首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Thermogravimetry (TG/DTG) coupled with evolved gas analysis (MS detection) of volatiles was used to characterize the thermal behavior of commercial PVC cable insulation material during heating in the range 20-800°C in air and nitrogen, respectively. In addition, simultaneous TG/FTIR was used to elucidate chemical processes that caused the thermal degradation of the sample. A good agreement between results of the methods was found. The thermal degradation of the sample took place in three temperature ranges, namely 200-340, 360-530 and 530-770°C. The degradation of PVC backbone started in the range 200-340°C accompanied by the release of HCl, H2O, CO2 and benzene. The non-isothermal kinetics of thermal degradation of the PVC cable insulation in the temperature range 200-340°C was determined from TG results measured at heating rates of 1.5, 5, 10, 15 and 20 K min-1 in nitrogen and air, respectively. The activation energy values of the thermal degradation process in the range 200-340°C of the PVC cable insulation sample were determined from TG results by ASTM method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The degradation kinetics of the ABS terpolymer (acrylonitrile-butadiene-styrene) was investigated by means of thermogravimetric analysis. The samples were heated from 30 to 900°C in nitrogen atmosphere applying three different heating rates: 5, 10 and 20°C min−1. The Vyazovkin model-free kinetic method was used to calculate the activation energy (E) of the degradation process as a function of conversion and temperature. Between 20 and 80% of conversion, E was calculated and the figures were: for ABS GP, E is 204.5±11.5 kJ mol−1 (medium value); for ABS HI, E is 239.0±9.8 kJ mol−1; for ABS HH, E is 242.4±5.4 kJ mol−1.  相似文献   

3.
Crystallization kinetics of Al91La5Ni4 amorphous ribbons produced by a melt-spinning method were studied by DSC analysis and X-ray diffraction. The effect of heating rate (from 4 to 200°C min-1) was investigated in the temperature range from 298 to 700 K. Increases the heating rate from 4 to 200°C min-1 resulted in increases of the temperature difference between the two stages of the transformation process: crystallization of Al and crystallization of the Al compounds from 148.9 to 167.4 K. The apparent activation energies for the first step, related to Al crystallization, and to the second step related to crystallization of Al4La and Al3Ni, were found to be 161±9 and 199±10 kJ mol-1, respectively. The results indicate the possibility of tailoring the heating treatment to produce the required fraction of the amorphous phase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The aim of the work was to determine the effect of heating rate on initial decomposition temperature and phases of thermal decomposition of cellulose insulation. The activation energy of thermo‐oxidation of insulation was also determined. Individual samples were heated in the air flow in the thermal range of 100°C to 500°C at rates from 1.9°C min?1 to 20.1°C min?1. The initial temperatures of thermal decomposition ranged from 220°C to 320°C, depending on the heating rate. Three regions of thermal decomposition were observed. The maximum rates of mass loss were measured at the temperatures between 288°C and 362°C. The activation energies, which achieved average values between 75 and 80.7 kJ mol?1, were calculated from the obtained results by non‐isothermal, model‐free methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The thermal decomposition of poly(α,α,α′,α′-tetrafluoro-p-xylylene) (parylene AF-4) films with thicknesses of ca. 7.5 and 10 μm has been studied by both dynamic (10°C min?1) and isothermal TG in either nitrogen or oxygen atmospheres. In dynamic studies with nitrogen, gross decomposition occurs between 546.7±1.4 and 589.0±2.6°C, with 26.8±4.4% of the initial mass remaining at 700°C. With oxygen as the purge gas, the onset of decomposition shifts slightly to 530.8±4.2°C. The end of the transition at 587.4±2.6°C is within experimental error of the nitrogen value, but no polymer remains above 600°C. Isothermal data were obtained at 10°C intervals from 420 to 490°C in nitrogen, and from 390 to 450°C in oxygen. Plots of log(Δ%wt/Δt)vs. T?1 are linear throughout the specified range for oxygen and from 420 to 470°C for nitrogen. The calculated activation energies of (147±16) kJ mol?1 and (150±12) kJ mol?1 in N2 and O2, respectively, are equal within experimental error.  相似文献   

