首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Electronic absorption spectra have been measured by diffuse reflectance for MgUO4–x, MgU3O9, CaUo)4–x, Ca2UO5, Ca3UO6, Ca2U3O11, CaU2O7, CaU4O12, SrUO3, SrUO4, SrUO3.67, Sr2U3O11, SrU4O12.8, Sr2UO5, Sr3UO6, BaUO4, Ba3UO6, BaU2O7, Ba2U2O7 and Ba2U3O11.Measurements in the near i.r. region of the spectrum have identified transitions arising within the manifold of the 5f electronic levels which indicate the presence of uranium(V) in certain compounds. The portion of the spectrum between 20 000 and 30 000 cm–1 is shown to contain charge-transfer transitions and, in certain instances, vibrational progressions which are characteristic of the symmetry of the UO6 octahedron in the solid state structure.  相似文献   

2.
Summary X-ray photoelectron spectra for MgUO4–x, MgU3O8.9, CaUO4–x, Ca2UO5, Ca3UO6, Ca2U3O11, CaU2O7, CaU4O12, SrUO4, SrUO3.67, Sr2U3O11, SrU4O12.8, Sr2UO5, Sr3UO6, BaUO4, Ba3UO6, BaU2O7, Ba2U2O7 and Ba2U3O11 have been recorded.Recorded O(1s) peak positions range from 529.5 to 533.4 eV and certain trends can be related to data obtained from other studies. By contrast, the range of U(4f) peak positions is much smaller totalling 0.7 eV. All compounds show satellite structure to the high binding energy side of the U(4f) peaks. Satellites separated byca. 10 eV from the main peaks are assigned to a transition from the uranium-oxygen bonding band to the U(6d) conduction band.  相似文献   

3.
Zusammenfassung Es werden die Resultate des isothermen Zerfalles und der Reduktion vonstandardisiertem Ammoniumpolyuranat im Bereich von 285 bis 463° C (in Wasserstoff) wiedergegeben. Der Zerfall zu UO3 wurde schon bei einer Temp. unter 290° C festgestellt, diese Phase blieb jedoch darauf stabil bis 320° C. Zwischen 320° C und 380° C verläuft die Reduktion zu U3O8, über 380° C aber zu UO2. Die Aktivierungsenergien bei der Reduktion von UO3 zu U3O8 und von U3O8 zu UO2 wurden berechnet, und zwar 32,2 kcal/g-mol und 41,7 kcal/g-mol. Die Ergebnisse können mit den Literaturangaben für die Reduktion der einzelnen Phasen UO3 und U3O8 verglichen werden. Die beobachteten Unterschiede weisen auf den Einfluß der Aktivität der Präparate hin.
The isothermal decomposition and reduction of ammonium polyuranate (ADU) was investigated in the temperature interval 285–463° C in hydrogen. The formation of UO3 was noticed below 290° C and this product was stable up to 320° C. U3O8 was stable from this temperature on up to 380° C, where the reduction to UO2 was observed. The activation energies 32,2 Kcal/mole and 41.7 Kcal/mole were calculated for the reduction of UO3 to U3O8 and for the reduction of U3O8 to UO2, respectively. The results are comparable with the published data on reduction of separate phases UO3 and U3O8. Some differences noticed show the influence of the activities of the products.


Mit 4 Abbildungen  相似文献   

4.
Bench scale experiments were conducted to determine the dissolution characteristics of UO2, U3O8, and UO3 in aqueous peroxide-containing carbonate solutions. The experimental parameters investigated included carbonate countercation (NH4 +, Na+, K+, and Rb+) and H2O2 concentration. The carbonate countercation had a dramatic influence on the dissolution behavior of UO2 in 1 M carbonate solutions containing 0.1 M H2O2, with the most rapid dissolution occurring in (NH4)2CO3 solution. The initial dissolution rate (y) of UO2 in 1 M (NH4)2CO3 increased linearly with peroxide concentration (x) ranging from 0.05 to 2 M according to: y = 2.41x + 1.14. The trend in initial dissolution rates for the three U oxides under study was UO3 ≫ U3O8 > UO2.  相似文献   

