首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A new bis(phenoxy)naphthalene-containing diamine, 1,6-bis(4-aminophenoxy)naphthalene, was synthesized in two steps from the condensation of 1,6-dihydroxynaphthalene with p-chloronitrobenzene in the presence of potassium carbonate, giving 1,6-bis(4-nitrophenoxv)naphthalene, followed by hydrazine hydrate/Pd—C reduction. A series of polyamides were synthesized by the direct polycondensation of the diamine with various aromatic dicarboxylic acids in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved metal salts such as CaCl2 or LiBr using triphenyl phosphite and pyridine as condensing agents. The polymers were obtained in quantitative yield with inherent viscosities of 0.78–3.72 dL/g. Most of the polymers were soluble in aprotic solvents such as N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), NMP, and they could be solution-cast into transparent, flexible and tough films. The casting films had tensile strength of 102–175 MPa, elongation at break of 8–42%, and tensile modulus of 2.4–3.8 GPa. The polymers derived from rigid dicarboxylic acids such as terephthalic acid and 4,4′-biphenyldicarboxylic acid exhibited some crystalline characteristics. The glass transition temperatures of the polyamides were in the range of 238–337°C, and their 10% weight loss temperatures were above 487°C in nitrogen and above 438°C in air. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
2,6-Bis(4-aminophenoxy)naphthalene (2,6-BAPON) was synthesized in two steps from the condensation of 2,6-dihydroxynaphthalene with p-chloronitrobenzene in the presence of potassium carbonate, giving 2,6-bis(4-nitrophenoxy)naphthalene, followed by hydrazine hydrate/Pd—C reduction. A series of new polyamides were synthesized by the direct polycondensation of 2,6-BAPON with various aromatic dicarboxylic acids in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved metal salts such as CaCl2 or LiCl using triphenyl phosphite and pyridine as condensing agents. The polymers were obtained in quantitative yields with inherent viscosities of 0.62–2.50 dL/g. Most of the polymers were soluble in aprotic dipolar solvents such as N,N-dimethylacetamide (DMAc) and NMP, and they could be solution cast into transparent, flexible, and tough films. The casting films had yield strengths of 84–105 MPa, tensile strengths of 68–95 MPa, elongations at break of 8–36%, and tensile moduli of 1.4–2.1 GPa. The glass transition temperatures of the polyamides were in the range 155–225°C, and their 10% weight loss temperatures were above 505°C in nitrogen and above 474°C in air. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2147–2156, 1997  相似文献   