6.
In this study the combustion characteristics of crude oils (Karakuę and Beykan) in the presence of a limestone matrix were determined using the thermogravimetry (TG/DTG). Experiments were performed at a heating rate of 10°C min-1, whereas the air flow rate was kept constant at 10 L h-1 in the temperature range of 20-900°C. In combustion with air, three distinct reaction regions were identified in all crude oil/limestone mixtures studied known as low temperature oxidation (LTO), fuel deposition (FD) and high temperature oxidation (HTO). The individual activation energies for each reaction region may be attributed to different reaction mechanisms, but they do not give any indication of the contribution of each region to the overall reactivity of the crude oils. Depending on the characteristics, the mean activation energy of samples varied between 50.3 and 55.8 kJ mol-1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
In this research, non-isothermal kinetics and feasibility study of medium grade crude oil is studied in the presence of a limestone matrix. Experiments were performed at a heating rate of 10°C min−1, whereas the air flow rate was kept constant at 50 mL min−1 in the temperature range of 20 to 600°C (DSC) and 20 to 900°C (TG). In combustion with air, three distinct reaction regions were identified in all crude oil/limestone mixtures, known as low temperature oxidation (LTO), fuel deposition (FD) and high temperature oxidation (HTO). The activation energy values were in the order of 5–9 kJ mol−1 in LTO region and 189–229 kJ mol−1 in HTO region. It was concluded that the medium grade crude oil field was not feasible for a self-sustained combustion process.  相似文献   

8.
The complexes of cobalt(II) with dothiepin (DOT) hydrochloride have been studied for kinetics of thermal degradation by thermogravimetric analysis (TG) and derivative thermogravimetric studies (DTG) in a static nitrogen atmosphere at a heating rate of 10° C min−1. A general mechanism of thermal decomposition is advanced involving dehydration and decomposition process for both organic and inorganic ligands. The thermal degradation reactions were found to proceed in three steps having an activation energy in the range 6.75–170 kJ mol−1. Thermal decomposition kinetics parameters were computed on the basis of thermal decomposition data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The title polymer was obtained electrochemically by the reduction of 4,4'-bis(dibromomethyl)-2,2'-dimethoxybiphenyl under very smooth conditions. The DSC and TG/DTG curves registered at four different heating rates showed that the polymer is stable in air up to 150°C, where smooth degradation starts. Above 300°C, decomposition is fast and exothermic (ΔH= –323 J g–1) . The activation energy (116±4 kJ mol–1 ) was determined by Ozawa's method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Understanding the response of drugs and their formulations to thermal stresses is an integral part of the development of stable medicinal products. In the present study, the thermal degradation of two drug samples (cetirizine and simvastatin) was determined by differential scanning calorimetery (DSC) and simultaneous thermogravimetery/differential thermal analysis (TG/DTA) techniques. The results of TG analysis revealed that the main thermal degradation for the cetirizine occurs during two temperature ranges of 165–227 and 247–402 °C. The TG/DTA analysis of simvastatin indicates that this drug melts (at about 143 °C) before it decomposes. The main thermal degradation for the simvastatin occurs during two endothermic behaviors in the temperature ranges of 238–308 and 308–414 °C. The influence of the heating rate (5, 10, 15, and 20 °C min?1) on the DSC behavior of both the drug samples was verified. The results showed that as the heating rate was increased, decomposition temperatures of the compounds were increased. Also, the kinetic parameters such as activation energy and frequency factor for the compounds were obtained from the DSC data by non-isothermal methods proposed by ASTM E696 and Ozawa. Based on the values of activation energy obtained by ASTM E696 method, the values of activation energy for cetirizine and simvastatin were 120.8 and 170.9 kJ mol?1, respectively. Finally, the values of ΔS #, ΔH #, and ΔG # of their decomposition reaction were calculated.  相似文献   