5.
Heat capacities of U1–yLayO2 were measured by means of direct heating pulse calorimetry in the temperature range from 300 to 1500 K. An anomalous increase in the heat capacity curve of each sample was observed similarly to the case of U1–yGdyO2, found recently in our laboratory. As the lanthanum content of U1–yLayO2 increased, the onset temperature of an anomalous increase in the heat capacity decreased and the excess heat capacity increased. The enthalpy of activation (Hf) and the entropy of activation (Sf) of the thermally excited process, which cause the excess heat capacity were obtained to be 2.14, 1.63 and 1.50 eV and 39.4, 34.2 and 31.8 J·K–1·mol–1 for U0.956La0.044O2, U0.910La0.090O2 and U0.858La0.142O2, respectively. The values at zero La content extrapolated by using the data of Hf and Sf for U1–yLayO2 were in good agreement with the experimental values of undoped UO2 so far reported, similarly to the case of Gddoped UO2. The electrical conductivities of U1–yLayO2 (y=0.044 and 0.142) were also measured as a function temperature. No anomaly was seen in the electrical conductivity curve. It may be concluded that the excess heat capacity originates from the predominant contribution of the formation of oxygen clusters and from the small contribution of the formation of electron-hole pairs.  相似文献   

6.
Zusammenfassung Mit Hilfe der pH- und konduktometrischen Titrationen wurde die Stöchiometrie der Verbindungen untersucht, die bei der Reaktion von Uranylnitrat mit Alkali-Ortho-, Pyro- und Metaarseniten entstehen. Der Verlauf der Titrationskurven zeigt klar die Bildung der Verbindungen 3 UO2O · As2O3, 2 UO2O · As2O3 und UO2O · As2O3 in den pH-Bereichen 7,0–9,9 bzw. 6,0–7,5 bzw. 5,0–6,8. Der Anteil von Uranyl in den Alkaliarseniten wächst mit wachsender Konzentration von Na2O. Die Bildung der Uranylarsenite ist also eine Funktion der H+-Ionenkonzentration. Wir fanden, daß die Ausfällung dieser Verbindungen fast quantitativ ist.
The stoichiometry of the compounds formed by the interaction of uranyl nitrate and different alkali arsenites (ortho-, pyro-, and meta-) have been investigated by means of pH and conductometric titrations. The breaks and inflections in titration curves provide cogent evidence for the formation of 3 UO2O · As2O3, 2 UO2O · As2O3 and UO2O · As2O3 in pH ranges 7.0–9.9, 6.0–7.5 and 5.0–6.8 respectively. The proportion of uranyl increases with the increase in the concentration of Na2O molecules in alkali arsenites. The formation of uranyl arsenites is thus a function of H+ ion concentration. The precipitation of these compounds has been found to be almost quantitative.


Mit 4 Abbildungen  相似文献   

7.
Two mononuclear uranyl complexes, [UO2L1] ( 1 ) and [UO2L2] ⋅ 0.5 CH3CN ⋅ 0.25 CH3OH ( 2 ), have been synthesized from two multidentate N3O4 donor ligands, N,N′-bis(5-methoxysalicylidene)diethylenetriamine (H2L1) and N,N′-bis(3-methoxysalicylidene)diethylenetriamine (H2L2), respectively, and have been structurally characterized. Both complexes 1 and 2 showed a reversible UVI/UV couple at −1.571 and −1.519 V, respectively, in cyclic voltammetry. The reduction potential of the UVI/UV couple shifted towards more positive potential on addition of Li+, Na+, K+, and Ag+ metal ions to acetonitrile solutions of complex 2 , and the resulting potential was correlated with the Lewis acidity of the metal ions and was also justified by theoretical DFT calculations. No such shift in reduction potential was observed for complex 1 . All four bimetallic products, [UO2L2Li0.5](ClO4)0.5 ( 3 ), [UO2L2Na(ClO4)]2 ( 4 ), [UO2L2Ag(NO3)(H2O)] ( 5 ), and [(UO2L2)2K(H2O)2]PF6 ( 6 ), formed on addition of the Li+, Na+, Ag+, and K+ metal ions, respectively, to acetonitrile solutions of complex 2 , were isolated in the solid state and structurally characterized by single-crystal X-ray diffraction. In all the species, the inner N3O2 donor set of the ligand encompasses the equatorial plane of the uranyl ion and the outer open compartment with O2O′2 donor sites hosts the second metal ion.  相似文献   

