首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 315 毫秒
1.
In this work, polyimide/silica hybrid composites were prepared by the sol-gel reaction of tetraethoxysilane(TEOS) and the thermal imidization of poly(amic acid) from 3,3′,4,4′-biphenyltetracarboxylic dianhydride(BPDA) and 4,4′-oxydianiline(ODA), and their photophysical properties were investigated using a fluorescence spectroscopy. It was found that the intrinsic fluorescence of poly(4,4′-oxydiphenylene-3,3′4,4′-biphenyltetracarboximide)(BPDA-ODA) such as emission intensity and emission wavelength depends strongly on the changes in the molecular conformations during the sol-gel reaction and the thermal imidization. In conclusion, we found that the fluorescence spectroscopy can provide an insight into how the intermolecular or intramolecular interaction of polyimide in the hybrid composite system is affected by the silica contents, depending on the sample states.  相似文献   

2.
Polyimide thin films were synthesized from 3,3′,4,4′‐biphenyltetracarboxylic acid dianhydride (BPDA) and four different diamines (p‐phenylene diamine, 4,4′‐oxydiphenylene diamine, 4,4′‐biphenylene diamine, and 4,4′‐sulfonyldiphenylene diamine). The nanoindentation behavior of the resulting polyimides, namely, poly(p‐phenylene biphenyltetracarboximide) (BPDA‐PDA), poly(4,4′‐biphenylene biphenyltetracarboximide) (BPDA‐BZ), poly(4,4′‐oxydiphenylene biphenyltetracarboximide) (BPDA‐ODA), and poly(4,4′‐sulfonyldiphenylene biphenyltetracarboximide) (BPDA‐DDS), were investigated. Also, the morphological properties were characterized with a prism coupler and wide‐angle X‐ray diffraction and were correlated to the nanoindentation studies. The nanoindentation behavior and hardness varied quite significantly, depending on the changes in the chemical and morphological structures. The hardness of the polyimide thin films increased in the following order: BPDA‐DDS < BPDA‐ODA < BPDA‐BZ < BPDA‐PDA. For all the polyimide thin films, except that of BPDA‐BZ, the hardness decreased with an increase in the load. The birefringence, a measure of the molecular in‐plane orientation, increased in the following order: BPDA‐DDS < BPDA‐ODA < BPDA‐PDA < BPDA‐BZ. The X‐ray diffraction studies revealed that the crystallinity of the polyimide thin films varied with the changes in the chemical structure. The studies showed that the indentation response with an applied load and the hardness by nanoindentation for the BPDA‐based polyimides were closely related to the morphological structure. The nanoindentation and birefringence results revealed that the mechanical properties of the polyimide thin films were dependent on the crystallinity, which arose because of the chain order along the chain axis and the molecular packing order. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 861–870, 2004  相似文献   

3.
4,4′-Diaminodiphenylacetylene (p-intA) was reacted with 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and pyromellitic dianhydride (PMDA) in N-methyl-2-pyrrolidone (NMP) to give poly(amic acid) solution of moderate to high viscosity. Thermal imidization gave polyimide having acetylene units that are linked para to the aromatic connecting unit. Polyimide having acetylene units that are linked meta to the aromatic connecting unit also was prepared utilizing 3,3′-diaminodiphenylacetylene (m-intA) for comparison. The crosslinking behavior of the acetylene units was observed with DSC. Exotherm due to the crosslinking of the para-linked acetylene units appeared at ca. 340 to 380°C depending on the structure of polyimide, whereas meta-linked acetylene units appeared at lower temperature as 340–350°C. After thermal treatment at high temperature such as 350 or 400°C, the amount of the exotherm became smaller and finally disappeared on DSC, confirming the progress of crosslinking. Dynamic mechanical properties of the polyimide films show that glass transition temperature increased with higher heat treatment, also confirming the progress of crosslinking. Tensile properties of the polyimide films showed that rigid polyimide films consisting of p-intA with BPDA or PMDA have considerably higher modulus than those consisting of m-intA. Cold-drawing of the poly(amic acid) followed by imidization gave much higher modulus in the case of rigid polyimide. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2395–2402, 1997  相似文献   

