首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A polymer bearing pendant norbornadiene (NBD) moieties and a low molecular weight model compound ([2-carbobenzyloxy-3-phenyl-2,5-norbornadiene CBPNB)], were synthesized by substitution reaction of poly(p-chloromethylstyrene) and benzyl chloride, respectively, with the potassium salt of 3-phenyl-2,5-norbornadiene-2-carboxylic acid. Photochemical valence isomerization and storage stabilities of the resulting polymer having corresponding pendant quadricyclane (QC) groups and the low molecular weight QC compound were investigated in dichloromethane solution. It was found that the rate of photochemical valence isomerization of the pendant NBD moiety in the polymer was the same as or slightly higher than that of CBPNB, and the storage stability of the QC group in the polymer was higher than that of the QC compound resulting from CBPNB in the solution. The photochemical reaction of the pendant NBD moiety within the polymer without catalyst proceeded quantitatively in the film state. However, the photochemical reaction of the polymer films blended with 5,10,15,20-tetraphenyl-21H,23H-porphine cobalt (II) catalyst (Co-TPP) did not proceed quantitatively, and the degree of conversion of the pendant NBD moiety in the polymer decreased with increasing amounts of Co-TPP in the film. The QC group produced in the polymer by photo-irradiation had excellent storage stability in the film state without Co-TPP. On the other hand, the QC group in the polymer films blended with Co-TPP Catalyst reverted gradually to the NBD group at room temperature.  相似文献   

2.
New photoresponsive polymers 1–4 containing pendant norbornadiene (NBD) moieties with N,N-disubstituted amide groups were synthesized with 97, 98, 92, and 94% conversions by the substitution reaction of poly (p-chloromethyl) styrene] with potassium salts of 3piperidyloxo-2,5-NBD-2-carboxylic acid, 3-(NN-dipropylcarbamoyl) -2,5-NBD-2-carboxylic acid, 3-(N-methyl-N-phenylcarbamoyl)-2,5-NBD-2-carboxylic acid, and 3-(N,N-dipheylcarbmoyl)-2,5-NBD-2-carboxylic acid, respectively, using tetrabutylammonium bromide as a phase transfer catalyst for all. Polymers 1–4 with N,N-disubstituted amide groups on the NBD moieties were sensitized by adding appropriate photosensitizers such as Michler's ketone and 4- (N,N-dimethylamino) benzophenone in the film state, although the reactivities of the polymers without photosensitizer were lower than that of our previously reported polymer 5 containing pendant 3- (N-phenylcarbamoyl) -2,5-NBD-2-carboxylate moiety. It was also found that the photo-irradiated retaining polymers 1–4 containing the corresponding QC moieties can be stored about 80–86 kJ/mol of their thermal energy. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
The donor–acceptor-type norbornadiene (D–A NBD) 1,4,5,6-tetramethyl-3-phenyl-2,5-NBD-2-carboxylic acid was prepared by the Diels–Alder reaction of methyl 3-phenylprop-2-ynoate with 1,2,3,4-tetramethyl-1,3-cyclopentadiene. 1,4,5,6,7-Pentamethyl-3-phenyl-2,5-NBD-2-carboxylic acid was also synthesized in the same way. Styrene-type polymers with pendant D–A NBD moieties were prepared with a 100% degree of substitution (DS) by the reaction of D–A NBD carboxylic acids with poly[(p-chloromethyl)styrene] with 1,8-diazabicyclo[5.4.0]undecene-7 in dimethyl sulfoxide at 70 °C for 6 h. In the reaction of D–A NBD carboxylic acids with poly(2-chloroethyl vinyl ether), the DSs were about 60%. The photochemical valence isomerizations of all the NBD polymers proceeded smoothly with UV irradiation in tetrahydrofuran solutions and in the film state. In addition, the rate of the photochemical reaction of the NBD polymers increased efficiently by the addition of 4,4′-bis(diethylamino)benzophenone as a photosensitizer in a film state. The stored thermal energy of the irradiated polymers was also evaluated by differential scanning calorimetry to be 55–74 kJ/mol. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1764–1773, 2001  相似文献   