8.
Nanoscale uranyl peroxide clusters containing UO22+ groups bonded through peroxide bridges to form polynuclear molecular species (polyoxometalates) exist both in solution and in the solid state. There is an extensive family of clusters containing 28 uranium atoms (U28 clusters), with an encapsulated anion in the center, for example, [UO2(O2)3?x(OH)x4?], [Nb(O2)43?], or [Ta(O2)43?]. The negative charge of these clusters is balanced by alkali ions, both encapsulated, and located exterior to the cluster. The present study reports measurement of enthalpy of formation for two such U28 compounds, one of which is uranyl centered and the other is peroxotantalate centered. The [(Ta(O2)4]‐centered U28 capsule is energetically more stable than the [(UO2)(O2)3]‐centered capsule. These data, along with our prior studies on other uranyl–peroxide solids, are used to explore the energy landscape and define thermochemical trends in alkali–uranyl–peroxide systems. It was suggested that the energetic role of charge‐balancing alkali ions and their electrostatic interactions with the negatively charged uranyl–peroxide species is the dominant factor in defining energetic stability. These experimental data were supported by DFT calculations, which agree that the [(Ta(O2)4]‐centered U28 capsule is more stable than the uranyl‐centered capsule. Moreover, the relative stability is controlled by the interactions of the encapsulated alkalis with the encapsulated anion. Thus, the role of alkali‐anion interactions was shown to be important at all length scales of uranyl–peroxide species: in both comparing clusters to clusters; and clusters to monomers or extended solids.  相似文献   

9.
DFT calculations of UO2 oxidation indicate stable compounds U4O8.889, U3O7, and U3O7.333, which are based on ordering of split quad‐interstitial clusters.  相似文献   

10.
Extraction of uranium from tissue paper, synthetic soil, and from its oxides (UO2, UO3 and U3O8) was carried out using supercritical carbon dioxide modified with methanol solutions of extractants such as tri-n-butyl phosphate (TBP) or N,N-dihexyl octanamide (DHOA). The effects of temperature, pressure, extractant/nitric acid (nitrate) concentration, and of hydrogen peroxide on uranium extraction were investigated. The dissolution and extraction of uranium in supercritical CO2 modified with TBP, from oxide samples followed the order: UO3 ≫ UO2 > U3O8. Addition of hydrogen peroxide in the modifier solution enhanced the dissolution/extraction of uranium in dynamic mode. DHOA appeared better than TBP for recovery of uranium from different oxide samples. Similar enhancement in uranium extraction was observed in static mode experiments in the presence of hydrogen peroxide. Uranium estimation in the extracted fraction was carried out by spectrophotometry employing 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Br-PADAP) as the chromophore.  相似文献   

11.
The solid state preparation, thermal and hydrolytic characteristics of thallium(I)—uranates(VI) are described. The phases identified were Tl2UO4, Tl2U2O7 and a range of solid solution (Tl2O. 2,33 UO3? Tl2O. 6 UO3). The thallium uranates are isostructural with the corresponding potassium uranates. Tl2U2O7 is the stable phase formed from the other uranates on hydrolytic treatment. The thallium uranates lose thallium(I) oxide on heating to temperatures above 750°C and the order of thermal stability is Tl2U6O19~Tl2U3O10~Tl2U2O7»Tl2UO4.  相似文献   

