首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We detail the melting behavior of poly(ether ether ketone) (PEEK) and investigate its melting behavior in miscible blends with poly(ether imide) (PEI). The determination of the equilibrium melting point (Tm0) of PEEK is discussed by considering its inhomogeneous morphology. Tm0 is obtained by a long extrapolation of a Hoffman–Weeks plot to 384°C. Hindrance of PEEK crystal reorganization induced by PEI during heating is observed over the blend composition investigated (20–75 wt % PEEK). This behavior is correlated with the incorporation of PEI in the interlamellar zones of PEEK crystals. The interaction parameter χ of PEEK/PEI blends is estimated by the equilibrium melting point depression. This gives the interaction density B = ?1.2 cal/cm3, and x = ?0.40 at 400°C. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
Sulfonation of poly(oxy-1,4-phenyleneoxy-1,4-phenylenecarbonyl-1,4-phenylene), PEEK, improves its miscibility with poly(ϵ-caprolactam), Nylon-6 (N6). This article describes the thermal transitions and the specific interactions that occur for blends of the free acid derivative (H-SPEEK) and the lithium (Li-SPEEK) and zinc salts (Zn-SPEEK) of sulfonated PEEK (19.2 mol % sulfonation) with N6. The interactions responsible for miscibility were characterized by Fourier transform infrared (FTIR) spectroscopy. For blends of H-SPEEK and N6, miscibility is due to hydrogen bonding between the sulfonic acid and the amide group. For blends of N6 with the salts of SPEEK the specific interaction involves an ion-dipole complex of Li+ with the amide carbonyl or Zn2+ with the amide nitrogen. The relative strengths of the intermolecular interactions for the three types of blends increased as the cation was varied in the order: H+ < Li+ < Zn2+, and the Tgs of the mixtures increased in the same order. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
A random copolymer (RCP) containing poly(ether ether ketone) (PEEK) and thermotropic liquid crystalline polymer (TLCP) segments was synthesized. Its chemical structure and liquid crystalline properties were characterized by FT‐IR, differential scanning calorimetry (DSC) and polar light microscopy (PLM) respectively. A single glass transition temperature (Tg) at 134.0°C, a melting temperature (Tm) at 282.0°C and a temperature of ignition (Ti) at 331.3°C can be observed. Blends of PEEK and TLCP with and without RCP as compatibilizer were prepared by extrusion and the effect of RCP on the thermal properties, dynamic mechanical properties, morphology and static tensile mechanical properties of blends was investigated by means of DSC, dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), etc. Dynamic mechanical measurements indicated that there appeared to be only a single tan δ peak resulting from the glass transition of the PEEK‐rich phase and the Tg value shifted towards higher temperature due to the presence of compatibilizer, as suggested partial compatibility. Morphological investigations showed that the addition of RCP to binary blends reduced the dispersed phase size and improved the interfacial adhesion between the two phases. The ternary compatibilized blends showed enhanced tensile modulus compared to their binary blends without RCP. The strain at break decreased for the ternary blends due to embrittlement of the matrix by the incorporation of some RCP to the matrix phase. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Blends of poly(aryl ether ketones) (PAEKs) and an amorphous poly(ether imide) (PEI) were used as model systems to study the broadening of the glass transition due to crystallization and the resulting depletion of PAEK from the amorphous phase. Two different PAEKs were studied, which are completely miscible with PEI in the amorphous state; poly(aryl ether ether ketone) (PEEK) and a slower crystallizing poly(aryl ether ketone ketone)(PEKK). Relatively rapid crystallization conditions were chosen in order to trap a significant fraction of PEI between the PAEK crystal lamellae or between bundles of lamellae. The broad glass transitions are apparently a result of the nonuniform nature of this process. The breadth of the glass transition was quantified by thermally stimulated currents (TSC) applied in the thermal sampling (TS) mode. The results compared favorably with DSC data. The magnitude of the apparent activation energy obtained by the TS method allows one to assign the relaxations as cooperative (glass transition-like) or non-cooperative and to define the limits of the glass transition with a higher degree of precision than other techniques. Cooperative relaxations can be resolved with this technique, even if they are only a small fraction of the overall relaxing species at a given temperature. In some cases the glass transition region was found to broaden to ca. 60°C after crystallization. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
We report a processing window in which transparent semicrystalline poly(ether ether ketone) (PEEK) can be produced. The transparent PEEK film reported is 100 μm in thickness and has light transmittance of 54%; while ordinary semicrystalline PEEK film of the same thickness and degree of crystallinity, but produced outside the processing window, is virtually opaque (with the light transmittance close to 0%). First processing conditions for producing the transparent PEEK film are discussed, and second characterization of the transparent PEEK film is detailed. Results suggest that the main processing condition for developing the transparent PEEK film is forming temperature, defined as the highest temperature that the film is exposed to during thermal treatment. Using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and small-angle x-ray scattering (SAXS), we characterized morphology of the PEEK films. TEM shows that the morphology in the transparent PEEK film has a locally oriented lamellar structure, instead of the commonly observed spherulites or sheaves. DSC results suggest that the new morphology is formed in the melt with a high density of residual crystals that act as nucleating agents during the crystallization process, which is known as a self-seeding effect. SAXS spectra show that specimens with higher forming temperature produce broader diffraction peak at larger Q value that is defined as 4π sin θ/λ. We conclude from the study that the light transmittance enhancement is morphology related, and can be achieved through control of processing conditions. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
A novel method was developed to prepare poly(benzoxazinone‐imide) by the dealcoholization of poly(amide‐imide), having pendent ethoxycarbonyl groups, which was prepared from poly(amide acid). The poly(amide acid) was prepared from the reaction of pyromellitic dianhydride and 4,4′‐diamino‐6‐ethoxycarbonyl benzanilide. The curing behavior of the poly(amide acid) was monitored by DSC, which indicated the presence of two broad endotherms, one with maximum at 153 °C due to imide‐ring formation and the other with maximum at 359 °C due to benzoxazinone‐ring formation. The poly(amide acid) was thermally treated at 300 °C/1 h to get poly(amide‐imide) with pendent ester groups, then at 350 °C/2 h to convert into poly(benzoxazinone‐imide) by dealcoholization. Viscoelastic measurements of the poly(amide‐imide) showed that the storage modulus dropped at about 280 °C with glass‐transition temperature (Tg ) at about 340 °C. The storage modulus of poly(benzoxazinone‐imide), however, was almost constant up to 400 °C and no Tg was detected below 400 °C. Also, the tensile modulus and tensile strength of the poly(benzoxazinone‐imide) was much higher than that of the poly(amide‐imide). The 5% decomposition of poly(benzoxazinone‐imide) film was at 535 °C, which reflects its excellent thermal stability. Also, poly(benzoxazinone‐imide) showed more hydrolytic stability against alkali in comparison to polyimides. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1647–1655, 2000  相似文献   