4.
Polymers having pendant norbornadiene (NBD) moieties and rigid main chain were prepared from the reaction of partially brominated poly(2,6-dimethyl-p-phenylene oxide) with a potassium carboxylate derivative of the corresponding NBD using a phase transfer catalyst in chlorobenzene. The photochemical valence isomerization of pendant NBD to quadricyclane (QC) moieties proceeded smoothly in the film state as well as polymer solution upon the irradiation by sunlight, xenon lamp, or high-pressure mercury lamp. The rate of isomerization was affected by the structure of main chain in the polymer and the substituent groups of NBD derivatives. The catalytic reversion of the resulting QC moiety to the original NBD proceeded smoothly in the solution with (5,10,15,20-tetraphenyl-21H,23H-por-phine)cobalt(II) as the catalyst at room temperature; however, the reaction of NBD polymer containing poly(2,6-dimethyl-p-phenylene oxide) (PPO) showed lower reactivity than that of the corresponding low molecular weight QC compound. When the cycle between the photochemical valence isomerization of NBD moiety to quadricyclane (QC) moiety and thermal reversion of QC moiety to NBD moiety at 160°C was repeated, the NBD polymer synthesized from PPO degraded gradually, whereas NBD polymer prepared from poly(4-chloromethylstyrene) decomposed easily. Therefore, the rigid PPO structure showed high resistance for the degradation of NBD moiety. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
The ring‐opening copolymerization of a glycidyl ester derivative having a benzophenone group and the donor–acceptor norbornadiene (D‐A NBD) dicarboxylic acid, 5‐(4‐methoxyphenyl)‐1,4,6,7,7‐pentamethyl‐2,5‐norbornadiene‐2,3‐dicarboxylic acid, monoglycidyl ester derivatives with D‐A NBD dicarboxylic anhydride using tetraphenylphosphonium bromide as a catalyst proceeded smoothly to give novel self‐photosensitizing NBD polymers in good yields. The molecular weight of these polyesters was about 4,000, and lower than that of analogous NBD polymers having no benzophenone group. All the synthesized NBD polymers isomerized smoothly to the corresponding quadricyclane (QC) polymers upon UV irradiation in tetrahydrofuran (THF) solution and in the film state. The rate of the photoisomerization of the D‐A NBD moieties in these polymers was higher than that of the D‐A NBD moieties in the polymer having no photosensitizing group. Furthermore, the rate of the photoisomerization of the D‐A NBD moieties in these polymers was also higher than that of the NBD polymer with low molecular weight photosensitizer in dilute solution. The photo‐irradiated polymers having QC moieties released thermal energies of 146–180 J/g. The D‐A NBD moieties contained in these NBD polymers possessed fair to good fatigue resistance. The degradation of the NBD moieties in these polymers was 15–30% after 50 repeated cycles of interconversion. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2978–2988, 2007  相似文献   

6.
N,N′‐Bis[(3‐carboxynorbornadien‐2‐yl)carbonyl]‐N,N′‐diphenylethylenediamine (BNPE) was synthesized in 70% yield by the reaction of 2,5‐norbornadiene‐2,3‐dicarboxylic acid anhydride with N,N′‐diphenylethylenediamine. Other dicarboxylic acid derivatives containing norbornadiene (NBD) residues having N,N′‐disubstituted amide groups were also prepared by the reaction of 2,5‐NBD‐2,3‐dicarboxylic acid anhydride with certain secondary diamines. When the polyaddition of BNPE with bisphenol A diglycidyl ether (BPGE) was carried out using tetrabutylammonium bromide as a catalyst in N‐methyl‐2‐pyrrolidone at 100°C for 12 h, a polymer with number average molecular weight of 69,800 was obtained in 98% yield. Polyadditions of other NBD dicarboxylic acid derivatives containing N,N′‐disubstituted amide groups with BPGE were also performed under the same conditions. The reaction proceeded very smoothly to give the corresponding NBD poly(ester–amide)s in good yields. Photochemical reactions of the obtained polymers with N,N′‐disubstituted amide groups on the NBD residue were examined, and it was found that these polymers were effectively sensitized by adding appropriate photosensitizers such as 4‐(N,N‐dimethylamino)benzophenone and 4,4′‐bis(N,N‐diethylamino)benzophenone in the film state. The stored energies in the quadricyclane groups of the polymers were also evaluated to be about 94 kJ/mol by DSC measurement of the irradiated polymer films. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 917–926, 1999  相似文献   

