首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A solvent bar microextraction (SBME) technique combined with gas chromatography/tandem mass spectrometry (GC/MS/MS), for the determination of selected organochlorine pesticides (OCPs) in wine samples, is described. In this work the OCPs were extracted and dissolved in a 2-microL aliquot of organic extraction solvent (n-tetradecane) confined within a 1.7-cm length of hollow fiber. Both ends of the hollow fiber (solvent bar) were sealed, and it was placed in an aqueous sample solution for extraction. The effects of solvent selection, sample agitation, extraction time, extraction temperature, and salt concentration on the SBME performance were optimized. The influence of aqueous sample/organic solvent phase ratio was further investigated in detail. High enrichments (1900-7100-fold) could be obtained at an aqueous sample/organic solvent volume ratio of 20 mL/2 microL in this study. Good extraction reproducibility was obtained with relative standard deviation (RSD) values below 12.6%. Comparisons of sensitivity and precision between SBME and dynamic hollow-fiber liquid-phase microextraction were also investigated.  相似文献   

2.
The speciation of chromium(VI) and chromium(III) was investigated by using hollow fiber liquid‐phase microextraction based on two immiscible organic solvents followed by high performance liquid chromatography with ultraviolet detection. In this method, chromium(VI) and chromium(III) reacted with ammonium pyrrolidine dithiocarbamate to produce hydrophobic complexes. Subsequently, the complexes were first extracted into a thin layer of organic solvent (n‐dodecane) present in the pores of a porous hollow fiber, and then into a μL volume of an organic acceptor (methanol) located inside the lumen of the hollow fiber. Then, the extracting organic phase was injected into the separation column of the high‐performance liquid chromatograph for the analysis of both chromium species. Effective parameters on extraction were optimized using one‐variable‐at‐a‐time method and central composite design. Under optimized conditions, a linear range of 0.25–100 and 0.5–100 μg/L (R 2 > 0.998), the limits of detection of (S/N = 3) 0.08 and 0.1 μg/L and a preconcentration factor of 625 and 556 were achieved for chromium(VI) and chromium(III), respectively. The method was successfully applied to the speciation and determination of chromium species in different water samples and satisfactory results were obtained.  相似文献   

3.
A new type of liquid‐phase microextraction based on two immiscible organic solvents was optimized and validated for the quantification of lidocaine, ketamine, and cocaine in human urine samples. A hollow‐fiber based microextraction technique followed by gas chromatography coupled with mass spectrometry detection was used to reduce matrix interferences and improve limits of detection. The analytes were extracted from aqueous sample with pH 11.0, into a thin layer of organic solvent (n‐dodecane) sustained in the pores of a hollow fiber, and then into a second organic acceptor (acetonitrile) located inside the lumen of the hollow fiber. With the application of optimized values, good linearity was obtained in the range of 1–500 μg/L for lidocaine and ketamine and 2–500 μg/L for cocaine with the determination coefficient values (r2) >0.9943. The preconcentration factors and limits of detection (S/N > 3) were 250–350 and 0.01–0.05 μg/L, respectively. Intra and interassay precision values were <7.3 and 9.3%, respectively. The method was successfully applied for the determination and quantification of target analytes in human urine samples.  相似文献   

4.
A simple, environmentally friendly, and efficient method, based on hollow‐fiber‐supported liquid membrane microextraction, followed by high‐performance liquid chromatography has been developed for the extraction and determination of amlodipine (AML) and atorvastatin (ATO) in water and urine samples. The AML in two‐phase hollow‐fiber liquid microextraction is extracted from 24.0 mL of the aqueous sample into an organic phase with microliter volume located inside the pores and lumen of a polypropylene hollow fiber as acceptor phase, but the ATO in three‐phase hollow‐fiber liquid microextraction is extracted from aqueous donor phase to organic phase and then back‐extracted to the aqueous acceptor phase, which can be directly injected into the high‐performance liquid chromatograph for analysis. The preconcentration factors in a range of 34–135 were obtained under the optimum conditions. The calibration curves were linear (R2 ≥ 0.990) in the concentration range of 2.0–200 μg/L for AML and 5.0–200 μg/L for ATO. The limits of detection for AML and ATO were 0.5 and 2.0 μg/L, respectively. Tap water and human urine samples were successfully analyzed for the existence of AML and ATO using the proposed methods.  相似文献   