7.
Blends of polyamide-6 with lithium ionomers of 9.8 and 5.4 mole percent sulfonated polystyrene, formed by combining solutions of these polymers, are miscible over a wide compositional range, but those with the equivalent sodium ionomers are not. The molecular origin of this difference is addressed by studying the far infared and infrared spectra of the blends and pure materials to follow changes in the interactions between the cations and their surroundings, and changes in the interactions between functional groups. Based on analysis of these spectra, a molecular level interpretation of the blending is proposed. The initial step involves both the interaction of one amide carbonyl with an Li+ ion and simultaneous hydrogen bonding between an amide N? H and a sulfonate group. This eventually leads to formation of an Li(>CO)+n(n ~ 4) entity while the sulfonates are converted to the acid form through hydrogen bonding to the amide N? H groups. The Na+ ion does not interact strongly enough with the amide groups to leave its sulfonate environment to a significant extent. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
We have established time–temperature transformation and continuous-heating transformation diagrams for poly(ether–ether–ketone) (PEEK) and PEEK/poly(ether–imide) (PEI) blends, in order to analyze the effects of relaxation control on crystallization. Similar diagrams are widely used in the field of thermosetting resins. Upon crystallization, the glass transition temperature (Tg) of PEEK and PEEK/PEI blends is found to increase significantly. In the case of PEEK, the shift of the α-relaxation is due to the progressive constraining of amorphous regions by nearby crystals. This phenomenon results in the isothermal vitrification of PEEK during its latest crystallization stages for crystallization temperatures near the initial Tg of PEEK. However, vitrification/devitrification effects are found to be of minor importance for anisothermal crystallization, above 0.1°C/min heating rate. In the case of PEEK/PEI blends, amorphous regions are progressively enriched in PEI upon PEEK crystallization. This promotes a shift of the α-relaxation of these regions to higher temperatures, with a consequent vitrification of the material when crystallized below the Tg of PEI. The data obtained for the blends in anisothermal regimes allow one to detect a region in the (temperature/heating rate) plane where crystallization proceeds in the continuously close proximity of the glass transition (dynamic vitrification). These experimental findings are in agreement with simple simulations based on a modified Avrami model coupled with the Fox equation. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 919–930, 1998  相似文献   

