首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction in THF of Na2[Fe(CO)4·xTHF with InBr3 in an approximate 3.5:1 molar ratio affords the new [In{Fe(CO)4}3]3− trianion, which has been isolated as its trimethylbenzylammonium salt and structurally characterized by single-crystal X-ray diffraction studies. On oxidation with two equivalents of AgBF4 it stepwise affords the anions [In2Fe6(CO)24]x with x = 4 and 2, respectively. Its reaction with InBr3 gives species of the composition [InBr3−x{Fe(CO)4x}]x (x = 1,2), and the anion with the composition [InBr2{Fe(CO)4}] has been structurally characterized as the dimeric species [InBr2Br4{η-Fe(CO)4}2]2−.  相似文献   

2.
121Sb Mössbauer spectra of the title complexes, whose isomer shifts are intermediate between the organoantimony(III) and organoantimony(V) compounds, suggest that considerable electrons are donated from hydrido ligand and Fe(CO)4 fragments to the antimony atom.  相似文献   

3.
The interaction of freshly precipitated cadmium and zinc morpholinedithiocarbamates with solutions of AuCl3 in 2 M HCl is studied. In both cases, the heterogeneous reactions of gold(III) binding from solutions lead to the formation of the ionic gold(III) complex [Au3{S2CN(CH2)4O}6][Au2Cl8][AuCl4] (I), whose molecular and supramolecular structures are determined by X-ray diffraction analysis. Compound I includes centrosymmetric and noncentrosymmetric cations [Au{S2CN(CH2)4O}2]+ in a ratio of 1: 2. According to the manifested structural differences, the complex cations are related as conformers (cations A are Au(1) and cations B are Au(2)). At the supramolecular level, the isomeric cations form linear trinuclear structural fragments [Au3{S2CN(CH2)4O}6]3+ [A...B...A] due to secondary bonds Au...S of 3.6364 Å. The anionic part of compound I is presented by [AuCl4]? and centrosymmetric binuclear [Au2Cl8]2?, whose formation involved secondary bonds Au...Cl of 3.486 and 3.985 Å. The ultimate chemisorption capacity of cadmium and zinc morpholinedithiocarbamates calculated from the binding of gold(III) is 901.7 and 1010.4 mg of Au3+ per 1 g of the sorbent, respectively (i.e., each miononuclear fragment of the chemisorption complexes [M{S2CN(CH2)4O}2] participates in binding of two gold atoms). To establish the conditions for the isolation of bound gold, the thermal properties of compound I are studied by simultaneous thermal analysis. The thermal destruction process includes the thermolysis of the dithiocarbamate part of the complex and anions [AuCl4]? and [Au2Cl8]2? with the reduction of gold to the metal, being the only final product of the thermal transformations of compound I.  相似文献   

4.
A capability of freshly deposited cadmium complex with cyclic morpholinodithiocarbamate ligand (MfDtc) to bind gold(III) from 2 M HCl solutions was studied. The individual form of bound gold (III) isolated from solution was found to be the hydrated heteropolynuclear complex of ionic type ([Au{S2CN(CH2)4O}2]2[CdCl4] · H2O) n (I). Molecular and supramolecular structure of preparatively isolated compound I was established by X-ray diffraction study, the structure includes four (1: 1: 1: 1) structurally nonequivalent centrosymmetric complex cations [Au{S2CN(CH2)4O}2]+ which relate to each other in agreement with appeared structural differences as conformers: A, B, C, and D cations with Au(1), Au(2), Au(3), and Au(4), respectively. At the supramolecular level, the isomeric complex cations undergo structural self-organization to form independent polymeric chains of two types: (-A-C-) n and (-B-D-) n on account of pairs of unsymmetrical secondary Au…S bonds (3.463, 3.496, and 3.627, 3.669 Å). Distorted tetrahedral [CdCl4]2? anions are located in the space between these chains. The chemisorption capacity of cadmium morpholinodithiocarbamate calculated from gold(III) binding is 450.8 mg Au3+ per 1 g of sorbent (i.e., each mononuclear fragment of the chemisorbent complex [Cd{S2CN(CH2)4O}2] binds one gold atom. The conditions of recovery of bound gold were found in the study of thermal behavior of I by simultaneous thermal analysis (STA). The multistep process of thermal destruction includes complex dehydration, thermolysis of its dithiocarbamate fragment and [CdCl4]2? to release gold metal, cadmium chloride, and partially CdS.  相似文献   