5.
In the current study, a novel technique for extraction and determination of trans,trans‐muconic acid, hippuric acid, and mandelic acid was developed by means of ion‐pair‐based hollow fiber liquid‐phase microextraction in the three‐phase mode. Important factors affecting the extraction efficiency of the method were investigated and optimized. These metabolites were extracted from 10 mL of the source phase into a supported liquid membrane containing 1‐octanol and 10% w/v of Aliquat 336 as the ionic carrier followed by high‐performance liquid chromatography analysis. The organic phase immobilized in the pores of a hollow fiber was back‐extracted into 24 μL of a solution containing 3.0 mol/L sodium chloride placed inside the lumen of the fiber. A very high preconcentration of 212‐ to 440‐fold, limit of detection of 0.1–7 μg/L, and relative recovery of 87–95% were obtained under the optimized conditions of this method. The relative standard deviation values for within‐day and between‐day precisions were calculated at 2.9–8.5 and 4.3–11.2%, respectively. The method was successfully applied to urine samples from volunteers at different work environments. The results demonstrated that the method can be used as a sensitive and effective technique for the determination of the metabolites in urine.  相似文献   

6.
Derivatization at the injection port following hollow‐fiber‐based liquid–liquid–liquid microextraction with tetramethylammonium acetate as a dual‐function reagent, i.e. an acceptor and derivatization reagent, for the determination of benzoic acid (BA) and sorbic acid (SA) in real samples by GC was developed. BA and SA were extracted from aqueous samples to an organic phase impregnated into the pores of the hollow fiber wall, and then back‐extracted to the acceptor solution located inside the lumen of the hollow fiber. Upon injection, the extracted analytes were quantitatively derivatized to their methyl esters with tetramethylammonium acetate in the GC injection port. Several parameters related to the derivatization and extraction efficiency were optimized. The linearity was satisfactory over a concentration range of 0.1–50 mg/L with r > 0.993 for both analytes. The LODs were 2.0 μg/L for SA and 20 μg/L for BA. The recoveries (83–116%) and precisions (RSDs of 1.2–11.4% (n = 3)) were examined by analyzing real spiked samples. The enrichment factors of BA and SA were 300 and 425. The results demonstrated that this is a simple, rapid, accurate, and sensitive method for the determination of BA and SA in various samples.  相似文献   

7.
A new method of solvent bar microextraction (SBME) combined with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the speciation of As(III) and As(V) in water samples was developed. The method is based on the chelation of As(III) and ammonium pyrrolidine dithiocarbamate (APDC) under the selected conditions, and the As(III)-PDC complex could be extracted into the organic phase, while As(V) remained in aqueous solution. The post-extraction organic phase was directly injected into ETV-ICP-MS for determination of As(III) with the use of iridium as permanent chemical modifier. As(V) was reduced to As(III) by L-cysteine and was then subjected to SBME prior to total As determination. The assay of As(V) was based on subtracting As(III) from total As. The factors affecting on the SBME, such as organic solvent, sample pH, chelating reagent concentration, stirring rate and extraction time, and chemical modification of iridium in ETV-ICP-MS have been studied. Under the optimized conditions, the enrichment factor of 220-fold could be achieved in 15 min extraction, the limit of detection (LOD) for As(III) was 0.32 pg mL− 1, and the relative standard deviation (RSD) was 8.8% (0.1 ng mL− 1, n = 9). Compared with hollow fiber liquid phase microextraction (HF-LPME), SBME has a higher enrichment factor and faster extraction kinetics. In order to validate the accuracy of the method, a Certified Reference Material of GSBZ50004-88 (No. 200420) water sample was analyzed and the results obtained were in good agreement with the certified values. The developed method was also applied to the speciation of inorganic As in environmental waters with satisfactory results.  相似文献   

