首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The photopolymerization of methyl methacrylate (MMA) in visible light was studied at 40°C using the acridone-bromine (acridone-Br2) combination as the photoinitiator. The polymerization was found to proceed via a free radical mechanism, and the radical generation process was considered to follow an initial complexation reaction between monomer and each initiator component (acridone and Br2), followed by further interaction between these two initiator-monomer complexes. Kinetic data indicated a lower-order dependence of R on initiator concentrations (initiator exponent < 0.5). Initiator-dependent chain termination was signifi-cant along with the usual bimolecular mode of chain termination. The monomer exponent varied from about 1.00 to 2.00, depending on the nature of solvents used. The nonidealities in this system were also analyzed.  相似文献   

2.
Free radical photopolymerization of methyl methacrylate (MMA) in visible light was studied at 40°C using sulfur dioxide-halogen (Cl2, Br2, and I2) combinations as photoinitiators. Of the three SO2/halogen systems, only the SO2/Br2 combination formed an interesting initiating system due to 1:1 complexation between the two components resulting in pronounced enhancement of the rate of photopolymerization over those produced by each of the initiator components when used as a lone photoinitiator. Photopolymerization of MMA induced by (SO2-Br2) complex (1:1) as the photoinitiator exhibited a low initiator exponent value, 0.26, and a monomer exponent value of 1.5. Kinetic nonidealities were explained on the basis of (a) monomer-dependent chain initiation and (b) significant initiator-dependent chain termination along with the usual bimolecular mode of chain termination.  相似文献   

3.
Benzophenone (BP)-sensitized photopolymerization of methyl methacrylate (MMA) in near UV/visible light was studied at 40°C using dimethylaniline maleic acid (DMA—MA) combination as the photoinitiator. An instantaneous 1:1 complexation between DMA and MA takes place when they are mixed together in acetonitrile. Also, instantaneous complex formation occurs between DMA and MMA and between MA and MMA when they are dissolved in MMA in low concentrations, separately. Interestingly, when equimolar proportions of DMA and MA are mixed together in MMA, there is indication for further instantaneous complexation between (DMA—MMA) complex and (MA—MMA) complex forming the actual initiating species in the photopolymerization system. Initiator exponent was 0.28 and monomer exponent varied between 0.0 to 1.8 depending on the nature of the solvent and range of dilution used. Analysis of kinetic data indicates a free radical mechanism for the polymerization with initiator-dependent termination. Chain termination via degradative initiator transfer is quite significant; but the degradative effect becomes much less prominent in the higher range of initiator concentration indicating that the reinitiation reaction following the initiator transfer process assumes more proportionate significance as the initiator concentration is increased, probably as a result of higher reinitiation efficiency. Polymers obtained gave evidence for the incorporation of aromatic (amine) end groups in them.  相似文献   

4.
Photopolymerization of MMA was carried out at 40°C in diluted systems by use of quinolinebromine (Q–Br2) charge-transfer complex as the initiator and chloroform, carbon tetrachloride, chlorobenzene, dioxane, THF, acetone, benzene, toluene, quinoline, and pyridine as solvents. The results showed variable monomer exponents ranging from 1 to 3. For chloroform, carbon tetrachloride, and chlorobenzene, the monomer exponent observed was unity; for other solvents used, the value of the same exponent was much higher (between 2 and 3). Initiation of polymerization is considered to take place through radicals generated in the polymerization systems by the photodecomposition of (Q–Br2)–monomer complex (C) formed instantaneously in situ on addition of the Q–Br2 complex in monomer. The kinetic feature of high monomer exponent is considered to be due to higher order of stabilization of the initiating complex (C) in presence of the respective solvents. In the presence of the retarding solvents, very low or zero initiator exponents were also observed, depending on the nature and concentration of the solvents used. The deviation from the square-root dependence of rate on initiator concentration becomes higher at high solvent and initiator concentrations in general. This novel deviation is explained on the basis of initiator termination, probably via degradative chain transfer involving the solvent-modified initiating complexes and the propagating radicals.  相似文献   