7.
High Tg. polymers containing both vinyloxy moiety and pendant phthalyl, 2-thiobenzoxazole or 2-thiobenzothiazole groups were synthesized by elimination reaction of poly(epichlorohydrin) with potassium hydroxide followed by substitution reaction of the obtained polymer with potassium phthalimide, potassium 2-thiobenzoxazole or potassium 2-thiobenzothiazole using tetrabutylammonium bromide as a phase transfer catalyst. The polymers containing vinyloxy moiety and pendant phthalyl or 2-thiobenzothiazole groups showed high photochemical reactivity and excellent practical photosensitivity as a positive type resist with photo-generated cationic catalyst such as 2,5-dibutoxy-4-morpholinobenzene diazonium hexafluoroanthimonate. On the other hand, the polymers had high practical photosensitivity and good resolution as a negative type resist with 2,6-di-(4′-azobenzal)-4-methylcyclohexanone as a photosensitizer.  相似文献   

8.
A novel pentamethylated norbornadiene (NBD) based dianhydride, α,α′‐bis‐(3,4,5,6,7‐pentamethylcyclopenta‐2,4‐dienyl)meta‐xylene‐1,2‐dianhydride (3), was prepared from α,α′‐bis‐(pentamethylcyclopentadienyl)meta‐xylene (1) and acetylene dicarboxylic acid. The bis‐adduct formed via Diels–Alder reaction afforded tetra‐acid (2), which was chemically cyclodehydrated to lead the targeted dianhydride (3). New polyimides containing NBD moieties in the main chain were prepared from the dianhydride monomer (3) and various aromatic diamines. The chemical structure of the polymers was confirmed by both 1H and 13C NMR analysis. Their Molecular weights were also measured by SEC. All of these polyimides are soluble at room temperature in common organic solvents, such as chloroform, dichloromethane, THF, DMSO, DMF, and NMP, and show good thermal stabilities. The photochemical isomerization of the NBD into quadricyclane (QC) was investigated by UV/vis spectrophotometry from polymer films using visible sunlight as irradiation source. It was found that the kinetic rate of the conversion NBD‐QC which proceeded smoothly is a first kinetic order. The stored energies released by the transformation of QC groups into NBD ones of the irradiated polymer films were also evaluated by DSC measurement and were found to be around 90 kJ mol?1. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Various spirooxindoles bearing 2,3-(or 2,5-)dihydrothiophene-2-thione moiety have been synthesized via [3+2] annulation reaction of carbon disulfide and the nitrogen ylides derived from Morita-Baylis-Hillman carbonates of isatins. 2,3-Dihydro- and 2,5-dihydrothiophene-2-thione moieties were formed selectively depending on steric hindrance around the nitrogen ylides.  相似文献   

10.
Photoresponsive polyamides containing main‐chain pentamethylated norbornadiene (NBD) moieties are obtained in quantitative yields via the Yamazaki–Higashi reaction between a pentamethylated NBD dicarboxylic acid and a series of aromatic diamines. Chemical structures are confirmed by 1H and 13C NMR and weight average molar masses measured by SEC are in the range of 21,500–28,600 g mol?1 with chain dispersities close to 2. Physical properties are investigated by FTIR, differential scanning calorimetry (DSC), thermogravimetric analysis, and viscosimetry. All obtained polyamides are amorphous with glass transition temperatures ranging from 68 to 124 °C. They are soluble at room temperature in common organic solvents and exhibit good thermal stabilities with Td10 values ranging from 175 to 276 °C. The photochemical isomerization of the NBD moiety into quadricyclane (QC) is studied by UV/vis spectroscopy after sunlight irradiation of polymer films. For all polyamides, a first‐order kinetic rate is observed for the conversion of NBD to QC. The thermal release of the stored energy associated to the reverse transformation of QC groups into NBD ones is about 90–95 kJ mol?1 as measured by DSC of the irradiated polymer films. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4650–4656  相似文献   

