首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li ZG  Ando K  Yu JQ  Liu AQ  Zhang JB  Ohl CD 《Lab on a chip》2011,11(11):1879-1885
A method for on-demand droplet fusion in a microfluidic channel is presented using the flow created from a single explosively expanding cavitation bubble. We test the technique for water-in-oil droplets, which are produced using a T-junction design in a microfluidic chip. The cavitation bubble is created with a pulsed laser beam focused into one droplet. High-speed photography of the dynamics reveals that the droplet fusion can be induced within a few tens of microseconds and is caused by the rapid thinning of the continuous phase film separating the droplets. The cavitation bubble collapses and re-condenses into the droplet. Droplet fusion is demonstrated for static and moving droplets, and for droplets of equal and unequal sizes. Furthermore, we reveal the diffusion dominated mixing flow and the transport of a single encapsulated cell into a fused droplet. This laser-based droplet fusion technique may find applications in micro-droplet based chemical synthesis and bioassays.  相似文献   

2.
Mazutis L  Griffiths AD 《Lab on a chip》2012,12(10):1800-1806
We report a microfluidic approach, which allows selective and controlled 1 : 1, 2 : 1 or 3 : 1 droplet fusion. A surfactant-stabilized droplet with an interfacial surfactant coverage, Γ, of >98% will fuse spontaneously with a second droplet when Γ of the latter droplet is <16%. However, when Γ of the second droplet is ~66%, the two droplets will not fuse, unless they have previously been brought into contact for critical time τ. Therefore, controlling the number of droplets in contact for time τ allows precise control over the number of fused droplets. We have demonstrated efficient (proportion of droplets coalesced p(c) = 1.0, n > 1000) and selective 1 : 1, 2 : 1 or 3 : 1 droplet fusion (proportion of correctly fused droplets p(s) > 0.99, n > 1000). Coalescence in this regime is induced by hydrodynamic flow causing interface separation and is efficient at different Ca numbers and using different dispersed phases, continuous phases and surfactants. However, when Γ of the second droplet is ~96% coalescence is no longer observed. Droplet-based microfluidic systems, in which each droplet functions as an independent microreactor, are proving a promising tool for a wide range of ultrahigh-throughput applications in biology and chemistry. The addition of new reagents to pre-formed droplets is critical to many of these applications and we believe the system described here is a simple and flexible method to do so, as well as a new tool to study interfacial stability phenomena.  相似文献   

3.
L Xu  H Lee  R Panchapakesan  KW Oh 《Lab on a chip》2012,12(20):3936-3942
We propose a robust droplet fusion and sorting method for two parallel trains of droplets that is relatively insensitive to frequency and phase mismatch. Conventional methods of droplet fusion require an extremely precise control of aqueous/oil flows for perfect frequency matching between two trains of droplets. In this work, by combining our previous two methods (i.e., droplet synchronization using railroad-like channels and manipulation of shape-dependent droplets using guiding tracks), we realized an error-free droplet fusion/sorting device for the two parallel trains of droplets. If droplet pairs are synchronized through a railroad-like channel, they are electrically fused and the fused droplets transit to a middle guiding track to flow in a middle channel; otherwise non-synchronized non-fused droplets will be discarded into the side waste channels by flowing through their own guiding tracks. The simple droplet synchronization, fusion, and sorting technology will have widespread application in droplet-based chemical or biological experiments, where two trains of the chemically or biologically treated or pre-formed droplets yield a train of 100% one-to-one fused droplets at the desired outlet channel by sorting all the non-synchronized non-fused droplets into waste outlets.  相似文献   

4.
微流控芯片中形成的微液滴粒径均一、可控,与传统的连续流体系相比,具有能实现试剂的快速混合、通量更高等优点.本文介绍了微流控芯片中由微通道控制的微液滴的形成、分裂、合并、混合、分选和捕获等微液滴操纵技术,以及微液滴技术在纳米粒子、聚合物微粒的合成、纳米粒子自组装、蛋白质结晶研究和DNA、细胞分析等领域的研究进展.  相似文献   

5.
Pan X  Zeng S  Zhang Q  Lin B  Qin J 《Electrophoresis》2011,32(23):3399-3405
This work describes a novel droplet-based microfluidic device, which enables sequential droplet processing for rapid DNA extraction. The microdevice consists of a droplet generation unit, two reagent addition units and three droplet splitting units. The loading/washing/elution steps required for DNA extraction were carried out by sequential microfluidic droplet processing. The movement of superparamagnetic beads, which were used as extraction supports, was controlled with magnetic field. The microdevice could generate about 100 droplets per min, and it took about 1 min for each droplet to perform the whole extraction process. The extraction efficiency was measured to be 46% for λ-DNA, and the extracted DNA could be used in subsequent genetic analysis such as PCR, demonstrating the potential of the device for fast DNA extraction.  相似文献   