5.
Polymerization of methyl methacrylate (MMA) was kinetically studied under photo condition using near UV visible light at 40°C and employing morpholine (MOR)–chlorine (Cl2) charge transfer (C-T) complex as the photoinitiator. The rate of polymerization (Rp) was dependent on morpholine/chlorine mole ratio; the 1 : 2 (MOR–Cl2) C-T complex acted as the latent initiator complex, C, which underwent further complexation with the monomer molecules to give the actual initiator complex, I. Using 1 : 2 (MOR-Cl2) C-T complex as the latent initiator, the initiator exponent evaluated for bulk photopolymerization of MMA was 0.071 and monomer exponent determined from studies of photopolymerization in benzene diluted system was 1.10. Benzoquinone behaved as a strong inhibitor and the polymers tested positive for the incorporation of chlorine atom end groups. Polymerization followed a radical mechanism. Kinetic nonideality as revealed by low (≪0.5) initiator exponent and a monomer exponent of greater than unity were explained in terms of primary radical termination effect. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1681–1687, 1997  相似文献   

6.
The photopolymerization of MMA in visible light was studied at 45°C using IC13 as the photoinitiator. The initiator exponent was found to be 0.16 and the monomer exponent varied between 1.0 to 1.50, depending on the nature of the solvent. Analysis of the data revealed that the polymerization was induced by a free radical mechanism. Nonideality of the kinetics was explained on the basis of 1) Monomer-dependent chain initiation and 2) Initiator-dependent chain termination via degradative initiator transfer.  相似文献   

7.
Photopolymerization of methyl methacrylate (MMA) in visible light was studied at 40°C using Rhodamine 6G—Benzoyl peroxide combination as photoinitiator. The photopolymerization proceeds by a free radical mechanism and the radical generation process occurs by an initial complexation reaction between the initiator components. Kinetic data indicated a lower-order dependence of Rp on initiator concentrations (initiator exponent < 0.5). Initiator-dependent chain termination was significant along with the bimolecular mode of chain termination.  相似文献   

8.
Iodine monobromide easily induces photopolymerization of methyl methacrylate (MMA) at 40°C under visible light. Initiator exponent and monomer exponent values were found to be 0.5 and 2, respectively, at low initiator concentrations, while the corresponding values at high initiator concentration conditions were zero and 3. The chain transfer constant of IBr at 40°C was found to be 13.0. Kinetic and other data indicate a radical polymerization mechanism involving complexation of monomer molecules with iodine monobromide prior to radical generation, and termination is believed to take place biomolecularly at low IBr concentrations and unimolecularly, involving reaction with the initiator, at high IBr concentrations (initiator termination).  相似文献   

9.
Photopolymerization of MMA in visible light was studied at 40°C using acridone as the photoinitiator. The polymerization was found to proceed via a free radical mechanism and the radical generation process was considered to follow an initial complexation reaction between monomer and acridone. Kinetic data indicated a lower order dependence of Rp on the initiator concentration (initiator exponent < 0.5). Initiator-dependent chain termination was significant along with the usual bimolecular mode of chain termination. The monomer exponent varied from about 1.0 to 1.5, depending on the nature of the solvent used. The nonidealities in this case were also analyzed.  相似文献   

10.
Polymerization of MMA was carried out in presence of visible light (440 nm), quinoline-bromine charge-transfer complex being used as the photoinitiator. The initiator exponent was observed to be 0.5 up to 0.014 M initiator concentration; when chloroform was used as the solvent, the monomer exponent was found to be unity. The polymerization was inhibited in presence of hydroquinone but little inhibitory effect was observed in the presence of air. An average value of k2p/kt for this photopolymerization system was found to be (1.08 ± 0.22) × 10-2. Kinetic and other evidence indicates that the overall polymerization takes place by a radical mechanism.  相似文献   

