首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the MNDO approximation with full or partial optimization of geometry, we have calculated the energy characteristics and charge redistribution in the model systems Xax(H3)eqSi...Y with variation in the length of the coordination bond Si Y and rehybridization of the AOs of the valence shell of the silicon atom. We have considered the formation of the complex anions X=H, F, Cl; Y=H (I) and the complex X=F, Y=O=CH-OH (II). Upon formation of the intramolecular coordination bond Si Y, transfer of electron density occurs to the axial and equatorial atoms surrounding the silicon. We have calculated the complexation energy (kJ/ mole): –253.9 (X=H, Y=H), –273.2 (X=F, Y=H), –298.7 (X=Cl, Y=H) and 72.4 for X=F, Y=O=CH-OH.Translated from Teoreticheskaya i Éksperimental'naya KhimLya, Vol. 22, No. 1, pp. 70–75, January–February, 1986.The authors thank N. M. Vitkovskii, V. G. Zakzhevkskii, and F. S. Dubnikov for cooperation in carrying out the calculations.  相似文献   

2.
The title species are synthesized in the gas phase and their unimolecular chemistry is determined by a combination of tandem mass spectrometry methods. Dissociative electron ionization of the α-amino acids valine, leucine, isoleucine, or serine produces the α-glycyl cation, H2NCH+COOH, in high yield and purity. At threshold, this ion dissociates by CO loss to form the proton-bound complex HCNH+OH2 via a tight 1,4-H migration that is associated with a high reverse barrier. After collisional activation, additional channels open, most notably the formation of the complementary and structure-characteristic fragments H2NCH (ionized aminocarbene) and +COOH and the elimination of OH·. Charge reversal and neutralization–reionization of H2NCH+COOH conclusively show that α-glycyl anion, H2NCHCOOH, and α-glycyl radical, H2NCH·COOH, are stable species residing in deep potential energy wells. In the microsecond time window of the experiments, a small fraction of the α-glycyl radical decomposes by sequential elimination of H2O and CO. The α-glycyl anions arising by charge reversal of the cation or reionization of the radical partly undergo rearrangement losses of H2 and H2O, direct cleavages to COOH, OH, and H2N, and consecutive fragmentation of these primary product anions.  相似文献   

3.
Intramolecular phosphorescence quenching via states T* in aromatic solute molecules containing N–H (diphenylamine (DPA) or carbazole), O–H (naphthol), etc. bonds was observed in methylcyclohexane at 77 K. The quantum yield of quenching measured for DPA increases with increasing the energy of the T* state. As in the case of external electron acceptors, the quenching and photodissociation are associated with the capture of excited * electrons onto polarized bonds N–H+, O–H+and with the formation of triplet complexes (for example, Ph2N···H*, where H* is the excited hydrogen atom). The complexes can be deactivated via configurations with large proton displacement distances (Ph2N···H+).  相似文献   

4.
Conclusions (5-C5H5)(3-C5H5)Re anions are formed in THF as a result of the irreversible two-electron electrochemical reduction of (Cp2Re)2 accompanied by cleavage of the Re-Re bond. The oxidation of these anions leads to the generation of monomeric rhenocene with E0=–1.06 V for the Cp2Re0/+ redox transition.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 483–485, February, 1987.  相似文献   

5.
The density functional theory method was used to study the structural flexibility of a hydroxyl-containing (3-allyl)palladium complex with sorbic acid [(3-C3H3(CH(OH)CH3)(COOH))PdCl2] and its analog [(3-C3H3(CH(OH)CH3)(COO))PdCl2]2–. Potential surfaces of internal rotation in the CH(OH)CH3 substituent at the terminal carbon atom of the allyl fragment have been constructed for the complexes. It is found that weak hydrogen bonds COOH...Cl and OH...Cl are formed in the molecules. Various types of structural deformation of the complex are discussed.Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 3, pp. 435–441, May–June, 2004.Original Russian Text Copyright © 2004 by T. A. Morozova, A. P. Belov, and A. V. Krylov  相似文献   