5.
6.
The supramolecular complex [Zn{NH(CH2)4O}{S2CN(C2H5)2}2]2 · CH2N(CH2)4O}2 (I) has been synthesized and studied by X-ray crystallography and thermal analysis. The noncentrosymmetric complex is composed of two structurally nonequivalent molecules of the adduct of bis(diethyldithiocarbamato)zinc with morpholine, which are linked with the outer-sphere N,N’-dimorpholinomethane molecule through two hydrogen bonds N-H?O. The major differences between the adduct molecules are related to the strength of Zn-N bonds, spatial orientation of the coordinated morpholine heterocyclic rings, and the proportion between the contributions of the trigonal bipyramidal (TBP) and tetragonal pyramidal (TP) components to the geometry of zinc polyhedra. Calculations show that the geometry of the zinc polyhedra is almost halfway between TBP and TP. The thermal destruction of supramolecular compound I is accompanied by desorption of the outer-sphere and coordinated organic molecules. At the final stage, defragmentation of the “dithiocarbamate part” of the complex leads to the formation of ZnS.  相似文献   

7.
The interaction between cadmium cyclo-pentamethylenedithiocarbamate (chemisorbent Ia) and the [AuCl4]? anion in 2 M HCl has been investigated. The state of the chemisorbent in contact with AuCl3 solutions has been probed by 113Cd MAS NMR spectroscopy. The heterogeneous reactions in the system, including gold(III) chemisorption from the solution and partial ion exchange, yield the gold(III)-cadmium heteropolynuclear complex ([Au{S2CN(CH2)5}2]2[CdCl4]) n (I) and the polynuclear mixed-ligand complex ([Au{S2CN(CH2)5}Cl2]) n (II). The crystal and molecular structures of these compounds have been determined by X-ray crystallography. The main structural units of the compounds are the complex cation [Au{S2CN(CH2)5}2]+, [CdCl4]2? anion (in I), and Au{S2CN(CH2)5}Cl2 molecule (in II). The further structural self-organization of the complexes at the supramolecular level is due to secondary Au...S and Au...Au bonds. [Au2{S2CN(CH2)5}4]2+ dinuclear cations form in the structure of I, which then polymerize into ([Au2{S2CN(CH2)5}4]2+) n chains. In the structure of II, adjacent Au{S2CN(CH2)5}Cl2 molecules join by forming pairs of asymmetric secondary Au...S bonds, producing polymer chains with alternating antiparallel monomer units. The chemisorption capacity values calculated for cadmium cyclo-pentamethylenedithiocarbamate from gold(III) binding reactions are 455 and 910 mg of gold per gram of sorbent. The gold recovery conditions have been determined by investigating the thermal behavior of I and II by synchronous thermal analysis. The multistep thermal destruction of ionic complex I includes the thermolysis of its carbamate moiety and [CdCl4]2? (which liberates gold metal and cadmium chloride and yield some amount of CdS) and CdCl2 and CdS evaporation. The thermolysis of II proceeds via the formation of Au2S and AuCl as intermediate compounds. In both cases, the ultimate pyrolysis product is elemental gold.  相似文献   