6.
Principles of droplet electrohydrodynamics for lab-on-a-chip   总被引:7,自引:0,他引:7  
Zeng J  Korsmeyer T 《Lab on a chip》2004,4(4):265-277
Electrically controlled droplet-based labs-on-a-chip operate under the principles of electro-capillarity and dielectrophoresis. The microfluidic mechanics of manipulating electrified droplets are complex and not entirely understood. In this article, we analyse these operating principles, especially electrowetting on dielectric (a form of electro-capillarity) and dielectrophoresis, under a unified framework of droplet electrohydrodynamics. We differentiate them by their electric origins and their energy transduction mechanisms. Our study shows that both electrowetting on dielectric and dielectrophoresis are effective for droplet generation and manipulation. In addition, our study demonstrates: (1) the presence of a wetting contribution to dielectrophoresis; and (2) contact angle reduction is merely an observable consequence of, not a condition for, the occurrence of electrowetting on dielectric. Simulations are used extensively in this article to illustrate device operation, to expose underlying physics, and to validate our conclusions. Simulations of electrically driven droplet generation, droplet translocation, droplet fusion, and droplet fission are presented.  相似文献   

7.
We developed a novel microfluidic system, termed a micro-droplet collider, by utilizing the spatial-temporal localized liquid energy to realize chemical processes, which achieved rapid mixing between droplets having a large volume ratio by collision. In this paper, in order to clarify the characteristics of the micro-droplet collider, dynamics of droplet acceleration, stationary motion and collision in the gas phase in a microchannel were experimentally investigated with visualized images using a microscope equipped with a high-speed camera. The maximum velocity of 450 mm s(-1) and acceleration of 1500 m s(-2) of a 1.6 nL water droplet were achieved at an air pressure of 100 kPa. Measurement results of dynamic contact angles of droplets indicated that wettability of the surface played an important role in the stability of droplet acceleration and collision. We found that the bullet droplet penetrated into the target droplet at collision, which differed from bulk scale. The deformation of the droplet was strongly suppressed by the channel structure, thus stable collision and efficient utilization of the droplet energy were possible. These results are useful for estimating the localized energy, for improving the system in order to realize extreme performance, and for extending the applications of microfluidic devices.  相似文献   

8.
Murran MA  Najjaran H 《Lab on a chip》2012,12(11):2053-2059
Digital microfluidic (DMF) devices manipulate minuscule droplets through basic fluidic operations including droplet transport, mixing and splitting commonly known as the building blocks for complete laboratory analyses on a single device. A DMF device can house various chemical species and confine chemical reactions within the volume of a droplet much like a micro-reactor. The automation of fluidic protocols requires a feedback controller whose sensor is capable of locating droplets independent of liquid composition (or previous knowledge of liquid composition). In this research, we present an estimator that tracks the continuous displacement of a droplet between electrodes of a DMF device. The estimator uses a dimensionless ratio of two electrode capacitances to approximate the position of a droplet, even, in the domain between two adjacent electrodes. This droplet position estimator significantly enhances the control precision of liquid handling in DMF devices compared to that of the techniques reported in the literature. It captures the continuous displacement of a droplet; valuable information for a feedback controller to execute intricate fluidic protocols including droplet positioning between electrodes, droplet velocity and acceleration control. We propose a state estimator for tracking the continuous droplet displacement between two adjacent electrodes. The dimensionless nature of this estimator means that any droplet composition can be sensed. Thus, no calibration for each chemical species within a single DMF device is required. We present theoretical and experimental results that demonstrate the efficacy of the position estimator in approximating the position of the droplet in the interval between two electrodes.  相似文献   

9.
Gong J  Kim CJ 《Lab on a chip》2008,8(6):898-906
Electrowetting-on-dielectric (EWOD) actuation enables digital (or droplet) microfluidics where small packets of liquids are manipulated on a two-dimensional surface. Due to its mechanical simplicity and low energy consumption, EWOD holds particular promise for portable systems. To improve volume precision of the droplets, which is desired for quantitative applications such as biochemical assays, existing practices would require near-perfect device fabrication and operation conditions unless the droplets are generated under feedback control by an extra pump setup off of the chip. In this paper, we develop an all-electronic (i.e., no ancillary pumping) real-time feedback control of on-chip droplet generation. A fast voltage modulation, capacitance sensing, and discrete-time PID feedback controller are integrated on the operating electronic board. A significant improvement is obtained in the droplet volume uniformity, compared with an open loop control as well as the previous feedback control employing an external pump. Furthermore, this new capability empowers users to prescribe the droplet volume even below the previously considered minimum, allowing, for example, 1 : x (x < 1) mixing, in comparison to the previously considered n : m mixing (i.e., n and m unit droplets).  相似文献   