6.
Measurements are reported on the formation of negative ions in O2, O2/Ar and O2/Ne clusters aimed at establishing the mechanisms of anion formation and the role of inelastic electron scattering by the cluster constituents on negative ion formation in clusters. In the case of pure O2 clusters the main anions we detected are of two types: O(O2) n0 and (O2) n 1– . The yields of O(O2) n showed maxima at 6.3, 8.0 and 14.0 eV and the data suggest O as their precursor; the maxima at 8 and 14 eV are due to the production of O via symmetry forbidden dissociative attachment processes in O2 at these energies which become allowed in clusters. The yields of (O2) n showed a strong maximum at near-zero energy (0.5 eV) and also at 6.3, 8 and 14 eV. With the exception of the near-zero energy resonance, the (O2) n anions at 6.3, 8 and 14 eV are attributed to nondissociative attachment of near-zero energy secondary electrons to O2 clusters. The slow secondary electrons result predominantly from scattering via the O 2 negative ion states of incident electrons with energies in their respective regions. Similar results were obtained for the mixed O2/rare gas clusters except that now a feeble and distinctly structured contribution in the yields of O(O2) n , (O2) n (and Ar(O2) n ) was observed at energies >10 eV. These anions are believed to have the lowest negative ion states of Ar* (Ne*) as their precursors.  相似文献   

7.
The structure of the crystal complex (L1H)2(L2H)(SiF6)1.5(L1is thiosemicarbazide, L2is 2,5-diamino-1,3,4-thiadiazole) was studied by X-ray diffraction analysis. The complex was prepared by reacting an aqueous solution of L1with 45% fluosilicic acid. The crystals are monoclinic: a= 16.080(3) Å, b= 5.4860(8) Å, c= 20.079(4) Å, = 91.46(1)°, Z= 4, space group P2/n, R= 0.0427. The components of the ionic structure of the complex are L1H+and L2H+cations and SiF2– 6anions combined by a system of H bonds of the NH···S and NH···F types, the -nitrogen atom of the hydrazine fragment and the endocyclic nitrogen atom of the heterocycle being the protonation centers in L1H+and L2H+, respectively. The bond lengths in the SiF2– 6anions range within 1.621(6)–1.691(2) Å.  相似文献   

8.
The title polymeric complex of Cu(II) and Cd(II) bridged by thiocyanate, Cu(en)2[Cd(SCN)3]2, has been prepared and its structure determined by X-ray diffraction (XRD) methods. The crystal structure reveals that the Cu(II) atom is in an elongated octahedral coordination formed by two SCN anions and two en molecules. The Cd(II) atom is in a distorted octahedral coordination formed by six bridging SCN anions. Two different bridging thiocyanate anions exist in the complex. Both 1,1--SCN and 1,3--SCN anion act a role of bridge ligand and link Cu(II), Cd(II) atoms, and adjacent Cd(II). Cd(II) atoms form the three-dimensional (3-D) network polymeric structure. The IR and UV-Vis spectra have also been investigated.  相似文献   

9.
The electron-impact mass spectra of coordination compounds of nickel(II) with the general formula NiL2, in which the radical anions [C6H5N -N-C(SR)=NR1], where R=CH3 and R=H(I), R=CD3 and R=H(II), R=C2H5 and R=H(III), and R=CH3 and R=C6H5(IV), serve as the ligands, have been studied. In the mass spectra of compounds I–IV the peaks of the molecular ions have the highest intensity among the organometallic fragments. The initial stage of the fragmentation of [M]+. is associated with the formation of the rearrangement ions [NiL + H]+, [NiL + C6H5]+, and [NiL + SR]+, ions, whose appearance becomes understood, if it is taken into account that the removal of one ligand is accompanied by the impairing of spins and the mass spectra of compounds I–IV is the presence of lines for the [NiL]+ ion in them. The dissociative ionization of compounds I–IV is strongly reminiscent of the behavior of ordinary complexes of metals with ligands of the nonradical type. The fragmentation scheme of the molecular ions under the effects of electron impact has been presented and discussed.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 26, No. 3, pp. 368–371, May–June, 1990.  相似文献   