11.
Several pyridine- and pyrimidine-carboxylic acids were synthesized as ligand candidates for retinoid nuclear receptors, retinoic acid receptors (RARs) and retinoic X receptors (RXRs). Although the pyridine derivatives, 6-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]pyri dine-3-carboxylic acid (2b) and 6-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carboxamido]py ridine-3-carboxylic acid (5b) are more potent than the corresponding benzoic acid-type retinoids, Am80 (2a) and Am580 (5a), the replacement of the benzene ring of Am580 (5a), Am555 (6a), or Am55 (7a) with a pyrimidine ring caused loss of the retinoidal activity both in HL-60 cell differentiation assay and in RAR transactivation assay using COS-1 cells. On the other hand, pyrimidine analogs (PA series, 10 and 11) of potent RXR agonists (retinoid synergists) with a diphenylamine skeleton (DA series, 8 and 9) exhibited potent retinoid synergistic activity in HL-60 cell differentiation assay and activated RXRs. Among the synthesized compounds, 2-[N-n-propyl-N-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)a mino]pyrimidine-5-carboxylic acid (PA013, 10e) is most active retinoid synergist in HL-60 assay.  相似文献   

12.
A model reaction of o-(N-phenylcarbamoyl)benzoic acid (amic acid) with threefold amounts of 1-phenylethyl bromide (PEB) and 1,8-diazabicyclo-[5,4,0]-7-undecene (DBU) was carried out in NMP. The reaction gave N-[m-(1-phenylethoxycarbonyl)phenyl]phthalimide in almost quantitative yield at room temperature for 2 h. Polyimide containing pendant 1-phenylethyl ester (P-1a) was also prepared from polyamic acid with PEB using DBU according to the model reaction. The obtained polymer was exactly consistent with P-1a synthesized stepwise from the esterification of the corresponding polyimide containing pendant carboxylic acid with PEB. Therefore, the reaction of polyamic acid bearing pendant carboxylic acid with alkyl bromide proceeded quantitatively to give polyimide containing pendant ester in the presence of DBU. Also, this method was applied to the synthesis of polyimide containing 1-phenylethyl ether. However, the polyimide with quantitative etherification was not synthesized. The acid-catalyzed deesterification of P-1a film was carried out by heating the irradiated polymer film containing 10 wt % of p-nitrobenzyl 9,10-diethoxyanthracene-2-sulfonate, which produced sulfonic acid by irradiation, at various temperatures. Although thermal deesterification of P-1a started at 220°C without any acid catalyst, the deesterification occurred when the irradiated film was heated at the lower temperature. The degree of esterification can be determined from the disappearance of absorption at 700 cm−1. The deesterification obeyed first-order kinetics. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
The ring‐opening copolymerization of donor–acceptor norbornadiene (D–A NBD) dicarboxylic acid monoglycidyl ester derivatives with D–A NBD dicarboxylic acid anhydride was performed with tetraphenylphosphonium bromide as a catalyst in toluene to produce new norbornadiene (NBD) polyesters containing D–A NBD moieties in the main chain and in the side chain in one step in good yields. The photoisomerization of the D–A NBD moieties in these polyesters proceeded very smoothly to give the corresponding quadricyclane groups. Because these NBD polyesters contained many NBD moieties in the polymer chain, they had the highest capacity for heat storage in the D–A NBD polymers reported so far. The stored thermal energy of the irradiated polyesters was evaluated by differential scanning calorimetry analysis to be approximately 150–190 J/g. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4412–4421, 2005  相似文献   