8.
We have combined dynamic hollow fiber liquid-phase microextraction with GC and electron capture detection for the quantitative determination of five chlorobenzenes in water samples. Extraction is based on an automated dynamic extraction device called TT-tube extractor which consists of a polypropylene hollow fiber mounted inside a stainless steel tube. Toluene is used as the extraction solvent that fills the lumen and pores of the hydrophobic fiber and flows through the lumen of the fiber using a programmable syringe pump. The type of organic solvent, ionic strength, diameter of the TT-tube, sample volume, and the times for extraction and dwelling were optimized. Under optimum conditions, the method gives limits of detection as low as 10–100?ng?L?1, a linear dynamic range of 0.05–100?μg?L?1, and relative standard deviations of <7% (n?=?6). The preconcentration factor can be as large as 562–973. In an example for a practical application, the chlorobenzenes were successfully determined in environmental aqueous samples. The hollow fiber membrane can be used at least 20 times without any carry-over or loss in extraction efficiency. The system is inexpensive and convenient, and requires minimal manual handling.
Figure
Dynamic hollow fiber liquid phase microextraction apparatus  相似文献   

9.
A green, facile, fast, and sensitive liquid‐phase microextraction method is presented for the extraction and preconcentration of hemin in the presence of free iron ions prior to flame atomic absorption spectroscopic determination. In this technique, an anion‐functionalized task‐specific ionic liquid is used as the extracting solvent. The interface between the extracting solvent and the bulk aqueous phase containing hemin is enormously enlarged by dispersing the ionic liquid to the aqueous phase with the help of ultrasound radiation. Hemin is selectively extracted into the ionic liquid after interaction with the functional group of the ionic liquid. Then, the concentration of the extracted hemin is determined through the absorbance of the iron ions contained in the hemin structure using flame atomic absorption spectroscopy. Different experimental parameters affecting the extraction efficiency have been optimized. Under the optimized conditions, the proposed method has a hemin concentration linear range of 0.020–0.80 mg/L with a detection limit of 0.0080 mg/L. This method has been successfully applied to the extraction and determination of hemin in human serum and supernatant samples.  相似文献   

10.
Solvent-bar microextraction (SBME) based on two-phase (water-to-organic) extraction was for the first time used as the sample pretreatment method for the non-aqueous capillary electrophoresis (NACE) of herbicides of environmental concern. Due to the compatibility of the extractant organic solvent and the NACE separation system, the extract could be introduced directly to the CE system after SBME. Through investigations of the effect of sample pH, extraction time, agitation speed and salt addition on extraction efficiency, the most suitable extraction conditions were determined: sample solution at a pH of 1, without added salt, and stirring at 700 revolutions per minute for 30 min. SBME as applied here was also compared with single-drop microextraction and hollow fiber-protected liquid-phase microextraction. SBME showed the highest extraction efficiency. In addition, field-amplified sample injection with pre-introduced organic solvent plug removal using the electroosmotic flow as a pump (FAEP) was used to enhance the sensitivity further in NACE. Based on studies of the effect of different organic solvents, different lengths of the organic plugs and different volumes of sample injection on stacking efficiency under the most suitable separation conditions, methanol was found to be the most efficient solvent for on-line preconcentration. Combined with SBME, FAEP-NACE achieved limits of detection of between 0.08 ng/mL and 0.14 ng/mL for the studied analytes. This preconcentration approach for NACE was demonstrated to be amenable to aqueous environmental samples by applying it to spiked river water.  相似文献   

11.
A novel dispersive liquid–liquid microextraction (DLLME) method followed by HPLC analysis, termed sequential DLLME, was developed for the preconcentration and determination of aryloxyphenoxy‐propionate herbicides (i.e. haloxyfop‐R‐methyl, cyhalofop‐butyl, fenoxaprop‐P‐ethyl, and fluazifop‐P‐butyl) in aqueous samples. The method is based on the combination of ultrasound‐assisted DLLME with in situ ionic liquid (IL) DLLME into one extraction procedure and achieved better performance than widely used DLLME procedures. Chlorobenzene was used as the extraction solvent during the first extraction. Hydrophilic IL 1‐octyl‐3‐methylimidazolium chloride was used as a dispersive solvent during the first extraction and as an extraction solvent during the second extraction after an in situ chloride exchange by bis[(trifluoromethane)sulfonyl]imide. Several experimental parameters affecting the extraction efficiency were studied and optimized with the design of experiments using MINITAB® 16 software. Under the optimized conditions, the extractions resulted in analyte recoveries of 78–91%. The correlation coefficients of the calibration curves ranged from 0.9994 to 0.9997 at concentrations of 10–300, 15–300, and 20–300 μg L?1. The relative SDs (n = 5) ranged from 2.9 to 5.4%. The LODs for the four herbicides were between 1.50 and 6.12 μg L?1.  相似文献   