11.
The polymerization of MMA was kinetically studied in the presence of visible light (using a 125-W high-pressure mercury vapor lamp with fluorescent coating, without a filter), a THF—bromine charge-transfer complex being used as the photoinitiator. The initiator exponent was 0.5 in bulk polymerization. The monomer exponent varied from about 1.2 to about 2.5, depending on the nature of the solvent used; the initiator exponent also varied in diluted systems, depending on the nature and proportion of the solvent, the variation being from a value of 0.5 in bulk system to zero or almost zero at about 25% (v/v) solvent concentration. Other kinetic parameters, viz., kp2/kt and the activation energy for polymerization, were determined and are reported. Kinetic and other evidence indicates that the photopolymerization takes place by a radical mechanism and termination is bimolecular in nature in bulk systems; in dilute systems, termination by initiator complex assumes predominance, particularly at high solvent concentrations (≥25% v/v).  相似文献   

12.
Polymerization of MMA was carried out under visible light (440 nm) with the use of pyridine–bromine (Py–Br2) charge-transfer (CT) complex as the photoinitiator. Initiator exponent and intensity exponent were 0.5 and 0.43, respectively, and the monomer exponent was found to be dependent on the nature of the solvent or diluent used. The Polymerization was inhibited in the presence of hydroquinone, but oxygen had very little inhibitory effect. An average value of kp2/kt for this polymerization system was 1.19 × 10?2, and the activation energy of photopolymerization was 4.95 kcal/mole. Kinetic data and other evidence indicate that the overall polymerization takes place by a radical mechanism. With Py–Br2 complex as the photoinitiator, the order of polymerizability at 40°C was found to be MMA, EMA ? Sty, MA.  相似文献   

13.
Photopolymerization of the vinyl monomer (M) of methyl methacrylate (MMA) was kinetically studied by using near-UV/visible light at 40°C and employing a morpholine (MOR)–sulfur dioxide (SO2) charge-transfer (C-T) complex as the photoinitiator. The rate of polymerization (RP) was found to be dependent on the morpholine: sulfur dioxide mole ratio; the 1 : 2 (MOR–SO2) complex acted as the latent initiator complex C which underwent further complexation with the monomer molecules to give the actual initiating complex I. Using the 1 : 2 (MOR–SO2) C-T complex as the latent initiator, the observed kinetics may be expressed as RP [MOR–SO2]0.27[M]1.10. Benzoquinone behaved as a strong inhibitor. Polymers obtained tested positive for the incorporation of a sulphonate-type end group. Polymerization followed a radical mechanism. Kinetic nonideality as revealed by a low initiator exponent and monomer exponent of greater than unity was explained on the basis of a prominent primary radical termination effect. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1973–1979, 1998  相似文献   

14.
Photopolymerization of MMA at 35° was studied using benzophenone (BP)-dimethylaniline (DMA) combination as photo-redox initiator. Initiator exponent was 0.13; monomer exponent was < 1.0 in chlorinated solvents and > 1.0 in other solvents. Photoreduction of BP by DMA is considered to produce chain-initiating radicals and analysis of kinetic data indicates this process to be solvent and monomer dependent. Chlorinated solvents are indicated to be much more reactive than other solvents. The photopolymerization is also characterized by significant primary radical termination.  相似文献   

15.
Photopolymerization of methyl methacrylate (MMA) was studied at 40°C using a macromolecular C.T. Complex between poly(N-vinyl carbazole) and bromine, expressed in brief as (PNVC–Br2) complex, as the photoinitiator. Initiator exponent was 0.40 for [PNVC–Br2] ≤ 2.5 × 10?3 mol L?1 and practically zero for [PNVC–Br2] > 2.5 × 10?3 mol L?1. Monomer exponent in different diluent systems such as benzene, carbon tetrachloride, and acetone was close to 1.0. Low initiator exponent (<0.5) is explained on the basis of an initiator-dependent termination mechanism, in addition to the usual bimolecular termination. Analysis of kinetic data indicates that the initiator-dependent termination is primarily due to degradative initiator transfer and that due to primary radicals is considered inconsequential in view of monomer exponent being close to unity. The non-ideal termination process assumes over-whelming prominence at high [PNVC–Br2].  相似文献   