3.
Aromatic polyurea-amides having inherent viscosities of 0.36–0.67 dL/g were synthesized by the low temperature solution polycondensation of new N,N′-dimethyl-N,N′-bis(aminophenyl)ureas with various aromatic dicarboxylic acid chlorides. All the polymers were amorphous, and most of them were soluble in a variety of organic solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide (DMAc), m-cresol, and pyridine. Some of the polymers could be cast from the DMAc solutions into transparent and flexible films having good tensile properties. The glass transition temperatures of the polyurea-amides obtained from the bis(4-aminophenyl)-substituted ureas were 244–272°C. The temperatures of 10% weight loss under nitrogen of the polymers were in the range of 430 and 480°C. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
1,2-Bis(4-aminophenoxy)benzene was synthesized in two steps by the preparation of 1,2-bis(4-itrophenoxy)benzene from 1,2-dihydroxybenzene (catechol) and p-chloronitrobenzene and subsequent reduction with a 10% Pd-C catalyst and hydrazine hydrate. Aromatic polyamides with an inherent viscosity in the range of 1.08–2.00 dL/g were prepared by the direct polycondensation of this diamine with various aromatic dicarboxylic acids in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Most of the polymers formed were soluble in aprotic solvents such as NMP and N,N-methylacetamide (DMAc), and afforded transparent, flexible, and tough films upon casting from DMAc solutions. Most of the cast films showed obvious yield points in their stress-strain curves and had tensile strength among 64–89 MPa, elongation at break among 5–23%, and initial modulus in 1.7–2.5 GPa. The glass transition temperatures (Tg) of these polymers were in the range of 207–278°C, and the 10% weight loss temperatures were recorded above 475°C in nitrogen and above 452°C in air. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
New polyarylates and aromatic polyethers were synthesized from 1,2-bis(4-hydroxyphenyl)-1,2-diphenylethylene, and aromatic dicarboxylic acid chlorides and aromatic dihalides, respectively. The polyarylates having inherent viscosities of 0.28–1.05 dL/g were synthesized by either the two-phase method or the high-temperature solution method. All the polymers were easily soluble in N-methyl-2-pyrrolidone, N,N-dimethylformamide, pyridine, m-cresol, 1,4-dioxane, and 1,1,2,2-tetrachloroethane. They have glass transition temperatures in the range of 217–250°C and showed no weight loss below 315°C in both air and nitrogen atmospheres. Aromatic polyethers with inherent viscosities of 0.85–1.21 dL/g were obtained by the polycondensation of 1,2-bis(4-hydroxyphenyl)-1,2-diphenylethylene and aromatic difluorides in the presence of potassium carbonate. These polymers having glass transion temperatures of 193–220°C were also soluble in the aforementioned solvents and stable up to around 350deg;C in both atmospheres. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
1,1-Bis[4-(4-carboxyphenoxy)phenyl]cyclohexane (III) and 1,1-bis[4-(4-aminophenoxy)phenyl]cyclohexane (V) were prepared in two main steps starting from the aromatic nucleophilic substitution of p-fluorobenzonitrile and p-chloronitrobenzene, respectively, with 1,1-bis(4-hydroxyphenyl)cyclohexane in the presence of potassium carbonate in N,N-dimethylformamide (DMF). Using triphenyl phosphite and pyridine as condensing agents, two series of polyamides with cyclohexylidene cardo groups were directly polycondensated from dicarboxylic acid III with various aromatic diamines or from diamine V with various aromatic dicarboxylic acids in an N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The polyamides exhibited inherent viscosities in the range of 0.45 to 1.78 dL/g. Almost all of the polymers were readily soluble in polar aprotic solvents such as NMP and N,N-dimethylacetamide (DMAc) and could afford transparent, flexible, and tough films by solution casting. The glass transition temperatures (Tg) of these aromatic polyamides were in the range of 180–243°C by DSC, and the 10% weight loss temperatures in nitrogen and air were all above 450°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3575–3583, 1999  相似文献   

7.
New bis(phenoxy)naphthalene-containing poly(amide-imide)s having an inherent viscosity in the range of 0.62–1.09 dL/g were prepared by the direct polycondensation of 1,5-bis(4-trimellitimidophenoxy) naphthalene ( I ) and various aromatic diamines using triphenyl phosphite and pyridine as condensing agents in N-methyl-2-pyrrolidone (NMP) in the presence of calcium chloride. The diimide-diacid (I) was prepared by the condensation of 1,5-bis(4-aminophenoxy) naphthalene and trimellitic anhydride. Most of the polymers were soluble in aprotic solvents such as NMP and N,N-dimethylacetamide (DMAc), and afforded transparent, flexible and tough films upon casting from DMAc solutions. Measurements of wide-angle X-ray diffraction revealed that those polymers containing p-phenylene or oxyphenylene groups were characterized as crystalline polymers. Tensile strength and initial moduli of the polymer films ranged from 61–86 MPa and 1.83–2.21 GPa, respectively. Glass transition temperatures of the polymers were in the range of 231–340°C. The melting points of the crystalline polymers ranged from 375–430°C. The 10% weight loss temperatures were above 512°C in nitrogen and 481°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
A new trifluoromethylated bis(ether amine), 1,5-bis(4-amino-2-trifluoromethylphenoxy)naphthalene, was synthesized in two steps starting from 1,5-dihydroxynaphthalene and 2-chloro-5-nitrobenzotrifluoride via nucleophilic aromatic substitution and catalytic reduction. A series of novel fluorinated polyimides with moderate to high molecular weights were synthesized from the diamine with various aromatic tetracarboxylic dianhydrides using a conventional two-stage process. All polyimides could afford flexible and tough films and most of them were soluble in strong polar solvents such as N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc). The polyimides showed glass-transition temperatures (Tg) in the range of 253-315 °C (by DSC) and softening temperatures (Ts) in the range of 250-300 °C (by TMA). Decomposition temperatures for 5% weight loss all occurred above 500 °C in both air and nitrogen atmospheres. The dielectric constants of these polymers ranged from 3.17 to 3.64 at 1 MHz. The properties of these fluorinated polyimides were also compared with those of polyimides prepared from 1,5-bis(4-aminophenoxy)naphthalene with the same dianhydrides.  相似文献   