12.
A new and fast sample preparation technique based on three‐phase hollow fiber liquid‐phase microextraction with a magnetofluid was developed and successfully used to quantify the aristolochic acid I (AA‐I) and AA‐II in plasma after oral administration of Caulis akebiae extract. Analysis was accomplished by reversed‐phase high‐performance liquid chromatography with fluorescence detection. Parameters that affect the hollow fiber liquid‐phase microextraction processes, such as the solvent type, pH of donor and acceptor phases, content of magnetofluid, salt content, stirring speed, hollow fiber length, extraction temperature, and extraction time, were investigated and optimized. Under the optimized conditions, the preconcentration factors for AA‐I and AA‐II were >627. The calibration curve for two AAs was linear in the range of 0.1–10 ng/mL with the correlation coefficients >0.9997. The intraday and interday precision was <5.71% and the LODs were 11 pg/mL for AA‐I and 13 pg/mL for AA‐II (S/N = 3). The separation and determination of the two AAs in plasma after oral administration of C. akebiae extract were completed by the validated method.  相似文献   

13.
A three‐phase hollow fiber liquid‐phase microextraction method coupled with CE was developed and used for the determination of partition coefficients and analysis of selected nitrophenols in water samples. The selected nitrophenols were extracted from 14 mL of aqueous solution (donor solution) with the pH adjusted to pH 3 into an organic phase (1‐octanol) immobilized in the pores of the hollow fiber and finally backextracted into 40.0 μL of the acceptor phase (NaOH) at pH 12.0 located inside the lumen of the hollow fiber. The extractions were carried out under the following optimum conditions: donor solution, 0.05 M H3PO4, pH 3.0; organic solvent, 1‐octanol; acceptor solution, 40 μL of 0.1 M NaOH, pH 12.0; agitation rate, 1050 rpm; extraction time, 15 min. Under optimized conditions, the calibration curves for the analytes were linear in the range of 0.05–0.30 mg/L with r2>0.9900 and LODs were in the range of 0.01–0.04 mg/L with RSDs of 1.25–2.32%. Excellent enrichment factors of up to 398‐folds were obtained. It was found that the partition coefficient (Ka/d) values were high for 2‐nitrophenol, 3‐nitrophenol, 4‐nitrophenol, 2,4‐dinitrophenol and 2,6‐dinitrophenol and that the individual partition coefficients (Korg/d and Ka/org) promoted efficient simultaneous extraction from the donor through the organic phase and further into the acceptor phase. The developed method was successfully applied for the analysis of water samples.  相似文献   

14.
A three‐phase hollow‐fiber liquid‐phase microextraction based on deep eutectic solvent as acceptor phase was developed and coupled with high‐performance capillary electrophoresis for the simultaneous extraction, enrichment, and determination of main active compounds (hesperidin, honokiol, shikonin, magnolol, emodin, and β,β′‐dimethylacrylshikonin) in a traditional Chinese medicinal formula. In this procedure, two hollow fibers, impregnated with n‐heptanol/n‐nonanol (7:3, v/v) mixture in wall pores as the extraction phase and a combination (9:1, v/v) of methyltrioctylammonium chloride/glycerol (1:3, n/n) and methanol in lumen as the acceptor phase, were immersed in the aqueous sample phase. The target analytes in the sample solution were first extracted through the organic phase, and further back‐extracted to the acceptor phase during the stirring process. Important extraction parameters such as types and composition of extraction solvent and deep eutectic solvent, sample phase pH, stirring rate, and extraction time were investigated and optimized. Under the optimal conditions, detection limits were 0.3–0.8 ng/mL with enrichment factors of 6–114 for the analytes and linearities of 0.001–13 μg/mL (r2 ≥ 0.9901). The developed method was successfully applied to the simultaneous extraction and concentration of the main active compounds in a formula of Zi‐Cao‐Cheng‐Qi decoction with the major advantages of convenience, effectiveness, and environmentally friendliness.  相似文献   

