首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A rapid and highly selective liquid chromatography–tandem mass spectrometric (LC‐MS/MS) method for determination of polygalasaponin F (PF) in rat plasma was developed and validated. The chromatographic separation was achieved on a reverse‐phase Zorbax SB‐C18 column (150 × 4.6 mm, 5 µm), using 2 mm ammonium acetate (pH adjusted to 6.0 with acetic acid) and acetonitrile (25:75, v/v) as a mobile phase at 30 °C. MS/MS detection was performed using an electrospray ionization operating in positive ion multiple reaction monitoring mode by monitoring the ion transitions from m/z 1091.5 → 471.2 (PF) and m/z 700.4 → 235.4 (internal standard), respectively. The calibration curve showed a good linearity in the concentration range 0.0544–13.6 µg/mL, with a limit of quantification of 0.0544 µg/mL. The intra‐ and inter‐day precisions were <9.7% in rat plasma. The method was validated as per US Food and Drug Administration guidelines and successfully applied to pharmacokinetic study of PF in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Evidence‐based herbal products with assured quality are assuming importance for complementary and alternative medicine. Traditional medicines by and large are not standardized and validated to meet the new requirements. In the present study, marker (embelin)‐based standardization of a major medicinal plant, Embelia ribes and its polyherbal formulations was attempted. Conditions for the quantitative extraction of the marker compound embelin from E. ribes fruits and herbal formulations were also optimized. Reversed‐phase high‐performance liquid chromatography, coupled with diode array detection (RP‐HPLC–DAD) for the quantification of embelin was developed and validated. Satisfactory results were obtained with respect to linearity (15–250 µg/mL), LOD (3.97 µg/mL), LOQ (13.2 µg/mL), recovery (99.4–103.8%) and precision (1.43–2.87%). The applicability of the method was demonstrated with selected phytopharmaceuticals. The present method was sensitive, accurate, simple and reproducible and therefore can be recommended for marker‐based standardization, and quality assurance of E. ribes herbal formulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
For the first time, an HPLC method was developed and validated for the determination of stemoninine in plasma after oral and intravenous administration of the extract of the roots of Stemona tuberosa to rats. Plasma samples were analyzed on a Waters reversed‐phase C18 column using a gradient mobile‐phase of eluent A (water containing 0.1% formic acid and 0.2% triethylamine, pH 3.68) and eluent B (acetonitrile–water, 50:50, v/v). The flow rate was 1.0 mL/min and the detector wavelength was 210 nm. The Waters Oasis solid‐phase extraction cartridge was applied for the preparation of plasma samples with high recovery. A good linear relationship was obtained in the concentration range of 1.55–124 µg/mL (r = 0.9995). The limits of quantification and detection were 1.55 and 0.42 µg/mL, respectively. The average recoveries ranged from 91.11 to 96.43% in plasma at stemoninine concentrations of 3.10, 62.0 and 99.2 µg/mL. Intra‐ and inter‐batch coefficient of variations were 3.27–5.37% and 2.49–3.92%, respectively. This method was successfully applied to pharmacokinetic studies after oral and intravenous administration of Stemona tuberosa extract in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A selective liquid chromatographic–mass spectrometric method has been developed and validated for simultaneous determination of senkyunolide I (SEI) and senkyunolide H (SEH) from Chuanxiong Rhizoma in rat plasma. Plasma samples were extracted by liquid–liquid extraction with ethyl acetate and separated on a Kromasil C18 column (250 × 4.6 mm, 5 µm), with methanol–water (55:45, v/v) as mobile phase. The linear range was 0.05–25 µg/mL for SEI and 0.01–5.0 µg/mL for SEH, with lower limits of quantitation of 0.05 and 0.01 µg/mL, respectively. Intra‐ and inter‐day precision were within 10.0 and 9.8%, and the accuracies (relative errors) were <9.6 and 5.9%, with the mean extraction recoveries 81.0–86.6 and 80.5–85.0% for the two anayltes, respectively. The validated method was successfully applied to a comparative pharmacokinetic study of SEI and SEH in normal and migrainous rats after oral