10.
The salt Rb[C6H3(COO)2()] · [C6H3(COOH)3] · 2H2O (I) of trimesic acid was synthesized and its thermal stability and conductivity (10–11 ohm–1 cm–1 at 298 K) were measured. Molecular and crystal structures of I were established by X-ray diffraction analysis. Hydrogen bonding system in complex I was detected by IR and Raman spectroscopies. X-ray diffraction data agree with vibration spectroscopy data.  相似文献   

11.
In the present study, dissociative electron attachment (DEA) measurements with gas phase HMX, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, C4H8N8O8, have been performed by means of a crossed electron-molecular beam experiment. The most intense signals are observed at 46 and 176 u and assigned to NO2 ? and C3H6N5O4 ?, respectively. Anion efficiency curves for 15 negatively charged fragments have been measured in the electron energy region from about 0–20 eV with an energy resolution of ~0.7 eV. Product anions are observed mainly in the low energy region, near 0 eV, arising from surprisingly complex reactions associated with multiple bond cleavages and structural and electronic rearrangement. The remarkable instability of HMX towards electron attachment with virtually zero kinetic energy reflects the highly explosive nature of this compound. Substantially different intensity ratios of resonances for common fragment anions allow distinguishing the nitroamines HMX and royal demolition explosive molecule (RDX) in negative ion mass spectrometry based on free electron capture.   相似文献   

12.
Reactions of ZrOCl2·8H2O in aqueous solution with a carboxylic acid in the presence of K2CO3 have been studied as a route to ZrIV-carboxylates. With malonic acid (HO2CCH2CO2H) (H2mal) the product has been identified as K4[Zr(mal)4]·2H2O (1) by X-ray crystallography. The individual eight-coordinate zirconium anions contain four bidentate (OO) malonate anions with the metal geometry approximating to a square antiprism with each chelating ligand spanning the two square faces, Zr—O 2.091(3)–2.288(3) Å. The four potassium cations feature irregular coordination spheres of oxygen atoms [from both H2O and (mal) ligand molecules] with a 7–9 coordination range. With 2,6-dicarboxypicolinicacid (HO2CC5NH3CO2H) (H2dipic) the product has been characterised as K4[Zr(dipic)3]2·13.5H2O (2) following X-ray diffraction studies. The structure consists of two [Zr(dipic)3]2- anions, four potassium cations and lattice solvate (H2O) molecules. Individual anions feature nine-coordinate zirconium in which each dipic ligand is terdentate, being bonded via one N (pyridine) and two O (carboxylate) atoms. The metal geometry approximates to tricapped trigonal prismatic with each nitrogen atom capping a regular face of four oxygen atoms, Zr—O, 2.216(6)–2.261(6) Å; Zr—N, 2.343(8)–2.361(7) Å. The potassium cations show similar environments to those observed in structure (1). Dehydration of ZrOCl2·8H2O using SOCl2 in the presence of an excess of THF effects removal of coordinated H2O molecules and hydroxy bridging groups to provide the anhydrous bis-adduct ZrCl4(thf)2 in good yield (72%).  相似文献   

13.
Within the framework of the Hartree-Fock-Roothaan Method, using double- basis sets 3-21++G and (6-31-H-G//3-21++G), the minimum energy paths (MEPs) have been calculated for reactions of nucleophilic addition of the hydride ion H to the methylacetylene molecule: CH3-CCH+H[CH3-CH=CH] (1) CH3-CCH+H[CH3-C=CH2] (2). It has been established that the activation energy for reaction (2) is 7.02 kJ/mole lower than for reaction (1). An analysis has been made of the character of electron density distribution along the MEP of each reaction. It has been shown that distortion of geometry of the reactants plays an important role in intensifying the interaction of the frontier orbitals. The reasons for nonfulfillment of Markownikoff's rule for these reactions have been determined. The results from the calculations are compared with calculations reported in the literature for the related reaction of nucleophilic addition of the hydride ion H to the acetylene molecule: HCCH+H[CH2=CH].Translated from Teoreticheskaya i Éxperimental'naya Khimiya, Vol. 21, No. 3, pp. 303–309, May–June, 1985.  相似文献   

