementary medicine to treat coronary disease and angina pectoris in China. Although the pharmacological activities and pharmacokinetics of DIS have been well demonstrated, information regarding the final metabolic fates is very limited. This study investigated the in vivo metabolic profiles of DIS after oral administration by ultra‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry method. The structures of the metabolites were identified and tentatively characterized by means of comparing the molecular mass, retention time and fragmentation pattern of the analytes with those of the parent compound. A total of eight metabolites, including seven phase I and one phase II metabolites, were detected and tentatively identified for the first time. Oxidation, deglycosylation and glucuronidation were found to be the major metabolic processes of the compound in rats. In addition, a possible metabolic pathway on the biotransformation of DIS in vivo was proposed. This study provides valuable and new information on the metabolism of DIS, which will be helpful for further understanding its mechanism of action. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, a rapid and sensitive method by ultra‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry, and MetabolynxTM software with mass defect filter technique was developed for screening and identification of the metabolites in rat plasma after oral administration of Shen‐Song‐Yang‐Xin capsule (SSYX). A total of 92 SSYX‐related xenobiotics were identified or characterized, including 45 prototypes and 47 metabolites. The results indicated that the absorbed constituents and metabolites mainly came from benzocyclooctadiene lignans, tanshinones, isoquinoline alkaloids and triterpenic acids, while phase I reactions (e.g. hydrogenation, hydroxylation, demethylation) and phase II reaction (glucuronidation) were the main metabolic pathways of these ingredients in SSYX. This is the first study on metabolic profiling of SSYX in rat plasma after oral administration. Furthermore, these findings provide useful information on the potential bioactive compounds, and enhance our understanding of the action mechanism of SSYX. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Gardenin A is one of the less abundant hydroxylated polymethoxyflavonoids (OH‐PMFs) in nature, and has many potential significant health benefits. In the present study, an efficient strategy was established using high‐performance liquid chromatography coupled with linear ion trap–Orbitrap mass spectrometer to profile the in vivo metabolic fate of gardenin A in rat plasma and various tissues. First, an online LC‐MSn data acquisition method was developed to trace all the probable metabolites. Second, a combination of offline data processing methods including extracted ion chromatography and multiple mass defect filters was employed to screen the common and uncommon metabolites from the background noise and endogenous components. Finally, structures of the metabolites were elucidated based on an accurate mass measurement, the diagnostic product ions of PMFs, and relevant drug biotransformation knowledge. Based on the proposed strategy, a total of 26 metabolites were observed and characterized. The results indicate that some biotransformations, such as methylation, demethoxylation, demethylation, glucuronide conjugation, sulfate conjugation and their composite reactions, have been discovered for OH‐PMFs. Moreover, some diagnostic biotransformation pathways are summarized. Overall, this study gives us a first insight into the in vivo metabolism of gardenin A. The study also provides a practical strategy for rapidly screening and identifying metabolites, which can be widely applied for the other biotransformations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
In our previous studies, caudatin‐2,6‐dideoxy‐3‐O‐methy‐β‐d‐ cymaropyranoside (CDMC) was for the first time isolated from Cynanchum auriculatum Royle ex Wightand and was reported to possess a wide range of biological activities. However, the routes and metabolites of CDMC produced by intestinal bacteria are not well understood. In this study, ultra‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS) technique combined with MetabolynxTMsoftware was applied to analyze metabolites of CDMC by human intestinal bacteria. The incubated samples collected for 48 h in an anaerobic incubator and extracted with ethyl acetate were analyzed by UPLC‐Q‐TOF‐MS within 12 min. Eight metabolites were identified based on MS and MS/MS data. The results indicated that hydrolysis, hydrogenation, demethylation and hydroxylation were the major metabolic pathways of CDMC in vitro. Seven strains of bacteria including Bacillus sp. 46, Enterococcus sp. 30 and sp. 45, Escherichia sp. 49A, sp. 64, sp. 68 and sp. 75 were further identified using 16S rRNA gene sequencing owing to their relatively strong metabolic capacity toward CDMC. The present study provides important information about metabolic routes of CDMC and the roles of different intestinal bacteria in the metabolism of CDMC. Moreover, those metabolites might influence the biological effect of CDMC in vivo, which affects the clinical effects of this medicinal plant. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
An ultra‐high‐performance liquid chromatography mass spectrometry method was established to detect and identify the chemical constituents of Zi Shen Formula (ZSF) and its metabolites in serum, urine and feces, after oral administration to rats. A total of 68 compounds were characterized in ZSF extracts. In vivo, 38 prototype components and 32 metabolites of ZSF were tentatively identified in rat serum, urine and feces. Seven metabolic pathways including demethylation, hydroxylation, oxidation, sulfation, glucuronidation, methylation and de‐caffeoyl were proposed to be involved in the generation of these metabolites. It was found that glucuronidation, methylation and demethylation were the major metabolic processes of alkaloids, while demethylation, methylation, sulfation and de‐caffeoyl were the major metabolic pathways of phenylethanoid glycosides. The main metabolic pathways of steroidal saponins were oxidation and isotype reactions. These findings are significant for our understanding of the metabolism of ZSF. The proposed metabolic pathways of bioactive components might be crucial for further studies of the mechanisms of action and pharmacokinetic evaluations of ZSF.  相似文献   

12.