administration of Chuanxiong Rhizoma extract. The results indicated that there were obvious differences between normal and migrainous rats in the pharmacokinetic behavior after oral administration of Chuanxiong Rhizoma extract. The absorption of SEI and SEH were significantly increased in migrainous rats compared with normal rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Recently, in silico models have been developed to predict drug pharmacokinetics. However, before application, they must be validated and, for that, information about structurally similar reference compounds is required. A chiral liquid chromatography method with ultraviolet detection (LC‐UV) was developed and validated for the simultaneous quantification of BIA 2–024, BIA 2–059, BIA 2–265, oxcarbazepine, eslicarbazepine (S‐licarbazepine) and R‐licarbazepine in mouse plasma and brain. Compounds were extracted by a selective solid‐phase extraction procedure and their chromatographic separation was achieved on a LiChroCART 250–4 ChiraDex column using a mobile phase of water–methanol (92:8, v/v) pumped at 0.7 mL/min. The UV detector was set at 235 nm. Calibration curves were linear (r2 ≥ 0.996) over the concentration ranges of 0.2–30 µg/mL for oxcarbazepine, eslicarbazepine and R‐licarbazepine; 0.2–60 µg/mL for the remaining compounds in plasma; and 0.06–15 µg/mL for all the analytes in brain homogenate. Taking into account all analytes at these concentration ranges in both matrices, the overall precision did not exceed 9.09%, and the accuracy was within ±14.3%. This LC‐UV method is suitable for carrying out pharmacokinetic studies with these compounds in mouse in order to obtain a better picture of their metabolic pathways and biodistribution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
In this study, we developed a method for the determination of PF‐04620110 (2‐{(1r,4r)‐4‐[4‐(4‐amino‐5‐oxo‐7,8‐dihydropyrimido[5,4‐f][1,4]oxazepin‐6(5H)‐yl)phenyl]cyclohexyl}acetic acid), a novel diacylglycerol acyltransferase 1 (DGAT‐1) inhibitor, in rat plasma and validated it using liquid chromatography–tandem mass spectrometry (LC‐MS/MS). Rat plasma samples were processed following a protein precipitation method by using acetonitrile and were then injected into an LC‐MS/MS system for quantification. PF‐04620110 and imipramine (internal standard) were separated using a Hypersil Gold C18 column, with a mixture of acetonitrile and 10 mm ammonium formate (90:10, v/v) as the mobile phase. The ion transitions monitored in positive‐ion mode [M + H]+ of multiple‐reaction monitoring were m/z 397.0 → 260.2 for PF‐04620110 and m/z 280.8 → 86.0 for imipramine. The detector response was specific and linear for PF‐04620110 at concentrations within the range 0.05–50 µg/mL and the signal‐to‐noise ratios for the samples were ≥10. The intra‐ and inter‐day precision and accuracy of the method matched the acceptance criteria for assay validation. PF‐04620110 was stable under various processing and/or handling conditions. PF‐04620110 concentrations in the rat plasma samples could be measured up to 24 h after intravenous or oral administration of PF‐04620110, suggesting that the assay is useful for pharmacokinetic studies in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A rapid and sensitive LC‐MS/MS method was developed for the determination of linarin in small‐volume rat plasma and tissue sample. Sample preparation was employed by the combination of protein precipitation (PPT) and liquid–liquid extraction (LLE) to allow measurement over a 5‐order‐of‐magnitude concentration range. Fast chromatographic separation was achieved on a Hypersil Gold column (100 × 2.1 mm i.d., 5 µm). Mass spectrometric detection was achieved using a triple‐quadrupole mass spectrometer equipped with an electrospray ionization interface operating in positive ionization mode. Quantification was performed using selected reaction monitoring of precursor‐product ion transitions at m/z 593 → 285 for linarin and m/z 447 → 271 for baicalin (internal standard). The total run time was only 2.8 min per sample. The calibration curves were linear over the concentration range of 0.4–200 µg/mL for PPT and 0.001–1.0 µg/mL for LLE. A lower limit of quantification of 1.0 ng/mL was achieved using only 20 μL of plasma or tissue homogenate. The intra‐ and inter‐day precisions