14.
Proton transfer in a given H-bond A—H—B—(H)A— H+—B—(H) considerably enhances the strength of the electron donor sites of the first partner and that of proton donor sites possibly present in the second one. This leads to the formation of complexes of higher stoichiometry of the type B— H+—(A—H—A--H—A--H--)or A---(H—B+—H----B—H—B—H----) where the self-association bonds are much strengthened. This is due to the high stability of the homoconjugated anions or cations in the corresponding ion pairs. In polar solvents like acetonitrile, the ion pairs may dissociate into free ions. The variety of the entities that can be formed necessitates a diversification of the quantitative concepts connected with the proton transfer process. Besides the average value x1 of the fractions of the various complexes in the ionized form, other quantities are defined that can also be used in the case of partial dissociation: (1) the percentage of ionized base molecules and (2) the fraction of donor molecules AH ionized after direct interaction with B. A further characteristic used in this generalized treatment is the average number n of proton donor molecules perturbed by one base molecule. Examples of determinations of these various parameters from calorimetric, infrared, or NMR data from the literature are presented and new quantitative correlations established.  相似文献   

15.
The electronic structures of the Cl3 , Br3 , I3 , BrCl2 , BrI2 , BrICl, and BrII anions were calculated using the discrete variational X method. These calculations showed that the adiabatic electron affinity (EA) of the corresponding trihalogen molecules is close to the vertical EA and first vertical ionization potential (IP) of the corresponding singly charged anions. The calculated first IP of all these anions are rather similar (3.3–3.8 eV). Thus, these trihalides may be considered weak superhalogens.Branch of the Institute of Chemical Physics, Academy of Sciences of the USSR. Translated from Zhurnal Strukturnoi Khimii, Vol. 30, No. 5, pp. 41–47, September–October, 1989.  相似文献   

16.
Phase transitions of poly(N-isopropylacrylamide-co-acrylic acid) (PiPA-AA) and poly(N,N- diethylacrylamide-co-acrylic acid) (PdEA-AA) in water have been investigated by means of turbidimetry, Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The phase transition temperatures (Tp) of these copolymers increase with the degree of ionization () of the acrylic acid (AA) units, which in turn is dependent on the pH of the solutions. Apparent values of pKa for the AA units, determined from the pH dependencies of Tp, are 4.7 and 5.4 for PiPA-AA and PdEA-AA, respectively. Differences between Tp for PiPA-AA and Tp for PiPA homopolymer (Tp) are +1.5 and –0.2 °C/mol% of AA at =1 and 0, respectively. The values of Tp for PdEA-AA are +2.6 (ionic) and –0.5 (nonionic)°C/mol%, indicating that the incorporated AA units have a larger effect on PdEA than on PiPA. DSC measurements performed with each of these copolymers at different pH values show a linear relationship between Tp and the enthalpy of transition (H). IR measurements of PiPA-AA show that the profiles of IR bands from both iPA and AA units exhibit critical changes at Tp of the copolymer. Heating the solution above Tp leads to shifts of the amide II, C–H stretch, and C–H bend bands from the iPA units toward lower wavenumbers, as well as a shift of the amide I band from the iPA units toward higher wavenumbers. A decrease in the intensity of the symmetric C=O stretch IR band from carboxylate anions (1560 cm–1), and an increase in the intensity of the C=O stretch band from COOH groups (1705 cm–1) suggest that a partial protonation of the carboxylate groups (COO+H+COOH) takes place upon the phase transition.  相似文献   