8.
The oxidation of the [Fe(CO)4]2– dianion with Ag+ salts occurs through a particularinner-sphere mechanism, which involves an intermediate cascade of silver clusters stabilized by Fe(CO)4 ligands. The last detectable Ag-Fe cluster of the sequence is the [Ag13{-Fe(CO)4}8]3– trianion, which has been selectively obtained by using ca. 1.7 equivalents of Ag+ per mole of [Fe(CO)4]2–. The [Ag13{-Fe(CO)4}8]3–- trianion has been isolated in a crystalline state with several quaternary cations, and has been characterized by X-ray diffraction studies of its bis(triphenylphosphine)iminium salt. [N(PPh3)2]3 [Ag13{ 3-Fe(CO)4}8]·2(CH3)2CO, monoclinic, space group P21 (No.4),a = 16.284(2) Å,b =18.767(5) Å,c = 25.905(4) Å, = 90.46(1)°,V = 7916(3) Å3,Z = 2,R = 0.0324. The molecular structure of the anion consists of a centered cuboctahedron of silver atoms with the triangular faces capped by Fe(CO)4 units. Chemical reduction of ( Ag13{ 3-Fe(CO)4}8]3– affords the corresponding [Ag13{ 3-Fe(CO)4)8]4–, which in turn gives [Ag13{ 3-Fe(CO)4)8]5– and [Ag6{ 3-Fe(CO)4}4] upon further reduction. Electrochemical investigations confirm the reversibility of the [Ag13{ 3-Fe(CO)4}8]3–/4– redox change. Furthermore, in spite of some electrode poisoning effects, evidence of the existence of the [Ag13{ 3-Fe(CO)4}8]5– pentaanion was obtained. The yet structurally uncharacterized [Ag6{ 3-Fe(CO)4)4]2– dianion is quantitatively obtained by reaction of [Fe(CO)4]2– with ca. 1.5 equivalents of Ag+ or by addition of one equivalent of Ag+ to solutions of the [Ag5{Fe(CO)4}4]3– trianion. All attempts to isolate its quaternary salts as crystalline materials failed owing to formation of amorphous insoluble precipitates. The above series of 3-Fe(CO)4 octa-capped cuboctahedral Ag13 clusters can be envisioned as the Ag+ . Ag and Ag cryptates of the [Ag12{}3-Fe(CO)4}8]4– cryptand. respectively.Dedicated to Prof L. F. Dahl on his 65th birthday.  相似文献   

9.
The Platinum(II) diamine with N,N-dimethylethylenediamine (N,N-dimeEn) [Pt{(CH3)2N(CH2)2NH2}Cl2] (I) was synthesized. The reaction of the diamine with pyridine gave Pt(II) tetramine [Pt{(CH3)2N(CH2)2NH2}Py2]Cl2 (II), which was oxidized with chlorine to give Pt(IV) triamine Pt{[(CH3)2N(CH2)2}PyCl3]Cl · H2O (III). The reaction of III with chlorine (chloroamidation) yielded chloroimide [Pt{(CH3)2N(CH2)2NCl}PyCl3] (IV). The IR spectra of complexes I–IV and UV/Vis spectra of III and IV were studied. X-Ray diffraction analysis was performed for III (monoclinic crystals, space group P21/c, a = 7.7437(6), b = 8.1100(7), c = 28.52992(2) Å, β = 93.7280(10)°, Z = 4, R hkl = 0.0420) and IV (orthorhombic crystals, space group Pna21, a = 15.7825(12), b = 7.4447(6), c = 12.3099(6) Å, Z = 4, R hkl = 0.0539). During oxidation of Pt(II) tetramine with chlorine, the pyridine molecule is removed from the cis position relative to the (CH3)2N group (trans position relative to the NH2 group) of N,N-dimethylethylenediamine. The reaction of chloroimide complex IV with concentrated HCl (dechloroamidation) at 20°C afforded the initial complex III; that at 100°C, gave triamine III together with Pt(IV) diamine [Pt(N,N-dimeEn)Cl4] (V) (monoclinic crystals, space group P21/n, a = 7.1278(5), b = 11.5384(8), c = 12.7501(9) Å, β = 93.23(10)°, Z = 4, R hkl = 0.0239).  相似文献   