12.
Gadolinium aluminates, GdAlO3, Gd3Al5O12 and Gd4Al2O9 were synthesized by the solution combustion method. Very fine particles in the nanoparticle range of ∼10-20 nm could be prepared by this method as evidenced by surface area measurement by multipoint BET method. Thermal studies on these compounds were carried out using high-temperature X-ray diffraction (HT-XRD) and differential scanning calorimetry (DSC) methods. The thermal expansion coefficients of GdAlO3, Gd3Al5O12 and Gd4Al2O9 were calculated from the lattice parameter data and specific heats were calculated from DSC data. The lattice parameters of GdAlO3 and Gd3Al5O12 were found to increase linearly with temperature whereas Gd4Al2O9 did not show a linear trend. The specific heats of these compounds show an increasing trend with increase in aluminum atom fraction. Based on the thermodynamic data available in the literature and the specific heat data obtained in this study, oxygen potential diagram was constructed at 1000 K.  相似文献   

13.
Uranium oxides are known as nonstoichiometric compounds whose composition changes according to external conditions such as temperature and oxygen partial pressure. The change of composition caused by the formation of defect structure results in a change of their properties. In this paper, the compositional changes of UO2 and doped UO2 [(U, M)O2; M=La, Ti, Pu, Th, Nb, Cr, etc.] and also those of other uranium oxides (U4O9, U3O8) are shown against oxygen partial pressure. From the results of doped UO2, it is concluded that the valence control rule holds to a first approximation. The defect structures are estimated both from log x vs. log Po2 (x: deviation from the stoichiometric composition and Po2: oxygen partial pressure) and log vs. log Po2 (: electrical conductivity) relations. The defect structures of UO2 and doped UO2 are derived based on the Willis model for UO2+x. The detect structure of U4O9 phase is similar to that of UO2+x, but the defect structures of U3O8 phase are complicated due to the existence of many higher-order phase transitions. The thermodynamic data such as the partial molar enthalpy and entropy and the heat capacity are important to characterize the defect structure. The high temperature heat capacities of UO2 doped with Gd show pronounced increases at high temperatures the onset temperature decreases as the dopant content increases. The increase of heat capacity is interpreted to be due to the formation of lattice defects. The heat capacity measurements on U4O9 and U3O8 clucidate the presence of the phase transition. The mechanisms of these phase transitions are discussed.  相似文献   

14.
Summary The species, UO2H3L, UO2H2L2–, UO2HL3–, UO2L4–, UO2(OH)L5– and UO2(OH)2L6– are found in the equilibria between uranyl ions and 3,3-bis[N,N-di(carboxymethyl)-aminomethyl]-o-cresolsulphonphthalein (H6L; xylenol orange; dcac) in aqueous solution. The equilibria have been studied by the potentiometric method at 25° and at an ionic strength of 0.1M (KNO3). New algebraic equations have been employed to evaluate the equilibrium constants.  相似文献   

15.
The phase relations in the system In2O3–TiO2–MgO at 1100 and 1350°C are determined by a classical quenching method. In this system, there are four pseudobinary compounds, In2TiO5, MgTi2O5 (pseudobrookite type), MgTiO3 (ilmenite type), and Mg2TiO4 (spinel type) at 1100°C. At 1350°C, in addition to these compounds there exist a spinel-type solid solution Mg2−xIn2xTi1−xO4 (0≤x≤1) and a compound In6Ti6MgO22 with lattice constants a=5.9236(7) Å, b=3.3862(4) Å, c=6.3609(7) Å, β=108.15(1)°, and q=0.369, which is isostructural with the monoclinic In3Ti2FeO10 in the system In2O3–TiO2–MgO. The relation between the lattice constants of the spinel phase and the composition nearly satisfies Vegard's law. In6Ti6MgO22 extends a solid solution range to In20Ti17Mg3O67 with lattice constants of a=5.9230(5) Å, b=3.3823(3) Å, c=6.3698(6) Å, β=108.10(5)°, and q=0.360. The distributions of constituent cations in the solid solutions are discussed in terms of their ionic radius and site preference effect.  相似文献   

16.
Thermodynamic modeling methods have been used for calculating the compositions of the condensed medium and gas phase forming upon heating of the oxides UO2, UO3, U3O8, and U4O9 at constant pressure (p = 0.1 MPa) in the temperature range 300–2000 K in an inert (Ar) or oxidative (O2) atmosphere. The stability of uranium oxides and the state of aggregation of the condensed medium have been studied as a function of temperature. Original Russian Text ? G.K. Moiseev, A.B. Shubin, T.V. Kulikova, A.L. Ivanovskii, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 6, pp. 985–989.  相似文献   