in all samples were ≤14.7%, while the accuracy was within ±5.2% of nominal values. The validated method has been successfully applied to pharmacokinetic and tissue distribution study of linarin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Thymoquinone (THQ) is known for its neuroprotective and anti‐convulsant properties in preclinical studies. We herewith describe a simple, rapid, selective, sensitive and stability‐indicating UPLC method for the estimation of THQ and its application to biopharmaceutical studies such as in vitro release from nanoparticulate system and in vivo pharmacokinetic study. The method employed gradient elution using a Waters Acquity HSS‐T3 C18 (100 × 2.1 mm, 1.8 µm) UPLC column. The mobile phase consisted of water and acetonitrile, pumped at a flow rate of 0.5 mL/min. The injection volume was 5 µL and THQ was monitored at 294 nm wavelength with a total run time of 6 min. In solution as well as in plasma, the method was found to be linear (r ≥ 0.998), precise (CV ≤ 2.45%) and accurate (recovery ≥ 84.8%) in the selected concentration range of 0.1–0.8 µg/mL. Forced degradation studies revealed that THQ undergoes degradation under acidic, basic, oxidation and UV light stress conditions. However, the developed UPLC method could effectively resolve degradation product peaks from THQ. Further, no interference was found at the retention time of THQ from any plasma components, indicating selectivity of the developed method. For solutions, the limits of detection and quantitation of the method were found to be 0.001 and 0.0033 µg/mL, respectively; while in plasma they were 0.006 and 0.02 µg/mL, respectively. The validated method was successfully applied to quantify THQ in dissolution medium as well as oral in vivo pharmacokinetic study of THQ suspension and THQ‐ solid lipid nanoparticle (THQ‐SLN) formulation. A 2‐fold increase in the relative bioavailability was observed with the THQ‐SLN compared with THQ. The results indicate that the SLN significantly increased plasma concentrations and retention within the systemic circulation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A simple and efficient liquid chromatography–mass spectrometry method was developed and validated for the determination of geniposidic acid in rat plasma. After the addition of internal standard salidroside and acidification (0.1% formic acid, pH = 3.2), plasma samples were carried out by protein precipitation with acetonitrile and separated on a Kromasil C18 column (150 × 4.6 mm, 5 µm) within a run time of 9.0 min. Analysis was performed in selected ion monitoring mode with a positive electrospray ionization interface. No endogenous interference was observed at retention times of the analytes because of the high specificity of selected ion monitoring mode. The linear range was 0.02–4.0 µg/mL and the lower limit of quantification was 0.02 µg/mL. The mean extraction recoveries of geniposidic acid and internal standard from rat plasma were all >88.0% and the matrix effects were within acceptance criteria (90–110%). The validated method was successfully applied to the pharmacokinetic study of geniposidic acid in rat plasma after oral administration of G. jasminoides fruit crude extract and Zhi‐zi‐chi decoction, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A rapid high‐performance liquid chromatographic method was developed and validated for determination of tetrahydropalmatine (THP), an active component of Rhizoma Corydalis, in rat plasma. The samples were prepared using protein precipitation and separated on an Agilent XDB‐C18 column (150 × 4.6 mm, 5 µm) with the mobile phase consisting of methanol–0.1% phosphate acid solution, adjusted with triethylamine to pH 5.5 (65:35). Good linearity was found within 0.10–10.00 µg/mL of THP in rat plasma sample. The intra‐ and inter‐day precision values were less than 10%. The developed method was successfully applied to assess the pharmacokinetics of THP in spontaneously hypertensive rats (SHR) and normotensive rats. After oral administration of a single dose of THP (60 mg/kg), the maximum plasma concentrations were 6.15 ± 2.1 and 7.54 ± 2.9 µg/mL for normotensive rats and SHR, respectively. The mean values of AUC0–∞ of THP in SHR were 81.44 ± 45.0 µg h/mL, significantly higher (p < 0.05) than in normotensive rats (44.06 ± 19.6 µg h/mL). The