10.
Passive microfluidic channel geometries for control of droplet fission, fusion and sorting are designed, fabricated, and tested. In droplet fission, the inlet width of the bifurcating junction is used to control the range of breakable droplet sizes and the relative resistances of the daughter channels were used to control the volume of the daughter droplets. Droplet fission is shown to produce concentration differences in the daughter droplets generated from a primary drop with an incompletely mixed chemical gradient, and for droplets in each of the bifurcated channels, droplets were found to be monodispersed with a less than 2% variation in size. Droplet fusion is demonstrated using a flow rectifying design that can fuse multiple droplets of same or different sizes generated at various frequencies. Droplet sorting is achieved using a bifurcating flow design that allows droplets to be separated base on their sizes by controlling the widths of the daughter channels. Using this sorting design, submicron satellite droplets are separated from the larger droplets.  相似文献   

11.
Sequential operations of pre-separation reaction process by picoliter droplets and following electrophoretic separation process were realized in a single microfluidic device with pneumatic handling of liquid. The developed device consists of a fluidic chip made of PDMS, an electrode substrate, and a temperature control substrate on which thin film heater/sensor structures are fabricated. Liquid handling, including introduction of liquid samples, droplet generation, and merging of droplets, was implemented by pneumatic manipulation through microcapillary vent structures, allowing air to pass and stop liquid flow. Since the pneumatic manipulations are conducted in a fully automated manner by using a programmable air pressure control system, the user simply has to load liquid samples on each liquid port of the device. Droplets of 420 pL were generated with an accuracy of ± 2 pL by applying droplet generation pressure in the range of 40-100 kPa. As a demonstration, a binding reaction of a 15 mer ssDNA with a peptide nucleic acid oligomer used as an oligoprobe followed by denaturing electrophoresis to discriminate a single-base substitution was performed within 1.5 min. By exploiting the droplet-on-demand capability of the device, the influence of various factors, such as reaction time, mixing ratio and droplet configurations on the ssDNA-peptide nucleic acid binding reaction in the droplet-based process, was studied toward realization of a rapid detection method to discriminate rapid single-base substitution.  相似文献   

12.
A high-performance flow-focusing geometry for spontaneous generation of monodispersed droplets is demonstrated. In this geometry, a two-phase flow is forced through a circular orifice integrated inside a silicon-based microchannel. The orifice with its cusp-like edge exerts a ring of maximized stress around the flow and ensures controlled breakup of droplets for a wide range of flow rates, forming highly periodic and reproducible dispersions. The droplet generation can be remarkably rapid, exceeding 10(4) s(-1) for water-in-oil droplets and reaching 10(3) s(-1) for oil-in-water droplets, being largely controlled by flow rate of the continuous phase. The droplet diameter and generation frequency are compared against a quasi-equilibrium model based on the critical Capillary number. The droplets are obtained despite the low Capillary number, below the critical value identified by the ratio of viscosities between the two phases and simple shear-flow.  相似文献   

13.
Herein we offer a simple method to produce non-spherical emulsion droplets stabilized by freshly formed Mg(OH)(2) nanoparticles (MPs). The non-spherical degree of droplets as a function of experiment conditions was investiged and the origins of the presence of non-spherical droplets were discussed. The results of optical microscope images show that stable spherical droplets can be fused into non-spherical at given aging temperature. It is also recognized that particle concentration, oil/water ratio and aging time significantly affect droplet fusion and excess particles that are not adsorbed on the oil/water interface are helpful in restraining droplet fusion. Based on the TEM, XRD and Fluorescence confocal microscopy results, the origins of droplet fusion are inferred from the presence of vacant holes in the particle layer. Because of Oswald ripening, particles on droplet surfaces grow larger than the freshly precipitated ones under a given aging temperature. The growth of particles results in the reduction of total cover area of particle layer and thus creates vacant holes in the particle layer which would cause partial coalescence of droplets once they collide. Thus, these findings can offer a simple alternative to obtain a large amount of non-spherical emulsion droplets but also can help the preparation of non-spherical colloid particles.  相似文献   

14.
Park SY  Wu TH  Chen Y  Teitell MA  Chiou PY 《Lab on a chip》2011,11(6):1010-1012
We report on a pulse laser-driven droplet generation (PLDG) mechanism that enables on-demand droplet generation at rates up to 10,000 droplets per second in a single-layer PDMS-based microfluidic device. Injected droplet volumes can be continuously tuned between 1 pL and 150 pL with less than 1% volume variation.  相似文献   

15.
A microfluidic device having both hydrophobic and hydrophilic components is exploited for production of multiple-phase emulsions. For producing water-in-oil-in-water (W/O/W) dispersions, aqueous droplets ruptured at the upstream hydrophobic junction are enclosed within organic droplets formed at the downstream hydrophilic junction. Droplets produced at each junction could have narrow size distributions with coefficients of variation in diameter of less than 3%. Control of the flow conditions produces variations in internal/external droplet sizes and in the internal droplet number. Both W/O/W emulsions (with two types of internal droplets) and oil-in-water-in-oil emulsions were prepared by varying geometry and wettability in microchannels.  相似文献   