9.
Sulfonated poly(ether ether ketone) (PEEK) was prepared by sulfonation of commercial Victrex@ PEEK and degree of sulfonation was found to be about 44.5% by 1H NMR. Sulfonated PEEK/polyaniline composite membranes, in order to prevent methanol crossover, were prepared by chemical polymerization of a thin layer of polyaniline (PANI) in the presence of a high oxidant concentration on a single face modification. FTIR and PANI coating density studies confirmed the loading of PANI in sulfonated PEEK membrane matrix. PANI composite membranes with different polymerization time were prepared and subjected to thermogravimetric analysis as well as electrochemical and methanol permeability study to compare with sulfonated PEEK and Nafion 117 membrane. Ion-exchange capacity, water uptake, proton transport numbers and proton conductivities for different PANI composite sulfonated PEEK (SPEEK) membranes were found to be dependent on the coating density of the PANI in the membrane matrix and were slightly lower than that of Nafion 117 membrane. Methanol permeability of these membranes (especially SPEEK/PANI-1.5) was about four times lower than Nafion 117 membrane. Among the all SPEEK membranes synthesized in this study, SPEEK-1.5 appears to be more suitable for direct methanol fuel cell (DMFC) application considering optimum physicochemical and electrochemical properties, thermal stability as well as very low methanol permeability. Above all, the cost-effective and simple fabrication technique involved in the synthesis of such composite membranes makes their applicability quite attractive.  相似文献   

10.
The synthesis of aromatic poly(ether imide)s containing spirobifluorene units in the polymer backbone is described. 2,2′‐Bis(3,4‐dicarboxyphenoxy)‐9,9′‐spirobifluorene dianhydride, which was used as a new monomer, was synthesized with 2,2′‐dihydroxy‐9,9′‐spirobifluorene as the starting material. In the spiro‐segment, the rings of the connected bifluorene were orthogonally arranged. This bis(ether anhydride) monomer was employed in reactions with a variety of aromatic diamines to furnish poly(ether imide)s, involving an initial ring‐opening polycondensation and subsequent chemically induced cyclodehydration. Excellent solubility in common organic solvents at room temperature, good optical transparency, and high thermal stability are the prominent characteristic features of these new polymers, which can be attributed to the presence of spiro‐fused orthogonal bifluorene segments along the polymer chain. The glass‐transition temperatures of the polyimides were 240–293 °C, and the 5% weight‐loss temperatures were greater than 500 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 262–268, 2002  相似文献   

11.
A new N‐phenylated amide (N‐phenylamide) unit containing aromatic diamine, N,N′‐bis(3‐aminobenzoyl)‐N,N′‐diphenyl‐1,4‐phenylenediamine, was prepared by the condensation of N,N′‐diphenyl‐1,4‐phenylenediamine with 3‐nitrobenzoyl chloride, followed by catalytic reduction. Two series of organosoluble aromatic poly(N‐phenylamide‐imide)s and poly(N‐phenylamide‐amide)s with inherent viscosities of 0.58–0.82 and 0.56–1.21 dL/g were prepared by a conventional two‐stage method and the direct phosphorylation polycondensation, respectively, from the diamine with various aromatic dianhydrides and aromatic dicarboxylic acids. All polyimides and polyamides are amorphous and readily soluble in many organic solvents such as N,N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone. These polymers could be solution cast into transparent, tough, and flexible films with high tensile strengths. These polyimides and polyamides had glass‐transition temperatures in the ranges of 230–258 and 196–229 °C, respectively. Decomposition temperatures of the polyimides for 10% weight loss all occurred above 500 °C in both nitrogen and air atmospheres. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2564–2574, 2002  相似文献   

12.
<正> 近年来,有关高性能树脂聚酰亚胺共混物的研究日益引起人们的关注。已经发现许多种分子结构不同的聚酰亚胺之间,聚酰亚胺与聚苯并咪唑,或聚醚醚酮能形成完全相容的共混体系,从而扩大了高性能树脂聚酰亚胺的应用范围。 酚酞型聚醚醚酮(PEK-C)是由我所研究开发出的一种新型的聚醚醚酮类高性能树脂,它具有良好的可溶性,优异的机械强度和加工流动性,已广泛应用于结构材料及复合材料的制备。为进一步扩大该树脂的应用范围,本实验室在PEK-C共混物的研究做了大量的工作。本工作研究了聚醚酰亚胺(PEI)/PEK-C共混体系的相容性。PEI和PEK-C的分子结构如下:  相似文献   