11.
Thermal analysis has been used to determine the impact of heating on the decomposition reaction of two Moroccan oil shales between ambient temperature and 500°C. During pyrolysis of raw oil shale, the residual organic matter (residual carbon) obtained for both shales depends on the heating rate (5 to 40°C min-1). Three stages characterize the overall process: the concentration of carbonaceous residue decreases with increase of heating rate, become stable around 12°C min-1 and continue to decrease at higher heating rates. Activation energies were determined using the Coats-Redfern method. Results show a change in the reaction mechanism at around 350°C. Below this temperature, the activation energy was 41.3 kJ mol-1 for the decomposition of Timahdit, and 40.5 kJ mol-1 for Tarfaya shale. Above this temperature the respective values are 64.3 and 61.3 kJ mol-1. The reactivity of Timahdit and Tarfaya oil shale residual carbon prepared at 12°C min-1 was subject to a dynamic air atmosphere to determine their thermal behaviour. Residual carbon obtained from Tarfaya oil shale is shown to be more reactive than that obtained from Timahdit oil shale. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
In this work, a kinetic study on the thermal degradation of carbon fibre reinforced epoxy is presented. The degradation is investigated by means of dynamic thermogravimetric analysis (TG) in air and inert atmosphere at heating rates from 0.5 to 20°C min−1 . Curves obtained by TG in air are quite different from those obtained in nitrogen. A three-step loss is observed during dynamic TG in air while mass loss proceeded as a two step process in nitrogen at fast heating rate. To elucidate this difference, a kinetic analysis is carried on. A kinetic model described by the Kissinger method or by the Ozawa method gives the kinetic parameters of the composite decomposition. Apparent activation energy calculated by Kissinger method in oxidative atmosphere for each step is between 40–50 kJ mol−1 upper than E a calculated in inert atmosphere. The thermo-oxidative degradation illustrated by Ozawa method shows a stable apparent activation energy (E a ≈130 kJ mol−1 ) even though the thermal degradation in nitrogen flow presents a maximum E a for 15% mass loss (E a ≈60 kJ mol−1 ). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Cellulose, chitosan and piroxicam were investigated by TG and DSC at heating up to 215°C, and by X-ray powder diffraction before and after the heating. Dehydration of cellulose and chitosan comes to the end near 160°C. Thermal decomposition of chitosan starts at the final stage of its dehydration, and the mass losses after these two reactions overlap with one another. Enthalpy of dehydration is 47.1±2.4 kJ mol–1 of water for cellulose and 46.2±2.0 kJ mol–1 for chitosan. Thermal decomposition of chitosan is an exothermic process. Crystal structure of cellulose after heating remains unchanged, but that of chitosan contracts. Piroxicam melts at 200.7°C with the enthalpy of melting 35 kJ mol–1. Heat capacity of the liquid phase is greater than that of the solid phase by approximately 100 J mol–1K–1. Cooled back to ambient temperature, piroxicam remains glassy for a long time, crystallizing slowly back into the starting polymorph.  相似文献   

14.
The thermal degradation of lignins extracted from bagasse, rice straw, corn stalk and cotton stalk, have been investigated using the techniques of thermogravimetric analysis (TG) and differential thermal analysis (DTA), between room temperature and 600°C. The actual pyrolysis of all samples starts above 200°C and is slow. The results calculated from TG curves indicated that the activation energy, Efor thermal degradation for different lignins lies in the range 7.949–8.087 kJ mol?1. The DTA of all studied lignins showed an endothermic tendency around 100°C. In the active pyrolysis temperature range, thermal degradation occurred via two exothermic process at about 320 and 480°C, and a large endothermic pyrolysis region between 375 and 450°C. The first exothermic peak represents the main oxidation and decomposition reaction, the endothermic effect represents completion of the decomposition and the final exothermic peak represents charring.  相似文献   

15.
Thermal properties of the single crystals have been investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. The thermodynamic parameters such as activation energy and enthalpy and thermal stability temperature of the samples were calculated from the differential thermal analysis (DTA) and TG data. The activation energies for first peak of DTA curves were found as 496.65 (for Cd–Pd) and 419.37 kJ mol–1 (for Zn–Pd). For second peak, activation energies were calculated 116.56 (for Cd–Pd) and 173.96 kJ mol–1 (for Zn–Pd). The thermal stability temperature values of the Cd–Pd and Zn–Pd compounds at 10°C min–1 heating rate are determined as approximately 220.7 and 203°C, respectively. The TG results suggest that thermal stability of the Cd–Pd complex is higher than that of the Zn–Pd complex.  相似文献   

16.
The thermal decomposition of theophylline, theobromine, caffeine, diprophylline and aminophylline were evaluated by calorimetrical, thermoanalytical and computational methods. Calorimetrical studies have been performed with aid of a heat flux Mettler Toledo DSC system. 10 mg samples were encapsulated in a 40 μL flat-bottomed aluminium pans. Measurements in the temperature range form 20 to 400°C were carried out at a heating rate of 10 and 20°C min−1 under an air stream. It has been established that the values of melting points, heat of transitions and enthalpy for methylxanthines under study varied with the increasing of heating rate. Thermoanalytical studies have been followed by using of a derivatograph. 50, 100 and 200 mg samples of the studied compounds were heated in a static air atmosphere at a heating rate of 3, 5, 10 and 15°C min−1 up to the final temperature of 800°C. By DTA, TG and DTG methods the influence of heating rate and sample size on thermal destruction of the studied methylxanthines has been determined. For chemometric evaluation of thermoanalytical results the principal component analysis (PCA) was applied. This method revealed that first of all the heating rate influences on the results of thermal decomposition. The most advantageous results can be obtained taking into account sample masses and heating rates located in the central part of the two-dimensional PCA graph. As a result, similar data could be obtained for 100 mg samples heated at 10°C·min−1 and for 200 mg samples heated at 5°C min−1.  相似文献   