15.
In this work, a simple, fast, sensitive, and environmentally friendly method was developed for preconcentration and quantitative measurement of bisphenol A in water samples using gas chromatography with mass spectrometry. The preconcentration approach, namely biosorption‐based dispersive liquid‐liquid microextraction with extractant removal by magnetic nanoparticles was performed based on the formation of microdroplet of rhamnolipid biosurfactant throughout the aqueous samples, which accelerates the mass transfer process between the extraction solvent and sample solution. The process is then followed by the application of magnetic nanoparticles for easy retrieval of the analyte‐containing extraction solvent. Several important variables were optimized comprehensively including type of disperser solvent and desorption solvent, rhamnolipid concentration, volume of disperser solvent, amount of magnetic nanoparticles, extraction time, desorption time, ionic strength, and sample pH. Under the optimized microextraction and gas chromatography with mass spectrometry conditions, the method demonstrated good linearity over the range of 0.5–500 µg/L with a coefficient of determination of R= 0.9904, low limit of detection (0.15 µg/L) and limit of quantification (0.50 µg/L) of bisphenol A, good analyte recoveries (84–120%) and acceptable relative standard deviation (1.8–14.9%, = 6). The proposed method was successfully applied to three environmental water samples, and bisphenol A was detected in all samples.  相似文献   

16.
In the present study, for the first time electromembrane extraction followed by high performance liquid chromatography coupled with ultraviolet detection was optimized and validated for quantification of four gonadotropin‐releasing hormone agonist anticancer peptides (alarelin, leuprolide, buserelin and triptorelin) in biological and aqueous samples. The parameters influencing electromigration were investigated and optimized. The membrane consists 95% of 1‐octanol and 5% di‐(2‐ethylhexyl)‐phosphate immobilized in the pores of a hollow fiber. A 20 V electrical field was applied to make the analytes migrate from sample solution with pH 7.0, through the supported liquid membrane into an acidic acceptor solution with pH 1.0 which was located inside the lumen of hollow fiber. Extraction recoveries in the range of 49 and 71% within 15 min extraction time were obtained in different biological matrices which resulted in preconcentration factors in the range of 82–118 and satisfactory repeatability (7.1 < RSD% < 19.8). The method offers good linearity (2.0–1000 ng/mL) with estimation of regression coefficient higher than 0.998. The procedure allows very low detection and quantitation limits of 0.2 and 0.6 ng/mL, respectively. Finally, it was applied to determination and quantification of peptides in human plasma and wastewater samples and satisfactory results were yielded.  相似文献   