10.
The title compound, [{Na(H2O)3}2{Ru(dmso)3}2(MoO4)3]·3H2O, has been obstructure was determined by single-crystal X-ray diffraction method. The crystal crystallizes in the triclinic system, space group P1 with a = 12.3333(3), b = 12.6289(3), c = 32.0284(14)(A), α =79.873(7), β = 87.549(9), y = 64.500(4)°, V = 4429.5(2) (A)3, Z = 4, Mr = 1358.85, Dc = 2.038g/cm3, F(000) = 2696 and μ = 1.874 mm-1. The compound contains a novel pentanuclear triangle bipyramidal core, [{ Ru(dmso)3 } 2(MoO4)3]2-, which consists of two { Ru(dmso)3 } 2+ fragments and three {μ2-MoO4}2- units. Furthermore, the dmso ligands bridge the pentanuclear [Ru2Mo3] core and two [Na(H2O)3]+ fragments together, forming a neutral heptanuclear ruthenium- and sodiumcontaining polyoxomolybdate.  相似文献   

11.
Developments in the chemistry of weakly coordinating anions enabled isolation of numerous unique metal complexes with unusual ligands. An important example is the family of metal-Fe(CO)5 complexes. In the current paper we present synthesis and thorough characterization of the first truly homoleptic {Cu[Fe(CO)5]2}+ cation obtained as a salt of weakly coordinating [Al(ORF)4] (RF=C(CF3)3) anion. TGA/DSC/MS study show that its decomposition becomes noticeable only above 110 °C, thus it can be stored as powder in air-free conditions for months. The crystal structure of {Cu[Fe(CO)5]2}+ shows strong asymmetry of the cation and very short Cu-CO bonds in comparison to analogous {M[Fe(CO)5]2}+ where M=Ag or Au. Characterization is complemented with analysis of vibrational spectra and extensive DFT calculations which give insight into the energetics of Cu+-Fe(CO)5 systems. Our results show that {Cu[Fe(CO)5]2}+ is homoleptic only as salt of [Al(ORF)4]. Furthermore, in the presence of additional, even weakly basic ligands, the Cu+-Fe(CO)5 bond strength decreases what may contribute to the complex's instability in liquid SO2 or in the presence of [SbF6]. These conclusions point at the key role of selection of proper anion and solvent in stabilization of these types of complexes.  相似文献   

12.
A new cadmium coordination polymer based on imidazole-4,5-dicarboxylic acid (H3IDC) and 4,4′-bipyridine (Bipy), {[Cd9(IDC)2(HIDC)6(Bipy)4] · 2N(CH3)(CH2CH3)2 · 2DMF} n , has been synthesized under solvothermal conditions and characterized by energy dispersive X-ray spectroscopy, elemental analysis, FT-IR spectroscopy, thermal analysis, and single crystal X-ray diffraction. It crystallizes in the orthorhombic system, space group Pnnm with a = 20.530(2) Å, b = 15.5957(14) Å, c = 16.3846(15) Å, α = β = γ = 90°, V = 5245.9(9) Å3, and Z = 2. The complex exhibits a 3-D structure with channels along the c-axis, in which the free N,N-dimethylformamide and methyl-diethyl-amine molecules are located. The thermal behavior and luminescence of this complex have also been studied in the solid state.  相似文献   

13.
吴鼎铭  黄小荥 《结构化学》1994,13(5):385-388
SynthesisandStructureof[HOCH_2CH_2N(CH_3)_3]_4[Cu_4OCl_(10)]WuDing-Ming;HuangXiao-Ying;ZhuangHong-Hui(StateKeyLaboratoryofStruct?..  相似文献   

14.
The thiamacrocycle [Co2{μ-C2(CH2SCH2CH2)2S}(CO)6] reacts with Ag[BF4] and PPh3 to afford the fluxional compound [Co2{μ-C2(CH2SCH2)2S}(CO)6(AgPPh3)][BF4], the structure of which has been established by X-ray crystallography, and with [Cu(CH3−CN)4][PF6] to afford [Co2{μ-C2(CH2SCH2CH2)2S}(CO)6(CuCH3−CN)][PF6], which undergoes phosphine sustitution.  相似文献   