14.
We report that the cis/trans ratio of the proline peptide bond can be strongly influenced by the chirality of the acyl residue preceding proline. Acyl moieties derived from (2S)-2,6-dimethyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-2-carboxylic acid (8) and (2R)-3-methoxy-2-methyl-2-(4-methyl-2-nitrophenoxy)-3-oxopropanoic acid (5) in acyl-Pro molecules influence isomerization of the proline peptide bond constraining the omega dihedral angle to the trans orientation. Structures of benzyl (2S)-1-([(2S)-2,6-dimethyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl]carbonyl)-2-pyrrolidinecarboxylate (3) derived from 2D (1)H NMR conformational analysis and crystallographic data exhibit only the trans conformation of proline peptide bond. On the other hand the diastereomer 4, which contains an (R) acyl moiety, exhibits two sets of signals in (1)H NMR spectra. The signals were assigned to trans (72%) and cis (28%) conformers. Crystallographic analysis of 4 showed that only the cis conformation is present in the crystalline state. The (1)H NMR chemical shift pattern of three sets of signals observed in 2 was observed also in benzyl (2S)-1-[(2R/S)-3-methoxy-2-methyl-2-(4-methyl-2-nitrophenoxy)-3-oxopropanoyl]-2-pyrrolidinecarboxylate. (R)-Carboxylic acid 5, after coupling with (S)-ProOBn, yielded benzyl (2S)-1-[(2R)-3-methoxy-2-methyl-2-(4-methyl-2-nitrophenoxy)-3-oxopropanoyl]-2-pyrrolidinecarboxylate (6), which in DMSO-d(6) exhibited only the trans conformation of the proline peptide bond. These results suggest that in these particular cases acyl-Pro peptide bond isomerization is strongly influenced by the stereochemistry of the acyl residue preceding proline. (2S)-2,6-Dimethyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-2-carboxylic acid (8) and (2R)-3-methoxy-2-methyl-2-(4-methyl-2-nitrophenoxy)-3-oxopropanoic acid (5) are promising chiral peptidomimetic building blocks that can be used as acyl moieties to force the proline peptide bond into the trans conformation in a variety of acyl-Pro molecules.  相似文献   

15.
A monomer containing a chlorohydrin moiety, propyl chlorohydrin diphenolate (PCHDP), was synthesized. Reactive polyesters having these pendant chlorohydrin moieties were prepared by the interfacial polycondensation of isophthaloyl chloride with PCHDP or with PCHDP and diphenolic acid using phase transfer catalyst. The molar ratio of reactants and the phase ratio of water to organic solvent strongly affect the molecular weight of resulting polymers and polymers with high molecular weight are obtained at the molar ratio of 1.0–1.15 and the phase ratio of 2.0–3.5. Swelling of the growing polymers is dependent on the molar ratio of the reactants and the phase ratio because of the hydrophilic and hydrophobic nature of the pendant chlorhydrin moiety. The resulting polymers are not soluble in any solvent except water in which hydrolysis occurs. Thus so, the structure of polymers was confirmed by 13C CP/MAS NMR. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
[structures: see text] Two naturally occurring 3-methyl-2,5-dihydro-1-benzoxepin carboxylic acids, 6-hydroxy-3-methyl-8-(phenylethyl)-2,5-dihydro-1-benzoxepin-9-carboxylic acid (radulanin E) (1) and 9-hydroxy-3-methyl-2,5-dihydro-1-benzoxepin-7-carboxylic acid (2), were synthesized using Stille coupling followed by Mitsunobu cyclization.  相似文献   

17.
Poly (ferrocenyl glycidyl ether) was synthesized by polymerization of 2-[(4-ferrocenylbutoxy)methyl]oxirane (FcEpo) using toluene solution of methylaluminoxane as the catalyst. Copolymerization of 2-[(4-ferrocenylbutoxy)methyl]oxirane with epichlorohydrin was used for the synthesis of another ferrocenyl based poly (epichlorohydrin). Ferrocenyl based poly (glycidyl azide), GAP, was synthesized by treatment of sodium azide with this copolymer in DMF as solvent at room temperature. The synthesized ferrocenyl based polymers were characterized by FT-IR, 1HNMR, UV–Vis, TGA, DSC and GPC analysis. The UV–Vis spectra of synthesized polymers show the absorption band of ferrocene moiety at about 450 nm. The TGA and DSC analysis show that poly (ferrocenyl glycidyl ether) has good thermal stability. The TGA analysis shows that the copolymerization of 2-[(4-ferrocenylbutoxy)methyl]oxirane with epichlorohydrin improved the thermal stability of the copolymer. The GPC analysis of poly (ferrocenyl glycidyl ether), ferrocenyl based poly (epichlorohydrin) and Ferrocenyl based poly (glycidyl azide) show the PDI between 1.14–1.17. The electrochemical behavior of synthesized polymers was investigated by cyclic voltammetry (CV) measurements. The CV curves of synthesized polymers show good electrochemical performance and there is one redox system with the single-electron reversible reaction that associated with ferrocene moiety in polymers structure. The anodic and cathodic peak currents increased with scan rate confirmed redox reactions in the system are kinetically fast diffusion-controlled reactions.  相似文献   