4.
2,2,′3,3′‐Biphenyltetracarboxylic dianhydride (2,2,′3,3′‐BPDA) was prepared by a coupling reaction of dimethyl 3‐iodophthalate. The X‐ray single‐crystal structure determination showed that this dianhydride had a bent and noncopolanar structure, presenting a striking contrast to its isomer, 3,3,′4,4′‐BPDA. This dianhydride was reacted with aromatic diamines in a polar aprotic solvent such as N,N‐dimethylacetamide (DMAc) to form polyamic acid intermediates, which imidized chemically to polyimides with inherent viscosities of 0.34–0.55 dL/g, depending on the diamine used. The polyimides from 2,2,′3,3′‐BPDA exhibited a good solubility and were dissolved in polar aprotic solvents and polychlorocarbons. These polyimides have high glass transition temperatures above 283°C. Thermogravimetric analyses indicated that these polyimides were fairly stable up to 500°C, and the 5% weight loss temperatures were recorded in the range of 534–583°C in nitrogen atmosphere and 537–561°C in air atmosphere. All polyimides were amorphous according to X‐ray determination. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1425–1433, 1999  相似文献   

5.
使用4-苯乙炔基苯胺(4-PEA)作为反应性封端剂,和3,3′,4,4′-二苯醚四酸二酐(ODPA),3,3′,4,4′-联苯四酸二酐(BPDA),1,4-双(4′-氨基-2′-三氟甲基苯氧基)苯(BTPB)和3,4′-二氨基二苯醚(3,4-′ODA)反应合成了系列4-苯乙炔基苯基封端的聚酰亚胺低聚物,对低聚物的化学结构、热性能和熔体粘度以及固化后树脂的热性能等进行了研究.实验结果表明,低聚物均具有一定的结晶性,含有ODPA的聚酰亚胺低聚物较之含有BPDA的低聚物具有更低的熔体粘度,且出现最低熔体粘度的温度更低;固化后的树脂表现出良好的热性能,含有BPDA的树脂具有更高的玻璃化转变温度;系列低聚物中二胺单体的比例对于低聚物的熔体粘度和固化后树脂的热稳定性有一定影响.  相似文献   

6.
Poly(amide acid) labeled with perylenetetracarboxydiimide (PEDI) was prepared from 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), p‐phenylenediamine (PDA), and diamino‐PEDI. Poly(amide acid) was then reacted with sodium hydride and various kinds of alkyl iodides for transformation into various poly(amide ester)s. The cast films were imidized while fixed on glass substrates to give BPDA/PDA polyimide films. The degree of in‐plane molecular orientation (f) of the polyimides and their precursors, poly(amide acid) and poly(amide ester)s, were determined via measurements of the visible dichroic absorption at an incidence angle for a rodlike dye (PEDI) bound to the main chain. All precursor films showed relatively low degrees of in‐plane orientation. After imidization of the precursors fixed on glasses, however, striking spontaneous in‐plane orientation behavior was observed. The f value for polyimide film from a poly(amide acid) precursor was as high as 0.7–0.8. The f value for polyimide film from a methyl ester precursor, however, was lowered to 0.4–0.5, but it increased with the increasing size of the alkyl groups. Good correlations of the in‐plane orientation of the polyimide films with the tensile modulus of the films and the in‐plane orientation of the graphitized films were observed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 3011–3019, 2001  相似文献   

7.
For polyimide thin films, the dielectric properties were investigated with the capacitance and optical methods. The dielectric constants of the 4,4′‐oxydianiline (ODA)‐based polyimide thin films varied from 2.49 to 3.10 and were in the following decreasing order: 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA)–ODA > 1,2,4,5‐benzenetetracarboxylic dianhydride (PMDA)–ODA > 4,4′‐hexafluoroisopropylidene diphthalic dianhydride (6FDA)–ODA. According to the absorption of water, the diffusion coefficients in the films varied from 4.8 × 10?10 to 7.2 × 10?10 cm2/s and were in the following increasing order: BPDA–ODA < PMDA–ODA < 6FDA–ODA. The dielectric constants and diffusion coefficients of the polyimides were affected by the morphological structures, including the molecular packing order. However, because of the water uptake, the changes in the dielectric constants in the polyimide thin films varied from 0.49 to 1.01 and were in the following increasing order: BPDA–ODA < 6FDA–ODA < PMDA–ODA. Surprisingly, 6FDA–ODA with bulky hexafluoroisopropylidene groups showed less of a change in its dielectric constant than PMDA–ODA. The total water uptake for the polyimide thin films varied from 1.43 to 3.19 wt % and was in the following increasing order: BPDA–ODA < 6FDA–ODA < PMDA–ODA. This means that the changes in the dielectric constants in the polyimide thin films were significantly related to the morphological structure and hydrophobicity of hexafluoroisopropylidene groups. Therefore, the morphological structure and chemical affinity in the polyimide thin films were important factors in controlling the dielectric properties. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2190–2198, 2002  相似文献   