17.
This paper reports the applicability of two‐phase and three‐phase hollow fiber based liquid‐phase microextraction (HF‐LPME) for the extraction of hydrochlorothiazide (HYD) and triamterene (TRM) from human urine. The HYD in two‐phase HF‐LPME is extracted from 24 mL of the aqueous sample into an organic phase with microliter volume located inside the pores and lumen of a polypropylene hollow fiber as acceptor phase, but the TRM in three‐phase HF‐LPME is extracted from aqueous donor phase to organic phase and then back‐extracted to the aqueous acceptor phase, which can be directly injected into HPLC for analysis. Under optimized conditions preconcentration factors of HYD and TRM were obtained as 128 and 239, respectively. The calibration curves were linear (R2 ≥ 0.995) in the concentration range of 1.0–100 µg/L for HYD and 2.0–100 µg/L for TRM. The limits of detection for HYD and TRM were 0.5 µg/L. The intra‐day and inter‐day RSD based on four replicates were obtained as ≤5.8 and ≤9.3%, respectively. The methods were successfully applied for determining the concentration of the drugs in urine samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A simple hollow fiber liquid‐phase microextraction method for the determination of synthetic pyrethroid metabolites, 3‐phenoxybenzoic acid and 4‐hydroxy‐3‐phenoxybenzoic acid, in human and rat urine was developed and validated. A polypropylene hollow fiber tightly fitted onto a Nylon rod and impregnated with organic solvent served as a disposable extraction device. Desorption of analytes was carried out in NaOH solution, analyzed further by gradient HPLC and diode array detection method. Important factors were identified using Taguchi OA16 (45) orthogonal array design and further optimized using univariate approach. The optimum method performance was observed when 1 mL of urine hydrolyzed with 0.2 mL of concentrated HCl was further supplemented with 100 mg of NaCl and extracted for 120 min into dihexyl ether immobilized in the pores of the hollow fiber. Metabolites were desorbed into 0.1 mL of 0.1 M NaOH for another 120 min. Limits of detection and quantitation of 15 and 50 ng/mL were obtained for both analytes. Relative standard deviations of 1.6–12.6% over the linear range (50–10,000 ng/mL, r > 0.9906) were observed. Intra‐ and inter‐day accuracies of the method ranged from 98.3 to 109.5% and from 93.3 to 110.9%, respectively. The optimized method was applied to the analysis of real urine samples collected from rats exposed orally to cypermethrin. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The applicability of hollow fiber-based liquid phase microextraction (HF-LPME) was evaluated for the extraction and preconcentration of three antidepressant drugs (amitriptyline, imipramine and sertraline) prior to their determination by HPLC-UV. The target drugs were extracted from 11.0 mL of aqueous solution with pH 12.0 (source phase) into an organic extracting solvent (n-dodecane) impregnated in the pores of a hollow fiber and finally back extracted into 24 μL of aqueous solution located inside the lumen of the hollow fiber and adjusted to pH 2.1 using 0.1 M of H3PO4 (receiving phase). The extraction was performed due to pH gradient between the inside and outside of the hollow fiber membrane. In order to obtain high extraction efficiency, the parameters affecting the HF-LPME including pH of the source and receiving phases, the type of organic phase, ionic strength and volume of the source phase, stirring rate and extraction time were studied and optimized. Under the optimized conditions, enrichment factors up to 300 were achieved and the relative standard deviation (R.S.D.%) of the method was in the range of 2-12%. The calibration curves were obtained in the range of 5-500 μg L−1 with reasonable linearity (R2 > 0.998) and the limits of detection (LODs) ranged between 0.5 and 0.7 μg L−1 (based on S/N = 3). Finally, the applicability of the proposed method was evaluated by extraction and determination of the drugs in urine, plasma and tap water samples. The results indicated that hollow fiber microextraction method has excellent clean-up and high-preconcentration factor and can be served as a simple and sensitive method for monitoring of antidepressant drugs in the biological samples.  相似文献   

20.
《中国化学会会志》2018,65(8):989-994
In this study, an electromembrane extraction (EME) method combined with a simple HPLC‐UV analysis was developed and validated for the determination of valproic acid in human plasma samples. The major parameters influencing EME procedure, namely the solvent composition, voltage, pH of acceptor and donor solutions, salt effect, and time of extraction, were evaluated and optimized. The drug was extracted from the donor aqueous sample solution (pH 5) to the acceptor aqueous solution (pH 13). The donor and acceptor phases were separated by a hollow fiber dipped in 1‐octanol as a supported liquid membrane. A voltage of 60 V during 25 min was applied as the driving force. The drug concentration enrichment factor obtained was >125, which enhanced the sensitivity of the method. The limit of detection and the limit of quantitation were 0.2 and 0.5 μg/mL, respectively. The proposed method was successfully applied to a human plasma sample, with a relative recovery of 75%. The method was linear over the range 0.5–10 μg/mL for valproic acid (R2 > 0.9996) with a repeatability (%RSD) between 0.9 and 3.3% (n = 3). Valproic acid is an anticonvulsant drug with poor UV absorption, and EME can improve the sensitivity of HPLC‐UV for the determination of valproic acid in plasma samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号