18.
Side-chain liquid-crystalline siloxane polymers bearing terthiophene moieties as mesogenic pendant groups have been synthesized. An alkenylterthiophene derivative was treated with poly(hydrogenmethylsiloxane) and poly(dimethylsiloxane-co-hydrogenmethylsiloxane)s in Me(2)SiO/MeHSiO ratios of 1:1 and 7:3, respectively, in the presence of the Karstedt catalyst, to produce pale yellow polymers. The degrees of introduction of the mesogenic unit were 100, 50, and 30%, respectively. The polymers exhibit ordered smectic phases at room temperature. The copolymers with dimethylsiloxane units form smectic phases as a consequence of nanosegregation between the mesogenic units and siloxane backbones with the alkylene spacers. Time-of-flight measurement reveals that the hole mobility exceeds 1×10(-2) cm(2) V(-1) s(-1) in the ordered smectic phase of the copolymer with a degree introduction of the mesogenic units of 50%. This value is comparable to that of the highly ordered mesophases of low-molecular-weight derivatives of phenylnaphthalene and terthiophene. Because of the segregation behavior induced by the flexible backbone, a closer molecular packing structure favorable for fast carrier transport may be formed in the smectic phase of the copolymer in spite of the low density of the mesogenic groups.  相似文献   

19.
Fluorene‐based polymers containing various fluorinated benzene (fluorobenzene, p‐difluorobenzene, and tetrafluorobenzene) moieties were synthesized. In addition, perfluorooctylation of poly‐[(9,9‐dioctylfluorene‐2,7‐diyl)‐co‐(fluorene‐2,7‐diyl)] was carried out to afford fluorene‐based polymers with perfluorooctyl moiety at the 9‐position on the fluorene ring. To evaluate the effect of fluorine moiety, polymers containing nonfluorinated benzene moieties and nonfluorinated octyl groups were synthesized. The photoluminescence measurements indicated that all these polymers exhibited blue emission in solution, but a polymer containing a perfluorooctyl group did not emit in the film state. Polymers containing various fluorinated benzene moieties showed higher fluorescence quantum yields and thermal stability than those containing nonfluorinated benzene. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3143–3150, 2001  相似文献   

20.
采用3-烷基噻吩与对硝基苯甲醛和对二甲氨基苯甲醛的聚合反应得到了5种聚(3-烷基)噻吩取代苯甲烯衍生物:聚(3-丁基)噻吩对硝基苯甲烯(PBTNBQ)、聚(3-己基)噻吩对硝基苯甲烯(PHTNBQ)、聚(3-丁基)噻吩对二甲氨基苯甲烯(PBTDMABQ)、聚(3-己基)噻吩对二甲氨基苯甲烯(PHTDMABQ)和聚(3-辛基)噻吩对二甲氨基苯甲烯(POTDMABQ).计算其光学禁带宽度分别为PBTNBQ(1.82eV),PHTNBQ(1.85eV),PBTDMABQ(1.71eV),PHTDMABQ(1.78eV)和POTDMABQ(1.67eV).利用简并四波混频技术测量了5种聚合物薄膜的三阶非线性极化率,分别为1.74×10-8,1.82×10-8,5.62×10-9,8.64×10-9和1.22×10-8esu,均具有较大的三阶非线性光学性能.针对取代基结构对聚(3-烷基)噻吩取代苯甲烯衍生物的三阶非线性光学性能的影响从分子内极化程度和主链电子的离域程度两个方面进行了讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号