8.
Sorption and transport of CO2 have been investigated for polyimide films prepared from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) and 4,4′-oxydianilline (ODA) as well as for a chemically identical commercial polyimide film, Upilex-R. The BPDA-ODA polyimide films annealed above the glass transition temperature (270°C) are found to have some degree of ordering owing to molecular aggregation of polymer chains, whereas the films as-cast are amorphous. The solubility, permeability, and diffusion coefficients decrease significantly with increasing density or increasing average degree of molecular aggregation. The influence of morphology on the parameters in the dual-mode sorption and transport model has also been investigated. With an increase in density, the Langmuir capacity constant and the diffusion coefficients for Henry's law and Langmuir populations decrease by a larger factor than the Henry's law solubility constant. These results can be tentatively interpreted by assuming either a one-phase or two-phase structure for these polyimide films.  相似文献   

9.
The fluorinated polyimide PI(6FDA/HFBAPP) was prepared by the reaction of 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA) with 2,2‐bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane (HFBAPP) in 1‐methyl‐2‐pyrrolidone/toluene. A multiblock copolyimide with both fluorinated and rigid‐rod segments, PI(6FDA/HFBAPP)(BPDA/2‐DMB), was prepared by the addition of a second dianhydride, 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), and a second diamine, 2,2′‐dimethylbenzidine (2‐DMB), to the polyimide main chain. The potential lithographic performance of photosensitive polyimides composed of nonphotosensitive fluorine‐containing polyimides and photosensitive diazonaphthoquinone (DNQ) was studied on the basis of a new imaging principle recently proposed by our laboratory, that is, reaction development patterning. Neat PI(6FDA/HFBAPP) showed a low dielectric constant (?) of 2.41 and a low dissipation factor (tan δ) of 0.0027 at 20 GHz, and a 10‐μm resolution of the fluorinated polyimide/DNQ system was demonstrated with reactive development with a solution including ethanolamine after ultraviolet exposure. Although slight changes in the dielectric properties were observed in the presence of DNQ residues, these values (? = 2.63 and tan δ = 0.0033 at 20 GHz) were low enough for use in microelectronic applications. However, PI(6FDA/HFBAPP)(BPDA/2‐DMB), having a lower coefficient of thermal expansion (CTE; 33 ppm/°C) than PI(6FDA/HFBAPP) (49 ppm/°C), exhibited good positive photosensitivity, whereas the relatively low‐CTE multiblock copolyimide displayed a much higher ? value (3.48 at 1 MHz) than the highly fluorinated polyimide (2.88 at 1 MHz). A film consisting of PI(6FDA/HFBAPP)(BPDA/2‐DMB) and the remaining DNQ derivatives showed a CTE value comparable to that of the neat polyimide film. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 861–871, 2003  相似文献   

10.
Partly imidized polyamic acid(PAA) has been used to prepare high performance polyimide films. The behaviors of two polyamic acids derived from pyromellitic dianhydride(PMDA)/4,4′-oxydianiline(ODA) and 3,3′,4,4′-biphenyltetracarboxylic diahhydride(BPDA)/paraphenylenediamine(PPD) containing dehydrating agents composed of acetic anhydride and a tertiary amine as the catalyst were investigated. The gel point was dependent on imidization degree in despite of temperature and the molar ratio of catalyst to acetic acid. Imdization content was about 35% for PMDA/ODA and about 22% for BPDA/PPD. The effect of catalyst on imidization possessed an order of triethylamine>3-methylpyridine>pyridine>isoquinoline>2-methylpyridine. The stretching of the films greatly reduced the coefficient of linear thermal expansion(CTE) either in the longitudinal direction or transversal direction. Compared to the film from polyamic acid, the partly imidized film had greater stretching ratio, so that the uniaxial stretched polyimide film from partly imidized PAA had higher tensile strength and tensile modulus, but lower elongation in the stretching direction.  相似文献   