16.
Electrowetting-based droplet mixers for microfluidic systems   总被引:1,自引:0,他引:1  
Mixing of analytes and reagents is a critical step in realizing a lab-on-a-chip. However, mixing of liquids is very difficult in continuous flow microfluidics due to laminar flow conditions. An alternative mixing strategy is presented based on the discretization of liquids into droplets and further manipulation of those droplets by electrowetting. The interfacial tensions of the droplets are controlled with the application of voltage. The droplets act as virtual mixing chambers, and mixing occurs by transporting the droplet across an electrode array. We also present an improved method for visualization of mixing where the top and side views of mixing are simultaneously observed. Microliters of liquid droplets are mixed in less than five seconds, which is an order of magnitude improvement in reported mixing times of droplets. Flow reversibility hinders the process of mixing during linear droplet motion. This mixing process is not physically confined and can be dynamically reconfigured to any location on the chip to improve the throughput of the lab-on-a-chip.  相似文献   

17.
Surface-induced droplet fusion in microfluidic devices   总被引:1,自引:0,他引:1  
Here we demonstrate a new method for droplet fusion based on a surface energy pattern on the walls of a microfluidic device, that does not require active elements nor accurate synchronization of the droplets.  相似文献   

18.
We reported a manually operated static droplet array (SDA)-based device for the synthesis of nonspherical microparticles with different shapes. The improved SDA structure and reversible bonding between poly(dimethylsiloxane) (PDMS) were used in the device for the large-scale synthesis and rapid extraction of nonspherical microparticles. To understand the device physics, the effects of flow rate, SDA well size, and shape on droplet generation performances were explored. The results indicated that droplet generation in SDA structures was insensitive to the flow rate, and monodisperse droplets were generated by the SDA-based device through manually pushing the syringe. Finally, we integrated four kinds of SDA structures in one device and successfully realized the synthesis and extraction of nonspherical microparticles with different shapes and materials. Our SDA-based device offers numerous advantages, such as simple manual operation, low equipment cost, controllable microparticle shapes and sizes, and large-scale production. Thus, it holds the potential to be used as a flexible tool for the production of nonspherical microparticles.  相似文献   

19.
Single cell analysis is of great significance to understand the physiological activity of organisms.Microfluidic droplet is an ideal analytical platform for single-cell analysis. We developed a microfluidic droplet splitting system integrated with a flow-focusing structure and multi-step splitting structures to form 8-line droplets and encapsulate single cells in the droplets. Droplet generation frequency reached1021 Hz with the aqueous phase flow rate of 1 m L/min and the oil phase flow rate of 15 mL /min. Relative standard deviation of the droplet size was less than 5% in a single channel, while less than 6% in all the8 channels. The system was used for encapsulating human whole blood cells. A single-cell encapsulation efficiency of 31% was obtained with the blood cell concentration of 2.5× 10~4cells/mL, and the multicellular droplet percentage was only 1.3%. The multi-step droplet splitting system for single cell encapsulation featured simple structure and high throughput.  相似文献   

20.
Tan YC  Lee AP 《Lab on a chip》2005,5(10):1178-1183
Emulsions are widely used to produce sol-gel, drugs, synthetic materials, and food products. Recent advancements in microfluidic droplet emulsion technology has enabled the precise sampling and processing of small volumes of fluids (picoliter to femtoliter) by the controlled viscous shearing in microchannels. However the generation of monodispersed droplets smaller than 1 microm without surfactants has been difficult to achieve. Normally, the generation of satellite droplets along with parent droplets is undesirable and makes it difficult to control volume and purity of samples in droplets. In this paper, however, several methods are presented to passively filter out satellite droplets from the generation of parent droplets and use these satellite droplets as the source for monodispersed production of submicron emulsions. A passive satellite droplet filtration system and a dynamic satellite droplet separation system are demonstrated. Satellite droplets are filtered from parent droplets with a two-layer channel geometry. This design allows the creation and collection of droplets that are less than 100 nm in diameter. In the dynamic separation system, satellite droplets of defined sizes can be selectively separated into different collecting zones. The separation of the satellite droplets into different collecting zones correlates with the cross channel position of the satellite droplets during the breakup of the liquid thread. The delay time for droplets to switch between the different alternating collecting zones is nominally 1 min and is proportional to the ratio of the oil shear flows. With our droplet generation system, monodispersed satellite droplets with an average radius of 2.23 +/- 0.11 microm, and bidispersed secondary and tertiary satellite droplets with radii of 1.55 +/- 0.07 microm and 372 +/- 46 nm respectively, have been dynamically separated and collected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号