17.
The thermoanalytical curves (TA), i.e. TG, DTG and DTA for pure cephalexin and its mixtures with talc, magnesium stearate, starch and microcrystalline cellulose, respectively, were drawn up in air and nitrogen at a heating rate of 10 °C min−1. The thermal degradation was discussed on the basis of EGA data obtained for a heating rate of 20 °C min−1. Until 250 °C, the TA curves are similar for all mixtures, up this some peculiarities depending on the additive appears. These certify that between the pure cephalosporin and the excipients do not exists any interaction until 250 °C. A kinetic analysis was performed using the TG/DTG data in air for the first step of cephalexin decomposition at four heating rates: 5, 7, 10 and 12 °C min−1. The data processing strategy was based on a differential method (Friedman), an integral method (Flynn–Wall–Ozawa) and a nonparametric kinetic method (NPK). This last one allowed an intrinsic separation of the temperature, respective conversion dependence on the reaction rate and less speculative discussions on the kinetic model. All there methods had furnished very near values of the activation energy, this being an argument for a single thermooxidative degradation at the beginning (192–200 °C).  相似文献   

18.
Leachate samples from a sanitary landfill of Araraquara city and composting usine of Vila Leopoldina, São Paulo, Brazil were lyophilized to remove the water content. TG/DTG curves at different heating rates were recorded. The second step of the thermal decomposition of leachate from the Araraquara landfill (CB1), from the composting usine from Vila Leopoldina (CB2) from the organic phase extracted (FO) and aqueous phase (FA) were all kinetically evaluated using the non-isothermal method.By Flynn-Wall isoconversional method the following values were obtained: E=234±3.65 kJ mol?1 and logA=29.7±0.58 min?1 for CB1; E=129±1.66 kJ mol?1 and logA=11.8±0.10 min?1 for CB2; E=51.6±1.35 kJ mol?1 and logA=6.09±0.09 min?1 for FO and E=76.91±6.33 kJ mol?1 and logA=8.88±0.7 min?1 for FA with 95% confidence level. Applying the procedures of Málek and Koga, SB kinetic model (?esták-Berggren) is the most appropriate to describe the decomposition of CB1, CB2, FO and FA.  相似文献   

19.
A number of tetramethylammonium (TMA) iodides, including mono-, tri-, and pentaiodide, were synthesized. Thermal decomposition of samples was investigated by simultaneous TG–DSC analysis accompanied by gaseous IR- and mass-spectrometry analyses. Two different reaction pathways have been observed for TMA pentaiodide at different heating rates. At low heating rates (1–5 K min?1), a gradual mass loss takes place and a stability plateau due to monoiodide formation exists on TG curve. At high heating rates (10, 15 and 7 K min?1 as the in-between stage), there are only two peaks on DTG curve (instead of three for lower heating rates) and no monoiodide formation is observed as the sample decomposes completely before 350 °C.  相似文献   

20.
5-Nitro-8-hydroxyquinoline (B) and 5,7-dinitro-8-hydroxyquinoline (C) were obtained from nitration of 8-hydroxyquinoline (A) and purified in acetone medium and under heating in which the formation of (B) or (C) depends on the amount of HNO3 added. TG curves present mass loss in only one step before and after the melting point (T m =76°C (A) and 180°C (B)) in different proportions as a function of the heating rate, characterising the sublimation and the volatilisation processes, respectively. The thermal stability of the compounds follow the order: A (77°C)<B (121°C)<C (222°C). Kinetic parameters through TG curves, dynamic process, using heating rates of 1, 2.5, 5, 10 and 20°C minȡ1 , enabled to obtain the following increasing order to the activation energy values of the compounds: 80.4 (A), 102.0 (B) and 153.9 kJ mol−1 (C). Other kinetic parameters as pre-exponential and half-lifetime were also estimated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号