13.
Blends of an aromatic polyethersulfone (commercial name Victrex) and a polyimide (commercial name Matrimid 5218), the condensation product of 3,3′,4,4′-benzophenone tetracarboxylic dianhydride and 5(6)-amino-1-(4′-aminophenyl)-1,3,3′-trimethylindane, were studied by differential scanning calorimetry, dynamic mechanical analysis, and rheological techniques. The blends appeared to be miscible over the whole range of compositions when cast as films or precipitated from solution in a number of solvents. After annealing above the apparent phase boundary, located above Tg, the blends were irreversibly phase separated indicating that the observed phase boundary does not represent a true state of equilibrium. Only a narrow “processing window” was found for blends containing up to 20 wt % polyimide. Rheological measurements in this range of compositions indicated that blending polyethersulfone with polyimide increases the complex viscosity and the elastic modulus of the blends. For blends containing more than 10 wt % polyimide, abrupt changes in the rheological properties were observed at temperatures above the phase boundary. These changes may be consistent with the formation of a network structure (due to phase separation and/or crosslinking). Blends containing less than 10 wt % polyimide exhibited stable rheological properties after heating at 320°C for 20 min, indicating the existence of thermodynamic equilibrium.  相似文献   

14.
A novel diamine with built-in sulfone, ether, and amide structure was prepared via three-step reactions. Nucleophilic reaction of 4-aminophenol with 4-nitrobenzoyl chloride in the presence of propylene oxide led to preparation of N-(4-hydroxy phenyl)-4-nitrobenzamide (HPNB). The nitro group of this compound was reduced with hydrazine and Pd/C to afford 4-amino-N-(4-hydroxy phenyl)benzamide (AHPB). Two moles of AHPB were reacted with bis-(4-chloro phenyl)sulfone to provide a novel sulfone ether amide diamine (SEAD). All the prepared compounds were characterized by common spectroscopic methods. The prepared diamine (SEAD) used to prepare related polyimides by reaction with different aromatic dianhydrides. The obtained poly(sulfone ether amide imide)s were characterized and their properties were studied.  相似文献   

15.
A novel bis(ether anhydride) monomer, 3,6‐bis(3,4‐dicarboxyphenoxy)benzonorbornane dianhydride, was synthesized from the nitro displacement of 4‐nitrophthalonitrile with 3,6‐dihydroxybenzonorbornane in the presence of potassium carbonate, followed by the alkaline hydrolysis of the intermediate bis(ether dinitrile) and the cyclodehydration of the resulting bis(ether diacid). A series of poly(ether imide)s bearing pendant norbornane groups were prepared from the bis(ether anhydride) with various aromatic diamines via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s followed by thermal imidization to the poly(ether imide)s. The inherent viscosities of the poly(amic acid) precursors were 0.81–1.81 dL/g. The poly(ether imide) with m‐phenylenediamine as a diamine showed good organosolubility. Most of the cast poly(ether imide) films have had high tensile strengths and moduli. The glass‐transition temperatures of these poly(ether imide)s, except for those from rigid p‐phenylenediamine and benzidine, were recorded between 211 and 246 °C by differential scanning calorimetry. The softening temperatures of all the poly(ether imide) films stayed within 210–330 °C according to thermomechanical analysis. No polymers showed significant decomposition before 500 °C in a nitrogen or air atmosphere. A comparative study of the properties with the corresponding poly(ether imide)s without pendant substituents was also made. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1712–1725, 2002  相似文献   

16.
非含氟型磺化聚合物质子交换膜材料的研究进展(上)   总被引:1,自引:0,他引:1  
概述了近十年来非含氟型磺化聚合物质子交换膜材料的研究进展,包括各种材料的制备和性质,详细地讨论了材料的化学结构、形态与其性能(质子导电率、耐水性、尺寸稳定性、吸水率、抗自由基氧化性、甲醇透过率等)之间的关系,其中结合作者在磺化聚酰亚胺方面的研究工作,重点对这类材料进行了系统、深入的介绍和讨论.最后,本文还对今后燃料电池用质子交换膜材料的研究提出了一些设想和展望.本文分为上下两篇,其中上篇主要综述了各种非含氟型磺化聚合物的制备方法.  相似文献   