9.
5,5-Bis[4-(4-carboxyphenoxy)phenyl]hexahydro-4,7-methanoindan ( 3a ) and 5,5-bis[4-(4-aminophenoxy)phenyl]hexahydro-4,7-methanoindan ( 3b ) were prepared in two main steps starting from the aromatic nucleophilic halogen-displacement of p-fluorobenzonitrile and p-chloronitrobenzene, respectively, with 5,5-bis(4-hydroxyphenyl)hexahydro-4,7-methanoindan in the presence of potassium carbonate in N,N-dimethylformamide (DMF). Using triphenyl phosphite and pyridine as condensing agents, two series of polyamides having polyalicyclic cardo units were directly polycondensated from dicarboxylic acid 3a with various aromatic diamines, or from diamine 3b with various aromatic dicarboxylic acids in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. High molecular weight polyamides with inherent viscosities between 0.73 and 1.44 dL/g were obtained. All polymers were readily soluble in polar aprotic solvents such as NMP and N,N-dimethylacetamide (DMAc) and afforded transparent, flexible, and tough films by solution casting. The glass-transition temperatures (Tg) of these aromatic polyamides were in the range of 219–253°C by DSC, and the 10% weight loss temperatures in nitrogen and air were above 467 and 465°C, respectively. A comparative study of some polyamides with an isomeric repeat unit is also presented. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4510–4520, 1999  相似文献   

10.
N-Phenyl-3,3-Bis[4-(p-aminophenoxy)phenyl] phthalimidine ( II ) was used as a monomer with various aromatic dicarboxylic acids and tetracarboxylic dianhydrides to synthesize polyamides and polyimides, respectively. The diamine II was derived by a nucleophilic substitution of N-phenyl-3,3-bis(4-hydroxyphenyl) phthalimidine with p-chloronitrobenzene in the presence of K2CO3 and then hydro-reduced. Polyamides IV a-g having inherent viscosities of 0.55–1.64 dL/g were prepared by the direct polycondensation of the diamine II with various aromatic diacids using triphenyl phosphite and pyridine as condensing agents. All the aromatic polyamides were amorphous and readily soluble in various polar solvents such as N,N-dimethylacetamide (DMAc), N,N-dimethylformamide, dimethylsulfoxide, and N-methyl-2-pyrrolidone (NMP). Transparent and flexible films of these polymers could be cast from the DMAc solutions. These aromatic polyamides had glass transition temperatures in the range of 293–319°C and 10% weight loss occurred up to 480°C. The polyimides were synthesized from diamine II and various aromatic dianhydrides via the two-stage procedure that included ring-opening polyaddition in DMAc to give poly(amic acid)s, followed by thermal or chemical conversion to polyimides. Most of the aromatic polyimides obtained by chemical cyclization were found to be soluble in NMP, m-cresol, and o-chlorophenol. These polyimides showed almost no weight loss up to 500°C in air or nitrogen atmosphere. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
A new highly phenylated heterocyclic diamine, 3,4-bis(4-aminophenyl)-2,5-diphenylfuran, was synthesized in three steps from 4–-nitrodeoxybenzoin. The low temperature solution polycondensation of the diamine with various aromatic diacid chlorides afforded tetraphenylfuran-containing aromatic polyamides with inherent viscosities of 0.2–0.8 dL/g. Copolyterephthalamides were obtained from the diamine and 4,4′-oxydianiline. The polyamides were generally soluble in a wide range of solvents that included N,N-dimethylacetamide, N-methyl-2-pyrrolidone, pyridine, and m-cresol. Glass transition temperatures of the polyamides and copolyamides ranged from 302–342°C, and 10% weight loss was observed above 480°C in nitrogen.  相似文献   