11.
A series of indan‐containing polyimides were synthesized, and their gas‐permeation behavior was characterized. The four polyimides used in this study were synthesized from an indan‐containing diamine [5,7‐diamino‐1,1,4,6‐tetramethylindan (DAI)] with four dianhydrides [3,3′4,4′‐benzophenone tetracarboxylic dianhydride (BTDA), 3,3′4,4′‐oxydiphthalic dianhydride (ODPA), (3,3′4,4′‐biphenyl tetracarboxylic dianhydride (BPDA), and 2,2′‐bis(3,4′‐dicarboxyphenyl) hexafluoropropane dianhydride (6FDA)]. The gas‐permeability coefficients of these four polyimides changed in the following order: DAI–BTDA < DAI–ODPA < DAI–BPDA < DAI–6FDA. This was consistent with the increasing order of the fraction of free volume (FFV). Moreover, the gas‐permeability coefficients were almost doubled from DAI–ODPA to DAI–BPDA and from DAI–BPDA to DAI–6FDA, although the FFV differences between the two polyimides were very small. The gas permeability and diffusivity of these indan‐containing polyimides increased with temperature, whereas the permselectivity and diffusion selectivity decreased. The activation energies for the permeation and diffusion of O2, N2, CH4, and CO2 were estimated. In comparison with the gas‐permeation behavior of other indan‐containing polymers, for these polyimides, very good gas‐permeation performance was found, that is, high gas‐permeability coefficients and reasonably high permselectivity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2769–2779, 2004  相似文献   

12.
Multi‐walled carbon nanotube (MWCNT) modified by vinyltriethoxysilane (VTES) via free radical reaction has been prepared (poly (vinyltriethoxysilane) modified MWCNTs, PVTES‐MWCNT). Precursor of polyimide, polyamic acid has been synthesized by reacting 4,4′‐oxydianiline with 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride. PVTES‐MWCNT were then mixed with polyamic acid and heated to 300 °C to form CNT/polyimide composite. During the imidization processes, the silanes on CNT surface reacted with each other and may be connected together by covalent bond (Si? O? Si). The PVTES‐MWCNT was analyzed by Fourier transform infrared and X‐ray photoelectron spectroscopy. The PVTES‐MWCNT/polyimide composites were analyzed by CP/MAS solid state 29Si nuclear magnetic resonance (NMR) spectroscopy. Morphological properties of the PVTES‐MWCNT/polyimide composites were investigated by scanning electron microscope and transmission electron microscope. Electrical conductivity increased dramatically comparing to the unmodified MWCNT/polyimide composites. Mechanical properties of nanocomposite were enhanced significantly by PVTES‐MWCNT. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 803–816, 2008  相似文献   

13.
A positive-type photosensitive polyimide ( PSPI ) based on a chain extendable poly(amic acid) ( PAA ), a thermally degradable cross-linker 1,3,5-tris[(2-vinyloxy)ethoxy]benzene ( TVEB ), and a photoacid generator (PAG) (5-propylsulfonyloxyimino-5H-thiophene-2-ylidene)-(2-methylphenyl)acetonitrile ( PTMA ) has been developed. The chain extendable PAA was prepared from 3,3′,4,4′-biphenyltetracarboxylic dianhydride ( BPDA ) and 4,4′-oxydianiline ( ODA ) and end-capped with di-tert-butyl dicarbonate ( DIBOC ) in N-methyl-2-pyrrolidone (NMP), which has a controlled molecular weight for developing in a 2.38 wt% tetramethyl ammonium hydroxide aqueous solution ( TMAH aq ) and undergoes a chain extending reaction during curing stage. The photosensitive resist solution was formulated with the polymerization solution (30 wt% in NMP), TVEB (15 wt% for the polymer), and PAG (4.5 wt% for the polymer). The PSPI showed a sensitivity of 47 mJ cm−2 and a contrast of 5.8 when exposed to 365-nm light, followed by postexposure baking at 90 °C for 10 min and development with the 2.38 wt% TMAH aq at room temperature. A fine-positive image with 3-μm line-and-space patterns was obtained on a 3-μm thick film exposed to UV light at 365 nm in the contact-printed mode. After thermal curing at 350 °C for 1 hr, the resulting PSPI features excellent mechanical strength and elongation.  相似文献   