15.
Platinum(II) cyclo-hexamethylenedithiocarbamate (HmDtc) complex, [Pt{S2CN(CH2)6}2] (I), and its solvated form, Pt{S2CN(CH2)6}2] · CHCl3 (II), are synthesized and characterized by the 13C MAS NMR data. The HmDtc ligands in structure I are not equivalent, whereas the solvation of the complex is accompanied by the structural unification of the initially nonequivalent HmDtc ligands. In addition, the spectra are characterized by the 13C-195Pt spin-spin coupling. The noncentrosymmetric molecular structure of compound I determined by X-ray diffraction analysis includes two nonequivalent dithiocarbamate ligands coordinated by the metal in the S,S′-bidentate mode. The central atom forming the [PtS4] chromophore (intraorbital dsp 2-hybrid state of platinum) shifts from the plane of four sulfur atoms by 0.07 Å in the vertex of the flattened tetragonal pyramid. The seven-membered heterocycles ?N(CH2)6 of the HmDtc ligands are oppositely directed in space relative to the [S4] plane (trans orientation). The thermal behavior of compounds I and II are studied by simultaneous thermal analysis. In both cases, the final product of the multistage thermal destruction of the complexes is reduced metallic platinum.  相似文献   

16.
The new Mo/Se clusters [Mo33-Se)(μ2-Se2)3{N(SePPh2)2}3]Br (1) and [Mo33-Se)(μ2-Se2)3{Se2P(OCH2CH3)2}3]Br (2) have been synthesized by the selective substitution of the bromo ligands in the starting material [PPh4]2[Mo33-Se)(μ2-Se2)3Br6] with the selenoorgano bidentate ligands [N(SePPh2)2] and [Se2P(OEt)2]. The complexes have been characterized in solution by 31P- and 77Se-NMR spectroscopy and in the solid state by single crystal X-ray diffraction; the same cation structures are present both in solution and in the solid state. Crystallographic data for 1: [Mo33-Se)(μ2-Se2)3{N(SePPh2)2}3]Br·3 CH2Cl2, C72H60BrMo3N3P6Se13·3 CH2Cl2, trigonal, space group R3, a=21.299 (10) Å, c=38.433 (27) Å, V=15 100 (15) Å3, T=−120 °C, Z=6; crystallographic data for 2: Mo33-Se)(μ2-Se2)3{Se2P(OCH2CH3)2}3]Br, C12H30BrMo3P3O3Se13, monoclinic, space group P21/n, a=13.404 (2) Å, b=22.732 (4) Å, c=13.932 (3) Å, β=113.134 (3)°, V=3 903.7(12) Å3, T=−120 °C, Z=4. © 2000 Académie des sciences / Éditions scientifiques et médicales Elsevier SASphosphine ligands / amine ligands / phosphate ligands / selenium / molybdenum cluster / 77Se-NMR spectroscopy  相似文献   

17.
It has been established by X-ray structural study that the bicluster cobalt -arene complex of diphenylmethane [6-PhCo4CO9]2CH2 and binuclear complex [6-PhCr(CO)3]2CH2 have ans-trans-s-trans conformation in their crystals.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1111–1117, June, 1995.This work was supported by the Russian Foundation for Basic Research (Projects No. 93-03-4028 and 94-03-08338).  相似文献   