17.
Aromatic polyimides with side chain nonlinear optical chromophores have been investigated through a facile two-step synthetic route. First, various poly(hydroxy imide)s have been synthesized by direct thermal imidization of diaminophenol dihydrochloride salt and aromatic dianhydride monomers. The resulting polyimides bearing phenolic hydroxy groups were found to react easily with the terminal hydroxy group on the chromophores via the Mitsunobu condensation to give corresponding polyimides with high optical nonlinearities and good solubility in common organic solvents. Detailed physical properties showed that these polyimides have a molecular weight (Mw) of 31,000 and high glass transition temperature above 220°C, ensuring a long-term alignment stability at elevated temperature. The electrooptic coefficients, r33, of the electrically poled polymer films were in the range 1.8–7.6 pm/V at 1.3 μm. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 301–307, 1998  相似文献   

18.
The relationship between semicrystalline morphology and glass transition temperature has been investigated for solvent-crystallized poly(ether ether ketone) (PEEK) and poly(ether ketone ketone) (PEKK). Solvent-crystallized specimens of both PEEK and PEKK displayed a sizeable positive offset in Tg compared to quenched amorphous specimens as well as thermally crystallized specimens of comparable bulk crystallinity; the offset in Tg for the crystallized samples reflected the degree of constraint imposed on the amorphous segments by the crystallites. Small-angle X-ray scattering studies revealed markedly smaller crystal long periods (d) for the solvent-crystallized specimens compared to samples prepared by direct cold crystallization. The strong inverse correlation observed between Tg and interlamellar amorphous thickness (lA) based on a simple two-phase model was in excellent agreement with data reported previously for PEEK, and indicated the existence of a unique relationship between glass transition temperature and morphology in these poly(aryl ether ketones) over a wider range of sample preparation history and lamellar structure than was previously reported. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 65–73, 1998  相似文献   

19.
A novel bis(ether anhydride) monomer, 2′,5′‐bis(3,4‐dicarboxyphenoxy)‐p‐terphenyl dianhydride, was synthesized from the nitro displacement of 4‐nitrophthalonitrile by the phenoxide ion of 2′,5′‐dihydroxy‐p‐terphenyl, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and cyclodehydration of the resulting bis(ether diacid). A series of new poly(ether imide)s bearing laterally attached p‐terphenyl groups were prepared from the bis(ether anhydride) with various aromatic diamines via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s followed by thermal or chemical imidization to the poly(ether imide)s. The inherent viscosities of the poly(amic acid) precursors were in the range of 0.62–1.26 dL/g. Most of the poly(ether imide)s obtained from both routes were soluble in polar organic solvents, such as N,N‐dimethylacetamide. All the poly(ether imide)s could afford transparent, flexible, and strong films with high tensile strengths. The glass‐transition temperatures of these poly(ether imide)s were recorded as between 214 and 276 °C by DSC. The softening temperatures of all the poly(ether imide) films stayed in the 207–265 °C range according to thermomechanical analysis. For all the polymers significant decomposition did not occur below 500 °C in nitrogen or air atmosphere. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1008–1017, 2004  相似文献   

20.
Dynamic rheological measurements were carried out on blends of poly(ether ether ketone) (PEEK)/poly(aryl ether sulfone) (PES) in the melt state in the oscillatory shear mode. The data were analyzed for the fundamental rheological behavior to yield insight into the microstructure of PEEK/PES blends. A variation of complex viscosity with composition exhibited positive–negative deviations from the log‐additivity rule and was typical for a continuous‐discrete type of morphology with weak interaction among droplets. The point of transition showed that phase inversion takes place at composition with a 0.6 weight fraction of PEEK, which agreed with the actual morphology of these blends observed by scanning electron microscopy. Activation energy for flow, for blend compositions followed additive behavior, which indicated that PEEK/PES blends may have had some compatibility in the melt. Variation of the elastic modulus (G′) with composition showed a trend similar to that observed for complex viscosity. A three‐zone model used for understanding the dynamic moduli behavior of polymers demonstrated that PEEK follows plateau‐zone behavior, whereas PES exhibits only terminal‐zone behavior in the frequency range studied. The blends of these two polymers showed an intermediate behavior, and the crossover frequency shifted to the low‐frequency region as the PEEK content in PES increased. This revealed the shift of terminal‐zone behavior to low frequency with an increased PEEK percentage in the blend. Variation of relaxation time with composition suggested that slow relaxation of PEEK retards the relaxation process of PES as the PEEK concentration in the blend is increased because of the partial miscibility of the blend, which affects the constraint release process of pure components in the blend. A temperature‐independent correlation observed in the log–log plots of G′ versus loss modulus (G″) for different blend systems fulfilled the necessary condition for their rheological simplicity. Further, the composition‐dependent correlations of PEEK/PES blends observed in a log–log plot of G′ versus G″ showed that the blends are either partially miscible or immiscible and form a discrete‐continuous phase morphology. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1548–1563, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号