12.
A new tetraphenylated heterocylic diol, 2,5-bis(4-hydroxyphenyl)-3,4-diphenylpyrrole, was synthesized in three steps starting from 4-methoxydeoxybenzoin. The tetraphenylpyrrole-containing polyarylates having inherent viscosities of 0.28–0.88 dL/g were prepared from the diol and various aromatic dicarboxylic acid chlorides by both phase transfer catalyzed two-phase polycondensation and high temperature solution polymerization methods. All the polyarylates were semi-crystalline, and were readily soluble in a variety of solvents including N-methyl-2-pyrrolidone, m cresol, pyridine, and 1,4-dioxane. These polymers had glass transition temperatures in the range of 223–279°C, with no weight loss below 400°C in both air and nitrogen atmospheres. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
9,9-Bis[4-(p-aminophenoxy)phenyl]fluorene ( II ) was used as a monomer with various aromatic dicarboxylic acids and tetracarboxylic dianhydrides to synthesize polyamides and polyimides, respectively. The diamine II was derived by a nucleophilic substitution of 9,9-bis(4-hydroxyphenyl)fluorene with p-chloronitrobenzene in the presence of K2CO3 and then hydro-reduced. Polyamides IV a-g having inherent viscosities of 0.73–1.39 dL/g were prepared by the direct polycondensation of the diamine II with various aromatic diacids using triphenyl phosphite and pyridine as condensing agents. All the aromatic polyamides were amorphous and readily soluble in various polar solvents such as N,N-dimethylacetamide, N,N-dimethylformamide, dimethylsulfoxide, and N-methyl-2-pyrrolidone. Transparent and flexible films of these polymers could be cast from the DMAc solutions. These aromatic polyamides had glass transition temperatures in the range of 283–309°C and 10% weight loss occurred up to 460°C. The polyimides were synthesized from diamine II and various aromatic dianhydrides via the two-stage procedure that included ring-opening poly-addition in DMAc to give poly(amic acid)s, followed by thermal or chemical conversion to polyimides. The poly(amic acid)s had inherent viscosities of 0.62–1.78 dL/g, depending on the dianhydrides. Most of the aromatic polyimides obtained by chemical cyclization were found to be soluble in NMP. These polyimides showed almost no weight loss up to 500°C in air or nitrogen atmosphere. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
Abstract

A series of poly(ether sulfone)s and poly(ether ketone)s were synthesized from combinations of 1,5- and 2,6-bis(4-fluorosulfonyl)naphthalene, 2,6-bis(4-fluorobenzoyl)naphthalene, and 2,6-bis(4-fluorobenzoyl)quinoline with 3,3′,5,5′-tetramethylbiphenyl-4,4′-diol and 2,2′,3,3′,5,5′-hexamethylbiphenyl-4,4′-diol. The polycondensations proceeded quantitatively in diphenylsulfone in the presence of anhydrous potassium carbonate to afford polymers with inherent viscosities between 0.40 and 1.28 dL/g measured in N-methyl-2-pyrrolidone or concentrated sulfuric acid. The tetramethyl- and hexamethyl-substituted aromatic polyethers exhibited good thermal stability, did not decompose below 330°C in both air and nitrogen atmospheres, and had higher glass transition temperatures than the corresponding unsubstituted polymers. The methylsubstituted poly(ether sulfone)s and poly(ether ketone)s showed good solubility in such common organic solvents as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, tetrahydrofuran, chloroform, and 1,4-dioxane.  相似文献   

15.
A new aromatic dicarboxylic acid, 1,4-bis (p-carboxyphenoxy)naphthyl ( 3 ), was synthesized by the reaction of p-fluorobenzonitrile with 1,4-naphthalenediol, followed by hydrolysis. Aromatic polyamides having inherent viscosities of 1.27–2.22 dL/g were prepared by the triphenyl phosphite activated polycondensation of diacid 3 with various aromatic diamines. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents including N,N-dimethyl-acetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and m-cresol. Transparent, tough, and flexible films of these polymers could be cast from the DMAc or NMP solutions. The cast films had tensile strengths ranging from 64–104 MPa, elongations-at-break from 6 to 10%, and initial moduli from 1.52 to 2.14 GPa. These polyamides had glass transition temperatures in the range of 195 to 240°C. Almost all polymers were thermally stable up to 400°C, with 10% weight loss being recorded above 480°C in air and nitrogen atmospheres. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2273–2280, 1997  相似文献   