t1/2 and MRT in SHR were much longer than that in healthy Sprague–Dawley rats, indicating slow elimination of THP in SHR. The results indicated that there are some differences in pharmacokinetics of THP in SHR and Sprague–Dawley rats and it is very important to investigate the pharmacokinetic properties of drugs in pathological conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A simple and efficient liquid chromatography‐mass spectrometry (LC‐MS) method was developed and validated for simultaneous quantitation of catalpol and harpagide in normal and diabetic rat plasma. Protein precipitation extraction with acetonitrile was carried out using salidroside as the internal standard (IS). The LC separation was performed on an Elite C18 column (150 × 4.6 mm, 5 µm) with the mobile phase consisting of acetonitrile and water within a runtime of 12.0 min. The analytes were detected without endogenous interference in the selected ion monitoring mode with positive electrospray ionization. Calibration curves offered satisfactory linearity (r > 0.99) at linear range of 0.05–50.0 µg/mL for catalpol and 0.025–5.0 µg/mL for harpagide with the lower limits of quantitation of 0.05 and 0.025 µg/mL, respectively. Intra‐ and inter‐day precisions (RSD) were <9.4%, and accuracy (RE) was in the ?6.6 to 4.9% range. The extraction efficiencies of catalpol, harpagide and IS were all >76.5% and the matrix effects of the analytes ranged from 86.5 to 106.0%. The method was successfully applied to the pharmacokinetic study of catalpol and harpagide after oral administration of Zeng‐Ye‐Decoction to normal and diabetic rats, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Opicapone is a novel potent, reversible and purely peripheral third generation catechol‐O‐methyltransferase inhibitor, currently under clinical trials as an adjunct to levodopa therapy for Parkinson's disease. To support additional nonclinical pharmacokinetic studies, a novel high‐performance liquid chromatographic method coupled to a diode array detector (HPLC‐DAD) to quantify opicapone and its active metabolite (BIA 9–1079) in rat plasma and tissues (liver and kidney) is herein reported. The analytes were extracted from rat samples through a deproteinization followed by liquid‐liquid extraction. Chromatographic separation was achieved in less than 10 min on a reversed‐phase C18 column, applying a gradient elution program with 0.05 M monosodium phosphate solution (pH 2.45 ± 0.05) and acetonitrile. Calibration curves were linear (r2 ≥ 0.994) within the ranges of 0.04‐6.0 µg/mL for both analytes in plasma, 0.04‐4.0 µg/mL for opicapone in liver and kidney homogenates, and 0.07‐4.0 µg/mL and 0.06‐4.0 µg/mL for BIA 9–1079 in liver and kidney homogenates, respectively. The overall intra‐ and inter‐day accuracy ranged from ?12.68% to 7.70% and the imprecision values did not exceed 11.95%. This new HPLC‐DAD assay was also successfully applied to quantify opicapone and BIA 9–1079 in a preliminary pharmacokinetic study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, a more sensitive and reliable quantitative method based on ultra‐high performance liquid chromatography coupled with Q‐Exactive‐Orbitrap‐MS in full‐mass scan was developed and validated for the determination of PF‐04620110 in dog plasma. After protein precipitation with acetonitrile, the sample separations were carried out on an Acquity BEH C18 column with 1 mm ammonium acetate in water and acetonitrile containing 0.1% acetic acid as mobile phase, at a flow rate of 0.4 mL/min. The assay showed excellent linearity over the concentration range of 1–2000 ng/mL with correlation coefficient >0.9980 (r > 0.9980). The LLOQ was 1 ng/mL. The inter‐ and intra‐day precision (RSD, %) was within 9.69% while the accuracy (RE, %) was in the range of ?8.59–11.24%. The extraction recovery was >85.37% and the assay was free of matrix effects. PF‐04620110 was demonstrated to be stable under various processing and handing conditions. The validated method was successfully applied to the pharmacokinetic study of PF‐04620110 in dogs and the results revealed that PF‐04620110 was slowly eliminated from plasma with a clearance of 60.81 ± 7.11 mL/h/kg for intravenous administration and 81.44 ± 25.79 mL/h/kg for oral administration. The oral bioavailability was determined to be 77.89% in dogs.  相似文献   

14.