16.
Low concentrations (0.001–0.03M) of chlorine easily induce photopolymerization of MMA at 40°C. Kinetic data indicate that polymerization follows a radical mechanism involving complexation of monomer by the initiator and initiation takes place through radical generation during photodecomposition of the initiator-monomer complex. Termination appears to take place bimolecularly. The kp2/kt value for MMA polymerization at 40°C was found to be 0.83 × 10?2. Rates of chlorine-initiated photopolymerization were found to decrease in the order MMA, EMA ? VA, Sty > MA.  相似文献   

17.
Photopolymerization of MMA in visible light was studied at 40 using THF-SO2 complex as the photoinitiator. Initiator exponent was 0.19 and monomer exponent lay between 1.0 and 1.5, depending on thenature of solvent. Analysis of kinetic and other data indicate that the polymerization proceeds by a radical mechanism and termination is initiator dependent. Chain termination via degradative chain (initiator) transfer appears to be significant feature.  相似文献   

18.
The kinetics of photopolymerization reactions of acrylamide initiated by copper (II)–bis(amino acid) chelates with amino acids glutamic acid, serine, or valine were studied at 30°C. The extent of monomer conversion increases with increased initiator concentration and falls off after reaching a maximum. Analysis of the results shows that for lower concentrations of the initiator, the rate of monomer disappearance is proportional to light absorption fraction f[monomer] and the square root of the intensity. At higher concentrations of the initiator, the rate of monomer disappearance is proportional to Fε/[initiator]1/2; the monomer exponent is 1.5 and the intensity exponent 0.5. Mutual termination of the radicals is proposed at lower concentrations of the initiator; at higher concentrations of the initiator termination of the initiator radical by the copper (II) complex along with mutual termination occurs. The initiator radical species is identified from flash photolysis studies of these complexes as the Cu(I)-coordinated radical. The effect of pH on the monomer conversion is explained. The data indicate a free-radical mechanism of polymerization and a reaction scheme is proposed for the polymerization reactions.  相似文献   

19.
Photopolymerization of MMA was studied kinetically at 35° using TEA-BZ2O2 redox system as initiator. The initiator exponent is 0.34 but the monomer exponent depends on the solvent. Solvents (acetonitrile, pyridine and bromobenzene) giving negative or fractional monomer exponent show a rate enhancing effect through actively influencing the initiation step; benzene and chloroform give first order dependence of rate on [monomer] and behave as normal (inert) diluents. Initiation of polymerization takes place through radicals generated by photodecomposition of TEA-BZ2O2 complex formed in situ, the radical generation step being solvent or monomer dependent. Kinetic non-idealities are interpreted in terms of significant initiator dependent termination via degradative chain transfer.  相似文献   

20.
The end groups of styrene–methyl methacrylate (St‐MMA) copolymers polymerized radically with 2,2′‐azobisisobutyronitrile (AIBN) as an initiator, which are difficult to characterize even by NMR, were investigated by pyrolysis–gas chromatography. On the resulting pyrograms, characteristic products that formed from the end‐group moiety due to AIBN, such as 2‐cyanopropane, 2‐cyanopropen, and various compounds consisting of an isobutyronitrile group and a monomer unit, were observed together with those from the main chain, such as St and MMA monomers and various dimeric and trimeric products. The relative abundance between the recombination and disproportionation termination reactions in the copolymerization process was estimated from the relative intensities between the characteristic peaks of the end group and those of the main chain. Thus, the estimated abundance for the termination reactions suggested that the polymerization process for this particular copolymer system terminated preferentially by recombination rather than by disproportionation. Furthermore, the relative abundance between the monomer units adjacent to the chain‐end AIBN residues was estimated on the basis of the peak intensities of the products consisting of an isobutyronitrile group and either monomer unit, which reflected the penultimate neighboring structure of the end group in the polymer chain. Thus, the observed results suggested that the isobutyronitrile radical formed by the dissociation of AIBN in the initiation reaction was predominantly adjoined by St monomer rather than by MMA monomer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1880–1888, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号