16.
New aromatic diamines having kink and crank structures, 2,2′-bis(p-aminophenoxy)biphenyl and 2,2′-bis(p-aminophenoxy)-1,1′-binaphthyl, were synthesized by the reaction of p-fluoronitrobenzene with biphenyl-2,2′-diol and 2,2′-dihydroxy-1,1′-binaphthyl, respectively, followed by catalytic reduction. Biphenyl-2,2′-diyl- and 1,1′-binaphthyl-2,2′-diyl-containing aromatic polyamides having inherent viscosities of 0.44–1.18 and 0.26–0.88 dL/g, respectively, were obtained either by the direct polycondensation or low-temperature solution polycondensation of the diamines with aromatic dicarboxylic acids (or diacid chlorides). These polymers were readily soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, m-cresol, and pyridine. Transparent, pale yellow, and flexible films of these polymers could be cast from the DMAc or NMP solutions. These aromatic polyamides containing biphenyl and binaphthyl units had glass transition temperatures in the range of 215–255 and 266–303°C, respectively. They began to lose weight at ca. 380°C, with 10% weight loss being recorded at about 470°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
A new dicarboxylic acid having a kinked structure was synthesized from the condensation of 2,2′-bis(4-aminophenoxy)biphenyl and trimellitic anhydride. A series of biphenyl-2,2′-diyl-containing aromatic poly(amide-imide)s having inherent viscosities of 0.23–0.94 dL/g was prepared by the triphenyl phosphite activated polycondensation from the diimide-diacid II with various aromatic diamines in a medium consisting of N-methyl-2-pyrrolidone (NMP), pyridine, and calcium chloride. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents including NMP and N,N-dimethylacetamide (DMAc). Transparent, flexible, and tough films of these polymers could be cast from DMAc or NMP solutions. The glass transition temperatures of these polymers were in the range of 227–261°C and the 10% weight loss temperatures were above 520°C in nitrogen. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1169–1177, 1998  相似文献   

18.
A novel spirobichroman unit containing dietheramine, 6,6′-bis(4-aminophenoxy)-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman ( 3 ), was prepared by the nucleophilic substitution of 6,6′-dihydroxy-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman with p-chloronitrobenzene in the presence of K2CO3 followed by hydrazine catalytic reduction of the intermediate dinitro compound. A series of polyimides were synthesized from diamine 3 and various aromatic dianhydrides by a conventional two-stage procedure through the formation of poly(amic-acid)s followed by thermal imidization. The intermediate poly(amic-acid)s had inherent viscosities of 1.00–2.78 dL/g. All the poly-(amic-acid)s could be thermally cyclodehydrated into flexible and tough polyimide films, and some polyimides were soluble in polar solvents such as N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), and N,N-dimethylformamide (DMF). These polyimides had glass transition temperatures (Tg) in the range of 236–256°C, and 10% weight loss occurred up to 450°C. Furthermore, a series of polyamides and poly(amide-imide)s with inherent viscosities of 0.71–2.29 dL/g were prepared by direct polycondensation of the diamine 3 with various aromatic dicarboxylic acids and imide ring-containing dicarboxylic acids by means of triphenyl phosphite and pyridine. All the polyamides and poly(amide-imide)s were readily soluble in polar solvents such as DMAc, and tough and flexible films could be cast from their DMAc solutions. These polymers had glass transition temperatures in the range of 137–228°C and 10% weight loss temperatures in the range of 419–443°C in air and 404–436°C in nitrogen, respectively. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1487–1497, 1997  相似文献   

19.
Novel aromatic polyimides containing tetraphenylpyrrole unit were synthesized from 3,4-bis(4-aminophenyl)-2,5-diphenylpyrrole and various aromatic tetracarboxylic dianhydrides by the usual two-step procedure that included ring-opening polyaddition and subsequent thermal cyclodehydration. These polymers had inherent viscosities in the 0.20–0.65 dL/g range and were practically amorphous as shown by the X-ray diffraction studies. All the polyimides except for polypyromellitimide were easily soluble in a wide range of organic solvents such as o-chlorophenol, pyridine, 1,3-dimethyl-2-imidazolidone, N,N-dimethylacetamide, and N-methyl-2-pyrrolidone at room temperature. These polyimides had high glass transition temperatures of 302–359°C and exhibited 10% weight loss at temperatures above 510°C in nitrogen.  相似文献   

20.
Novel aromatic polyamides, having inherent viscosities of 0.76-2.31 dL/g, were synthesized by the low temperature solution polycondensation of a new highly phenylated diamine monomer having an imidazolinone group, 1,3-bis(4-aminophenyl)-4,5-diphenylimidazoline-2-one (TPIDA), with various aromatic diacid chlorides. All the polymers were amorphous, and most of the polyamides were readily soluble in organic solvents such as N-methyl–2-pyrrolidone, N,N-dimethylacetamide (DMAc), and m-cresol. Flexible and tough films could be prepared from the DMAc solutions of these soluble aromatic polyamides. The glass transition temperatures and 10% weight loss temperatures under nitrogen of the polyamides were in the range of 275–315°C and 430–505°C, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号