A rapid, selective and sensitive method using UPLC‐MS/MS was first developed and validated for quantitative analysis of koumine in rat plasma. A one‐step protein precipitation with methanol was employed as a sample preparation technique. Plasma samples were separated on an Acquity UPLC BEH C18 column (50 × 2.1 mm, i.d. 1.7 µm) with a gradient mobile phase consisting of methanol with 0.1% (v/v) formic acid and water containing 0.1% (v/v) formic acid at a flow rate of 0.3 mL/min. Detection and quantification were performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via positive eletrospray ionization. Good linearity (r > 0.9997) was achieved using weighted (1/x2) least squares linear regression over a concentration range of 0.025–15 µg/mL with a lower limit of quantification of 0.025 µg/mL for koumine. The intra‐ and inter‐ precisions (relative standard deviation) of the assay at all three quality control samples were 5.6–14.1% with an accuracy (relative error) of 5.0–14.0%, which meets the requirements of the US Food and Drug Administration guidance. This developed method was successfully applied to an in vivo pharmacokinetic study in rats after a single intravenous dose of 20 mg/kg koumine. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
An analytical method enabling the detection and quantification of the individual enantiomers of racemic (±) pinocembrin is required to fully characterize its pharmacokinetic disposition. Direct resolution of the enantiomers of pinocembrin was achieved using a novel and simple reversed‐phase high‐performance liquid chromatography method with electrospray ionization and detection by mass spectrometry in rat serum. A Chiralcel® AD‐RH column was employed to perform baseline separation with electrospray positive‐mode ionization with selected ion monitoring detection. The standard curves were linear from 0.5 to 100 µg/mL for each enantiomer. The limit of quantification was 0.5 µg/mL. The assay was applied successfully to stereoselective serum disposition of pinocembrin enantiomers in rats. Pinocembrin enantiomers were detected in serum. Both enantiomers had a serum half‐life of ~15 min in rats. Similar values of volume of distribution between the enantiomers were also observed: 1.76 L/kg for S‐pinocembrin and 1.79 L/kg for R‐pinocembrin. Total clearance was 5.527 L//h/kg for S‐pinocembrin and 5.535 L/h/kg for R‐pinocembrin, and the area under the curve was 1.821 µg h/mL for S‐pinocembrin and 1.876 µg h/mL for R‐pinocembrin. The large volume of distribution coupled with the short serum half‐life suggests extensive distribution of pinocembrin into the tissues. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A method for analysis of lacosamide [(R)‐2‐acetamido‐N‐benzyl‐3‐methoxypropionamide] is needed for both human and veterinary pharmacokinetic investigations. While lacosamide is currently used to manage partial‐onset seizures in humans suffering from epilepsy, it is also presently being investigated for use in the treatment of canine epilepsy in veterinary medicine. Currently, no dosing regimen for the drug exists in dogs. A novel and simple high‐performance liquid chromatography method was developed for determination of lacosamide in dog serum. Serum proteins (0.1 mL) were precipitated with ?20.0°C acetonitrile after addition of the internal standard, daidzein. Separation was achieved with a Phenomenex® Luna® C18 (2) (5 µm, 250 × 4.60 mm) column with ultraviolet detection at 210 nm. The calibration curves were linear ranging from 0.5 to 25 µg/mL. Precision of the assay was <13% (RSD) and was within 12% for all points in the calibration curve. The limit of quantitation for this method was 0.5 µg/mL. The assay was applied successfully to a pre‐clinical study of lacosamide pharmacokinetics in dogs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A rapid and sensitive LC‐MS/MS method for the quantification of fenofibric acid in rat plasma was developed and validated. Plasma samples were prepared by liquid–liquid extraction with a mixture of N‐hexane–dichloromethane–isopropanol (100:50:5, v/v/v). Isocratic chromatographic separation was performed on a reversed‐phase Discovery C18 column (2.1 × 50 mm, 5 µm). The mobile phase was methanol–water–formic (75:25:0.25, v/v/v). Detection of fenofibric acid and the internal standard (IS) diclofenac acid was achieved by ESI MS/MS in the negative ion mode using m/z 317 → m/z 213 and m/z 294 → m/z 250 transitions, respectively. The method was linear from 0.005 to 1.250 µg/mL when 100 μL plasma was analyzed. The lower limit of quantification was 0.005 µg/mL. The intra‐ and inter‐day precision values were below 8.2%, and accuracy ranged from ?0.9 to 2.1% in all quality control samples. The recovery was 90.3–94.7% and 83.3% for fenofibric acid and IS, respectively. Total run time for each sample analysis was 2.5 min. The validated method was successfully applied to a pharmacokinetic study in six rats after oral administration of fenofibrate, the ester prodrug of fenofibric acid (equivalent to fenofibric acid 5 mg/kg). The method permits laboratory scientists with access to the appropriate instrumentation to perform rapid fenofibric acid determination. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The objectives of this study were to develop a new deproteinization method to extract amoxicillin from human plasma and evaluate the inter‐ethnic variation of amoxicillin pharmacokinetics in healthy Malay volunteers. A single‐dose, randomized, fasting, two‐period, two‐treatment, two‐sequence crossover, open‐label bioequivalence study was conducted in 18 healthy Malay adult male volunteers, with one week washout period. The drug concentration in the sample was analyzed using high‐performance liquid chromatography (UV–vis HPLC). The mean (standard deviation) pharmacokinetic parameter results of Moxilen® were: peak concentration (Cmax), 6.72 (1.56) µg/mL; area under the concentration–time graph (AUC0–8), 17.79 (4.29) µg/mL h; AUC0–∞, 18.84 (4.62) µg/mL h. Those of YSP Amoxicillin® capsule were: Cmax, 6.69 (1.44) µg/mL; AUC0–8, 18.69 (3.78) µg/mL h; AUC00–∞, 19.95 (3.81) µg/mL h. The 90% confidence intervals for the logarithmic transformed Cmax, AUC0–8 and AUC0–∞ of Moxilen® vs YSP Amoxicillin® capsule was between 0.80 and 1.25. Both Cmax and AUC met the predetermined criteria for assuming bioequivalence. Both formulations were well tolerated. The results showed significant inter‐ethnicity variation in pharmacokinetics of amoxicillin. The Cmax and AUC of amoxicillin in Malay population were slightly lower compared with other populations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A fast and accurate liquid chromatography/tandem mass spectrometric (LC‐MS/MS) assay was first developed and validated for the determination of deferiprone in human plasma. The analytes were extracted with acetonitrile from only 50 μL aliquots of human plasma to achieve the protein precipitation. After extraction, chromatographic separation of analytes in human plasma was performed using a Synergi Fusion‐RP 80A column at 30 °C. The mobile phase consisted of methanol and 0.2% formic acid containing 0.2 mM EDTA (60:40, v/v). The flow rate of the mobile phase was 0.8 mL/min. The total run time for each sample analysis was 4 min. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the precursor‐to‐parent ion transitions m/z 140.1 → 53.1 for deferiprone and m/z 143.1 → 98.1 for internal standard. A linear range was established from 0.1 to 20 µg/mL. The limit of detection was determined as 0.05 µg/mL. The validated method was estimated for linearity, recovery, stability, precision and accuracy. Intraday and interday precisions were 4.3–5.5 and 4.6–7.3%, respectively. The recovery of deferiprone was in the range of 80.1–86.8%. The method was successfully applied to a pharmacokinetic study of deferiprone in six thalassemia patients. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Three methods were developed and validated for determination of nemonoxacin in human feces and its major metabolite, nemonoxacin acyl‐β‐ d ‐glucuronide, in human urine and feces. Nemonoxacin was extracted by liquid–liquid extraction in feces homogenate samples and nemonoxacin acyl‐β‐ d ‐glucuronide by a solid‐phase extraction procedure for pretreatment of both urine and feces homogenate sample. Separation was performed on a C18 reversed‐phase column under isocratic elution with the mobile phase consisting of acetonitrile and 0.1% formic acid. Both analytes were determined by liquid chromatography–tandem mass spectrometry with positive electrospray ionization in selected reaction monitoring mode and gatifloxacin as the internal standard. The lower limit of quantitation (LLOQ) of nemonoxacin in feces was 0.12 µg/g and the calibration curve was linear in the concentration range of 0.12–48.00 µg/g. The LLOQ of the metabolite was 0.0010 µg/mL and 0.03 µg/g in urine and feces matrices, while the linear range was 0.0010–0.2000 µg/mL and 0.03–3.00 µg/g, respectively. Validation included selectivity, accuracy, precision, linearity, recovery, matrix effect, carryover, dilution integrity and stability, indicating that the methods can quantify the corresponding analytes with excellent reliability. The validated methods were successfully applied to an absolute bioavailability clinical study of nemonoxacin malate capsule. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号