14.
1,1‐Bis[4‐(4‐aminophenoxy)phenyl]‐1‐phenylethane (BAPPE) was prepared through nucleophilic substitution reaction of 1,1‐bis(4‐hydroxyphenyl)‐1‐phenylethane and p‐chloronitrobenzene in the presence of K2CO3 in N,N‐dimethylformamide, followed by catalytic reduction with hydrazine and Pd/C. Novel organosoluble polyimides and copolyimides were synthesized from BAPPE and six kinds of commercial dianhydrides, including pyromellitic dianhydride (PMDA, Ia ), 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA, Ib ), 3,3′,4,4′‐ biphenyltetracarboxylic dianhydride (BPDA, Ic ), 4,4′‐oxydiphthalic anhydride (ODPA, Id ), 3,3′,4,4′‐diphenylsulfonetetracarboxylic dianhydride (DSDA, Ie ) and 4,4′‐hexafluoroisopropylidenediphthalic anhydride (6FDA, If ). Differing with the conventional polyimide process by thermal cyclodehydration of poly(amic acid), when polyimides were prepared by chemical cyclodehydration with N‐methyl‐2‐pyrrolidone as used solvent, resulted polymers showed good solubility. Additional, Ia,b were mixed respectively with the rest of dianhydrides (Ic–f) and BAPPE at certain molar ratios to prepare copolyimides with arbitrary solubilities. These polyimides and copolyimides were characterized by good mechanical properties together with good thermal stability. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2082–2090, 2000  相似文献   

15.
A copolyamic acid was synthesized from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) as the dianhydride and 4,4′-oxydianiline (4,4′-ODA) and 2,4-diaminotoluene (2,4-DAT) as the diamine and was coated on the outer surface of a porous alumina support tube. The film was imidized and then carbonized by varying reaction period, temperature and atmosphere. Permeances of the BPDA-ODA/DAT carbon membrane were much lower than those of BPDA-ODA carbon membranes. However, the performance of the BPDA-ODA/DAT copolyimide-based membrane was greatly improved by treating in air at temperatures up to 500°C for 1 h, followed by carbonizing in nitrogen at temperatures up to 700°C. Permeance to CO2 for the BPDA-ODA/DAT carbon membrane prepared under optimum conditions was 3 × 10−8 mol m−2 s−1 Pa−1, and the separation coefficient of CO2 to CH4 was 60 at a permeation temperature of 35°C. These were comparable to the results of carbon membranes prepared from BPDA-ODA polyimide. The micropore structure of the BPDA-ODA/DAT carbon membrane was thus successfully controlled by an optimized combination of oxidation and carbonization after imidization.  相似文献   

16.
Novel aromatic polyimides containing bis(phenoxy)naphthalene units were synthesized from 1,5-bis(4-aminophenoxy)naphthalene (APN) and various aromatic tetracarboxylic dianhydrides by the usual two-step procedure that included ring-opening polyaddition in a polar solvent such as N,N-dimethylacetamide (DMAc) to give poly(amic acid)s, followed by cyclodehydration to polyimides. The poly(amic acid)s had inherent viscosities between 0.72 and 1.94 dL/g, depending on the tetracarboxylic dianhydrides used. Excepting the polyimide IVb obtained from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), all other polyimides formed brown, flexible, and tough films by casting from the poly(amic acid) solutions. The polyimide synthesized from BPDA was characterized as semicrystalline, whereas the other polyimides showed amorphous patterns as shown by the x-ray diffraction studies. Tensile strength, initial moduli, and elongation at break of the APN-based polyimide films ranged from 105–135 MPa, 1.92–2.50 GPa, and 6–7%, respectively. These polyimides had glass transition temperatures between 228 and 317°C. Thermal analyses indicated that these polymers were fairly stable, and the 10% weight loss temperatures by TGA were recorded in the range of 543–574°C in nitrogen and 540–566°C in air atmosphere, respectively. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
合成了3种含三氟甲基的芳香二胺,进而与3,3′,4,4′-联苯四甲酸二酐(BPDA)缩聚,得到3种对苯醚型含氟聚酰亚胺薄膜,并由4,4′-二氨基二苯醚(4,4′-ODA)与BPDA缩聚得到聚酰亚胺薄膜。 对4种聚酰亚胺薄膜的水蒸汽透过率、吸水性和热学性能的测试结果表明,其中聚合物PI-1(2,2′-BTF-4,4′-BADE+BPDA;BTF:双三氟甲基;BADE:二氨基二苯醚)的水蒸汽透过率为7.70 g/(h·m2),吸水率为0.67%,玻璃化转变温度为259.74 ℃,质量损失5%的温度为521.40 ℃,具有良好的水蒸汽透过性和低吸水性。  相似文献   