17.
Synthesis of an intercalated compound of montmorillonite and 6-polyamide   总被引:7,自引:0,他引:7  
Natural montmorillonite, fractionated from bentonite produced in Yamagata, Japan, was ion-exchanged for NH 3 + –(CH2)11–COOH, NH 3 + –(CH2)5–COOH, Al3+, Cu2+, Mg2+, Co2+, Li+, K+ and H+. The mixtures of the ion-exchanged montmorillonite and -caprolactam were heated at 263°C in glass ampoules for various periods. The intercalated compounds before and after the heating were examined by X-ray powder diffraction, DSC and GPC. Although -caprolactam was not polymerized without montmorillonite, it was polymerized at 263°C in the presence of montmorillonite. The polymerization rate varied with the interlayer cations in the order of NH 3 + –(CH2)11–COOH>Al3+>NH 3 + –(CH2)5–COOH>H+>Cu2+>Mg2+>Co2+>Li+>K+. After heating at 263°C for 5 h, the mean number-average molecular weight was about 1.5×104. Although the interlayer distance of NH 3 + –(CH2)11–COOH type montmorillonite/-caprolactam compound increased from 2.85 nm to 4.90 nm by heating at temperatures above the melting point of -caprolactam, those of other compounds were not changed. After heating at 263°C, an intercalated compound of montmorillonite and 6-polyamide, whose interlayer distance was more than 10 nm, was obtained. It is concluded that montmorillonite acts as a Brönsted acid and initiates the open ring polymerization of -caprolactam and that the driving force of swelling is the polymerization energy.Presented at the Fourth International Symposium on Inclusion Phenomena and the Third International Symposium on Cyclodextrins, Lancaster, U.K., 20–25 July 1986.  相似文献   

18.
Changes in the electronic absorption spectra and ESR spectra in the course of photobleaching of radiolyzed solid HCN with light of different wavelengths (236–600 nm) were studied by ESR and optical spectroscopy. Two bands at 270 and 290 nm in the optical spectrum were attributed to the presence of H2C=N and HC=NH radicals, respectively (the molar absorption coefficients are k 270 2.7 × 102l mol–1cm–1and k 290 1.5 × 102l mol–1cm–1, respectively). Structureless broad bands with maximums at 313 and 465 nm, which were detected after the exposure of a sample to light with 300 nm, can belong to the cyanide ions (CN) and H2C=N+cations (the molar absorption coefficients of the ions are k ion= (0.4–1.0) × 102l mol–1cm–1). In the photobleaching of -irradiated HCN ( = 236–280 nm), H2C=N+radicals were additionally formed by the photoinduced reaction of electron transfer from the CNanion to the H2C=N+cation. The amount of these radicals generated in the course of photobleaching is several times greater than that of the same radicals formed in the radiolysis via hydrogen atom addition to the multiple bond of HCN molecules.  相似文献   

19.
Selected extraction systems of TcO 4 –(H,Na)A–H2O/R(TcO4,A)–CHCl3, C6H5NO2 type, where A=Cl, NO 3 , ClO 4 , R=(C6H5)4As+, were studied. The solvent extraction of sub- and super-stoichiometric ratio of TcR was performed. The solubility of (C6H5)4AsTcO4 in water, chloroform and nitrobenzene were determined too. The results of the extractions are presented in the form of TcO 4 distribution dependencies on the phase composition and the extraction constants of individual TcO 4 , Cl, NO 3 , ClO 4 anions and TcO 4 -Cl, TcO 4 –NO 3 , TcO 4 –ClO 4 ion pairs.  相似文献   

20.
Single crystals of the Rb4H2I2O10· 4H2O were synthesized for the first time and studied by X-ray diffraction analysis. The crystals are monoclinic, a = 7.321(6) Å, b = 12.599(8) Å, c = 8.198(8) Å, = 96.30(7)°, Z = 2, space group P21/c. The H2I2O10 4– anion is formed by the edge-sharing IO6 octahedra. The anions are united by hydrogen bonds into a chain running along the x axis. The chains are combined by water molecules into a three-dimensional structure through hydrogen bonds. The compound is a proton conductor. The conductivity values measured at 20–60°C vary within 10–6 to 10–4 ohm–1 cm–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号