18.
Complexes \(\rm[{Ph_{3}PR]_2^+[RuCl_6]^{2-}}\), where R = C2H5 (I), CH=CHCH3 (II), CH2CH=CHCH3 (III), and CH2OCH3 (IV), have been prepared by the reaction between ruthenium(III) chloride hydrate and triphenylorganylphosphonium chlorides in dimethylsulfoxide in the presence of hydrochloric acid. A hydrochloric acid solution of ruthenium(III) chloride hydrate when mixed with an aqueous solution of 2-butylene-1,4- bis(triphenylphosphonium dichloride) followed by recrystallization from dimethylsulfoxide results in complex \(\rm[{Ph_{3}PCH_2CH=CHCH_2{PPh_3}]_2^{2+}[Ru_2Cl_{10}O]^{4-}}\)· 4H2O (V). According to X-ray diffraction data, phosphorus atoms in mono- and binuclear cations have slightly distorted tetrahedral coordination (CPC 105.54(13)°?113.00(8)°, P?C 1.758(9)?1.839(7) Å). In slightly distorted octahedral anions [RuCl6]2? of complexes I–IV, the Ru?Cl bond lengths vary in the range 2.3222(6)?2.340(2) Å; the cis-ClRuCl and trans-ClRuCl angles are 89.133(18)°–90.867(18)° and 179.53(13)°–180°, respectively. In the binuclear [(RuCl5)2O]4? anion of complex V, RuCl5 fragments are bonded by a bridging oxygen atom. The Ru–Cl bond lengths fall in the range 2.3375(8)?2.3957(8) Å; the Ru–O bond length is 1.7832(2) Å. The cis-ClRuCl, trans-ClRuCl, cis-ORuCl, and trans-ORuCl angles are 86.67(3)°?91.28(3)°, 174.60(3)°?174.83(3)°, 91.49(2)°?93.65(2)°, and 178.39(2)°, respectively. In crystals I–V, interionic hydrogen bonds Cl···Hcation (2.63?2.95 Å), Cl··· \({\rm{H}_{{H_2}O}}\) (2.35?2.79 Å), and Hcation···\({\rm{O}_{{H_2}O}}\) (1.72?1.93 Å) (for V) are found.  相似文献   

19.
Arylselenium(II) derivatives of dithiophosphorus ligands of type ArSeSP(S)R2 [Ar = Ph, R = Ph (1), OPri (2); 2-[MeN(CH2CH2)2NCH2]C6H4, R = Ph (3), OPri (4); 2-[O(CH2CH2)2NCH2]C6H4, R = OPri (6)] were prepared by redistribution reactions between Ar2Se2 and [R2P(S)S]2. The derivative [2-{O(CH2CH2)2NCH2}C6H4]SeSP(S)Ph2 (5) was obtained by the salt metathesis reaction between [2-{O(CH2CH2)2NCH2}C6H4]SeCl and NH4S2PPh2. The compounds were investigated by multinuclear (1H, 13C, 31P, 77Se) NMR and infrared spectroscopy. The crystal and molecular structures of 1, 3, 4 and 6 were determined by single-crystal X-ray diffraction. In compounds 3, 4 and 6 the N(1) atom is intramolecularly coordinated to the selenium center, resulting in a T-shaped geometry (hypervalent 10-Se-3 species). The dithiophosphorus ligands act as anisobidentate in 1 and monodentate in 3, 4 and 6. Supramolecular architectures based on intermolecular S?H and N?H contacts between molecular units are formed in the hypervalent derivatives 3 and 4, while in the compounds 1 and 6 the molecules are associated into polymeric chains through either Se?S or O?H contacts, with no further inter-chain interactions.  相似文献   

20.
Binary complex salts, [Co(En)3][Fe(CN)6] · 2H2O and [Co(En)3]4[Fe(CN)6]3 · 15H2O, are synthesized. The properties of the salts and their thermolysis in air, dihydrogen, and argon are studied. Oxides of the central ions of the binary complex salts are found to be the thermolysis products in an oxidative atmosphere. Solid solutions (intermetallic compounds) CoFe are the thermolysis products in the reductive atmosphere, whereas intermetallides containing considerable amounts of C and N and an impurity of Co and Fe oxides are the thermolysis products in an inert atmosphere. Gaseous thermolysis products in dihydrogen and argon are NH3, hydrocarbons, and ethylenediamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号