18.
A series of new polyimides were prepared via the polycondensation of (3‐amino‐2,4,6‐trimethylphenyl)‐(3′‐aminophenyl)methanone and aromatic dianhydrides, that is, 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluoropropane dianhydride. The structures of the polyimides were characterized by Fourier transform infrared and NMR measurements. The properties were evaluated by solubility tests, ultraviolet–visible analysis, differential scanning calorimetry, and thermogravimetric analysis. The two different meta‐position‐located amino groups with respect to the carbonyl bridge in the diamine monomer provided it with an unsymmetrical structure. This led to a restriction on the close packing of the resulting polymer chains and reduced interchain interactions, which contributed to the solubility increase. All the polyimides except that derived from BPDA had good solubility in strong aprotic solvents, such as N‐methyl‐2‐pyrrolidinone, N,N′‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfone, and in common organic solvents, such as cyclohexanone and chloroform. In addition, these polyimides exhibited high glass‐transition values and excellent thermal properties, with an initial thermal decomposition temperature above 470 °C and glass‐transition temperatures in the range of 280–320 °C. The polyimide films also exhibited good transparency in the visible‐light region, with transmittance higher than 80% at 450 nm and a cutoff wavelength lower than 370 nm. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1291–1298, 2006  相似文献   

19.
High molecular weight polybenzoxazinones have been prepared by cyclo-polycondensation reaction of 4,4′-diamino-3,3′-biphenyldicarboxylic acid with a variety of aromatic carbonyl compounds using a solution polymerization technique in polyphosphoric acid. From the model reactions of anthranilic acid, and 4,4′-diamino-3,3′-biphenyldicarboxylic acid with benzoyl chloride in polyphosphoric acid, it is established that the cyclopolycondensation proceeds through the formation of an open-chain tractable precursor, polyamic acid of high molecular weight (ninh = 2.66) in the first step, which subsequently undergoes thermal or chemical cyclodehydration along the polymer chain, to yield, in the second step, a fully aromatic polybenz-oxazinone. Polybenzoxazinones thus obtained have excellent thermal stability both in nitrogen and in air.

The optimum polymerization conditions for obtaining polyamic acid of high molecular weight are determined by the study of reaction variables such as polymerization temperatures, monomer concentrations, and reaction time as well as the effect of P2O5 concentrations in polyphosphoric acid.  相似文献   

20.
A series of novel polyimides are synthesized by the reaction of 3,3′,4,4′-benzophenonete-tracarboxylic dianhydride (BTDA) with four methylthiomethyl-substituted aromatic diamines: 3-methylthiomethyl-4,4′-diaminodiphenylmethane ( I ), 3,3′-dimethylthiomethyl-4,4′-diaminodiphenylmethane ( II ), 3,3′,5-trimethylthiomethyl-4,4′-diaminodiphenylmethane ( III ), and 3,3′,5,5′-tetramethylthiomethyl-4,4′-diaminodiphenylmethane ( IV ) in refluxing m-cresol. The polyimide of diamine I and BTDA carrying only one pendant methylthiomethyl group in a repeating unit is readily soluble in m-cresol, chloroform, and polar aprotic solvents. Increasing the number of the pendant group results in higher solubility. These fully imidized polyimides are also intrinsically photosensitive. The fraction of photoreactive benzophenone sites that relates to the rate and degree of completion of photocrosslinking reaction increases systematically with the increase of the pendant group content. As the average number of the pendant group in a repeating unit reaches 3, 63% of benzophenone sites are found to be photoreactive. These methylthiomethyl-substituted polyimides possess moderate tensile strength which falls in the range of 67–81 MPa. As a result of the increase of methylthiomethyl content, this type of polyimide reveals higher glass transition temperature but lower thermal stability due to the considerable dimension of the pendant group and the ready cleavage nature of the C? S bond. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号