Helicid is an active natural aromatic phenolic glycoside ingredient originating from a well‐known traditional Chinese herbal medicine and has the significant effects of sedative hypnosis, anti‐inflammatory analgesia and antidepressant. In this study, we analyzed the potential metabolites of Helicid in rats by multiple mass defect filter and dynamic background subtraction in ultra‐high‐performance liquid chromatography–quadrupole time‐of‐flight mass spectrometry (UHPLC‐Q‐TOF‐MS). Moreover, we used a novel data processing method, ‘key product ions’, to rapidly detect and identify metabolites as an assistant tool. MetabolitePilot™ 2.0 software and PeakView™ 2.2 software were used for analyzing metabolites. Twenty metabolites of Helicid (including 15 phase I metabolites and five phase II metabolites) were detected by comparison with the blank samples. The biotransformation route of Helicid was identified as demethylation, oxidation, dehydroxylation, hydrogenation, decarbonylation, glucuronide conjugation and methylation. This is the first study simultaneously detecting and identifying Helicid metabolism in rats employing UHPLC‐Q‐TOF‐MS technology. This experiment not only proposed a method for rapidly detecting and identifying metabolites, but also provided useful information for further study of the pharmacology and mechanism of Helicid in vivo. Furthermore, it provided an effective method for the analysis of other aromatic phenolic glycosides metabolic components in vivo.  相似文献   

13.
Compared with chemical drugs, it is a huge challenge to identify active ingredients of multicomponent traditional Chinese medicine (TCM). For most TCMs, metabolism investigation of absorbed constituents is a feasible way to clarify the active material basis. Although Andrographis paniculata (AP) has been extensively researched by domestic and foreign scholars, its metabolism has seldom been fully addressed to date. In this paper, high‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry was applied to analysis and characterization of AP metabolism in rat urine and feces samples after oral administration of ethanol extract. The differences in metabolites and metabolic pathways between the two biological samples were further compared. The chemical structures of 20 components were tentatively identified from drug‐treated biological samples, including six prototype components and 14 metabolites, which underwent such main metabolic pathways as hydrolyzation, hydrogenation, dehydroxylation, deoxygenation, methylation, glucuronidation, sulfonation and sulfation. Two co‐existing components were found in urine and feces samples, suggesting that some ingredients' metabolic processes were not unique. This study provides a comprehensive report on the metabolism of AP in rats, which will be helpful for understanding its mechanism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Ganoderic acid B (GAB), a representative triterpenoid in Ganoderma lucidum, possesses various pharmaceutical effects and has been used as a chemical marker in quality control of G. lucidum and related products. The metabolites of GAB in vivo after its oral administration to rats were investigated by liquid chromatography coupled with electrospray ionization hybrid ion trap and time‐of‐flight mass spectrometry. A total of 14 metabolites of GAB in rat plasma, bile and various organs were detected and identified by direct comparison with the authentic compounds and their characteristic mass fragmentation patterns. The results showed that oxidization and hydroxylation were the common metabolic pathways for GAB in rats. Moreover, some reduction metabolites of GAB were detected in rat kidney and stomach and glucuronidation only appeared in rat bile. This is the first report on the metabolites of GAB in vivo. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The biotransformation of nodakenetin (NANI) by rat liver microsomes in vitro was investigated. Two major polar metabolites were produced by liver microsomes from phenobarbital‐pretreated rats and detected by reversed‐phase high‐performance liquid chromatography (RP‐HPLC) analysis. The chemical structures of two metabolites were firmly identified as 3′(R)‐hydroxy‐nodakenetin‐3′‐ol and 3′(S)‐hydroxy‐nodakenetin‐3′‐ol, respectively, on the basis of their 1H‐NMR, MS and optical rotation analysis. The latter was a new compound. A sensitive, selective and simple RP‐HPLC method has been developed for the simultaneous determination of NANI and its two major metabolites in rat liver microsomes. Chromatographic conditions comprise a C18 column, a mobile phase with MeOH‐H2O (40 : 60, v/v), a total run time of 40 min, and ultraviolet absorbance detection at 330 nm. In the rat heat‐inactivated liver microsomal supernatant, the lower limits of detection and quantification of metabolite I, metabolite II and NANI were 5.0, 2.0, 10.0 ng/mL and 20.0, 5.0, 50.0 ng/mL, respectively, and their calibration curves were linear over the concentration range 50–400, 20–120 and 150–24000 ng/mL, respectively. The results provided a firm basis for further evaluating the pharmacokinetics and clinical efficacy of NANI. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
In this study, clostebol metabolic profiles were investigated carefully. Clostebol was administered to one healthy male volunteer. Urinary extracts were analyzed by liquid chromatography quadrupole time‐of‐flight mass spectrometry (MS) using full scan and targeted MS/MS techniques with accurate mass measurement for the first time. Liquid–liquid extraction and direct injection were applied to processing urine samples. Chromatographic peaks for potential metabolites were found by using the theoretical [M–H]? as target ion in full scan experiment, and their actual deprotonated ions were analyzed in targeted MS/MS mode. Fourteen metabolites were found for clostebol, and nine unreported metabolites (two free ones and seven sulfate conjugates) were identified by MS, and their potential structures were proposed based on fragmentation and metabolism pathways. Four glucuronide conjugates were also first reported. All the metabolites were evaluated in terms of how long they could be detected and S1 (4ξ‐chloro‐5ξ‐androst‐3ξ‐ol‐17‐one‐3ξ‐sulfate) was considered to be the long‐term metabolite for clostebol misuse detected up to 25 days by liquid–liquid extraction and 14 days by direct injection analysis after oral administration. Five conjugated metabolites (M2, M5, S2, S6 and S7) could also be the alternative biomarkers for clostebol misuse. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Prim‐O‐glucosylcimifugin (PGCN) and cimifugin (CN) are major constituents of Radix Saposhnikoviae that have antipyretic, analgesic and anti‐inflammatory pharmacological activities. However, there were few reports with respect to the metabolism of PGCN and CN in vitro. In this paper, we describe a strategy using ultra‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS) for fast analysis of the metabolic profile of PGCN and CN in human liver microsomes. In total, five phase I metabolites of PGCN, seven phase I metabolites and two phase II metabolites of CN were identified in the incubation of human liver microsomes. The results revealed that the main phase I metabolic pathways of PGCN were hydroxylation and hydrolysis reactions. The phase I metabolic pathways of CN were found to be hydroxylation, demethylation and dehydrogenation. Meanwhile, the results indicated that O‐glucuronidation was the major metabolic pathway of CN in phase II metabolism. The specific UDP‐glucuronosyltransferase (UGT) enzymes responsible for CN glucuronidation metabolites were identified using recombinant UGT enzymes. The results indicated that UGT1A1, UGT1A9, UGT2B4 and UGT2B7 might play major roles in the glucuronidation of CN. Overall, this study may be useful for the investigation of metabolic mechanism of PGCN and CN, and it can provide reference and evidence for further pharmacodynamic experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Glaucine ((S)‐5,6,6a,7‐tetrahydro‐1,2,9,10‐tetramethoxy‐6‐methyl‐4H‐dibenzo [de,g]quinoline) is an isoquinoline alkaloid and main component of Glaucium flavum (Papaveraceae). It was described to be consumed as recreational drug alone or in combination with other drugs. Besides this, glaucine is used as therapeutic drug in Bulgaria and other countries as cough suppressant. Currently, there are no data