17.
Phase-pure nanocrystalline Li4Ti5O12 with BET surface areas between 183 and 196 m2/g was prepared via an improved synthetic protocol from lithium ethoxide and titanium(IV) butoxide. The phase purity was proved by X-ray powder diffraction, Raman spectroscopy and cyclic voltammetry. Thin-film electrodes were prepared from two nanocrystalline samples of Li4Ti5O12 and one microcrystalline commercial sample. Li-insertion behavior of these electrodes was related to the particle size.Presented at the 3rd International Meeting on Advanced Batteries and Accumulators, 16–20 June 2002, Brno, Czech Republic  相似文献   

18.
Li2O–Cr2O3–GeO2–P2O5 based glasses were synthesized by a conventional melt-quenching method and successfully converted into glass-ceramics through heat treatment. Experimental results of DTA, XRD, ac impedance techniques and FESEM indicated that Li1.4Cr0.4Ge1.6(PO4)3 glass-ceramics treated at 900 °C for 12 h in the Li1 + xCrxGe2 − x(PO4)3 (x = 0–0.8) system exhibited the best glass stability against crystallization and the highest ambient conductivity value of 6.81 × 10−4 S/cm with an activation energy as low as 26.9 kJ/mol. In addition, the Li1.4Cr0.4Ge1.6(PO4)3 glass-ceramics displayed good chemical stability against lithium metal at room temperature. The good thermal and chemical stability, excellent conducting property, easy preparation and low cost make it promising to be used as solid-state electrolytes for all-solid-state lithium batteries.  相似文献   

19.
Redox potentials: E(UO 2 2+ /UO 2 + )=60±4 mV/NHE, E(U4+/U3+)=–630±4mV/NHE measured at 25°C in acidic medium (HClO4 1M) using cyclic voltametry are in accordance with the published data. From 5°C to 55°C the variations of the potentials of these systems (measured against Ag/AgCl electrode) are linear. The entropies are then constant: [S(UO 2 2+ /UO 2 + )–S(Ag/AgCl)]/F=0±0.3 mV/°C, [S(U4+/U3+)–S(Ag/AgCl)]/F=1.5±0.3 mV/°C. From 5°C to 55°C, in carbonate medium (Na2CO3=0.2M), the Specific Ionic Interaction Theory can model the experimental results up to I=2M (Na+, ClO 4 , CO 3 2– ): E(UO2(CO3) 3 4– /UO2(CO3) 3 5– )=–778±5 mv/NHE (I=0, T=25°C, (25°C)=(UO2(CO3) 3 4– , Na+)–(UO2(CO3) 3 5– , Na+)=0.92 kg/mole, S(UO2(CO3) 3 4– /UO2(CO3) 3 5– =–1.8±0.5 mV/°C (I=0), =(Cl, Na+)=(1.14–0.007T) kg/mole. The U(VI/V) potential shift, between carbonate and acidic media, is used to calculate (at I=0,25°C):
  相似文献   

20.
Literature data from in vivo chest measurements and urinary excretion rates of individuals exposed to U3O8 and UO2 were used to compare the results predicted by different models with empirical observations in humans. As a result the use of the respiratory tract model proposed in ICRP Publication 66 with its default absorption parameters underestimates urinary excretion of inhaled U3O8 and UO2. The new respiratory tract model also overpredicts the Fecal/Urine activity ratio, independently of the systemic model. For U3O8 and UO2 the choice of systemic model has very little influence on the predicted urinary excretion of inhaled compounds. On the other way, the choice of the respiratory tract model does influence the predicted urinary excretion significantly. In this work specific absorption parameters for U3O8 and UO2 were derived to be used in the respiratory tract model proposed in ICRP Publication 66. The predicted biokinetics of these compounds were compared with those derived for Type M and Type S compounds of uranium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号