available concerning metabolism and toxicological analysis of glaucine. To study both, glaucine was orally administered to Wistar rats and urine was collected. For metabolism studies, work‐up of urine samples consisted of protein precipitation or enzymatic cleavage followed by solid‐phase extraction. Samples were afterwards measured by liquid chromatography (LC) coupled to low or high‐resolution mass spectrometry (HR‐MS). The phase I and II metabolites were identified by detailed interpretation of the corresponding fragmentations, which were further confirmed by determination of their elemental composition using HR‐MS. From these data, the following metabolic pathways could be proposed: O‐demethylation at position 2, 9 and 10, N‐demethylation, hydroxylation, N‐oxidation and combinations of them as well as glucuronidation and/or sulfation of the phenolic metabolites. For monitoring a glaucine intake in case of abuse or poisoning, the O‐ and N‐demethylated metabolites were the main targets for the gas chromatography‐MS and LC‐MSn screening approaches described by the authors. Both allowed confirming an intake of glaucine in rat urine after a dose of 2 mg/kg body mass corresponding to a common abuser's dose. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Bavachinin (BVC), one of the main bioactive prenylated flavonoids derived from Psoralea corylifolia Linn, has a wide variety of pharmacological effects, such as antiangiogenic, antitumor, antiallergic, anti‐inflammatory and antibacterial activities, especially as a pan‐peroxisome proliferator‐activated receptors agonist. A rapid and sensitive method for quantifying BVC in rat plasma was developed and validated through ultra‐high‐performance liquid chromatography coupled with electrospray‐ionization tandem mass spectrometry. Furthermore, a complete metabolic investigation of BVC was performed through ultra‐high‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry. In the pharmacokinetic analysis, BVC exhibited rapid oral absorption (Tmax = 0.68 ± 0.21 h), good elimination (T1/2 = 2.27 ± 1.63 h) following oral administration and poor absolute bioavailability (5.27%). Moreover, 11 metabolites of BVC in plasma, urine, bile and feces were characterized. The main metabolic pathways of BVC involved isomeriszation, glucuronidation, sulfonation, hydroxylation, methoxylation and reduction. In conclusion, the present study provides a sensitive quantitative method with a lower limit of quantification of 1 ng/mL and an improved comprehension of the physiological disposition of BVC.  相似文献   

20.
Sweroside, a major active iridoid in Swertia pseudochinensis Hara, is recognized as an effective agent in the treatment of liver injury. Based on previous reports, the relatively short half‐life (64 min) and poor bioavailability (approximately 0.31%) in rats suggested that not only sweroside itself but also its metabolites could be responsible for the observed hepato‐protective effect. However, few studies have been carried out on the metabolism of sweroside. Therefore, the present study aimed at identifying the metabolites of sweroside in rat urine after a single oral dose (100 mg/kg). With ultra‐high‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (UHPLC/Q‐TOF‐MS), the metabolic profile revealed 11 metabolites in rat urine, including phase I, phase II and aglycone‐related products. The chemical structures of metabolites were proposed based on accurate mass measurements of protonated or deprotonated molecules and their fragmentation patterns. Our findings showed that the aglycone of sweroside (M05) and its glucuronide conjugate (M06) were principal circulating metabolites in rats. While several other metabolic transformations, occurring via reduction, N‐heterocyclization and N‐acetylation after deglycosylation, were also observed. Two metabolites (M05 and M06) were isolated from the rat urine for structural elucidation and identifcation of reaction sites. Both M05 and M06 were characterized by 1H, 13C and two‐dimensional nuclear magnetic resonance (NMR) spectroscopy. UHPLC/Q‐TOF‐MS analysis has provided an important analytical platform to gather metabolic profile of sweroside. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号