首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Reddy AV  Reddy YK 《Talanta》1986,33(7):617-619
2,4-Dihydroxyacetophenone thiosemicarbazone (DAPT) forms a 1:1 complex with copper(II) which can be extracted into n-butanol or ethyl acetate from acetic acid-sodium acetate (pH 5.0) buffer, and a 1:1 nickel(II) complex which can be extracted into n-butanol from ammonium chloride-ammonia (pH 7.5) buffer. The difference between the pH(1 2 ) values for extraction of the two complexes is 3.4 and this has been exploited for their sequential extraction and determination. The molar absorptivities for the copper and nickel complexes are 1.5 x 10(4)l.mole(-1).cm(-1) at 390 nm and 8.2 x 10(3)l.mole(-1).cm(-1) at 385 nm respectively. The procedure has been applied to the analysis of cupronickel.  相似文献   

2.
An RP-HPLC method for the separation and determination of aluminium(III), vanadium(V), iron(III), copper(II) and nickel(II) with CALKS (Chromazol KS) and PAR ([4-(2-pyridylazo)resorcinol]) chelating on a YWG-ODS column was developed. A mixture of methanol-tetrahydrofuran(THF)-water (60:5:35 v/v) containing 0.2 mol/L LiCl, 5 x 10(-5) mol/L CALKS, 5 x 10(-5) mol/L PAR and acetate buffer solution (pH 4.9) was selected as mobile phase. The method has high sensitivity, with the detection limits being 6 ng/mL for aluminium(III), 3.5 ng/mL for vanadium(V), 10.4 ng/mL for iron(III), 6.3 ng/mL for copper(II) and 8.7 ng/mL for nickel(II). It also has good selectivity, so that most foreign metal ions do not interfere under the optimum conditions. The method can be applied to the simultaneous determination of trace amounts of aluminium, vanadium, iron, copper and nickel in rice and flour samples.  相似文献   

3.
Mudasir  Yoshioka N  Inoue H 《Talanta》1997,44(7):1195-1202
A reversed phase ion-paired chromatographic method that can be used to determine trace amounts of iron (II,III), nickel (II) and copper (II) was developed and applied to the determination of iron (II) and iron (III) levels in natural water. The separation of these metal ions as their 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline) chelates on an Inertsil ODS column was investigated by using acetonitrile-water (80/20, v/v) containing 0.06 M perchloric acid as mobile phase and diode array spectrophotometric detection at 250-650 nm. Chromatographic parameters such as composition of mobile phase and concentration of perchloric acid in mobile phase were optimized. The calibration graphs of iron (II), nickel (II) and copper (II) ions were linear (r > 0.991) in the concentration range 0-0.5, 0-2.0 and 0-4.0 mug ml(-1), respectively. The detection limit of iron (II), nickel (II) and copper (II) were 2.67, 5.42 and 18.2 ng ml(-1) with relative standard deviation (n = 5) of 3.11, 5.81 and 7.16% at a concentration level of 10 ng ml(-1) for iron (II) and nickel (II) and 25 ng ml(-1) for copper (II), respectively. The proposed method was applied to the determination of iron(II) and iron(III) in tap water and sea water samples without any interference from other common metal ions.  相似文献   

4.
Costa AC  Ferreira SL  Andrade MG  Lobo IP 《Talanta》1993,40(8):1267-1271
The reaction of nickel (II) with Br-PADAP, in the presence of tergitol NPX surfactant, forms a complex with absorption peaks at 520 and 560 nm. The iron(II)-Br-PADAP system at the same conditions forms a chelate with absorption peaks at 560 and 748 nm. This allows the simultaneous spectrophotometric determination of nickel and iron by measuring the absorbance at 560 and 748 nm. The proposed method, at ph 4.0-5.7, shows a molar absorptivity of 1.22 x 10(5)l . mole(-1) . cm(-1) for nickel at 560 nm and 8.20 x 10(4)l . mole(-1) . cm(-1) at 560 nm and 3.35 x 10(4)l . mole(-1) . cm(-1) at 748 nm for iron(II). Beer's law is obeyed up to 0.40 mu/ml of nickel(II) and up to 0.65 mu/ml of iron(II). Thiosulphate as masking agent allows the simultaneous determination of iron and nickel in the presence of high concentrations of copper. The ethylene glycol 2-(2-amino-ethyl) tetracetic acid provides the elimination of many other interferences. The method has been applied successfully to the simultaneous determination of nickel and iron in reference samples.  相似文献   

5.
Dalvi MB  Khopkar SM 《Talanta》1978,25(10):599-602
Uranium was quantitatively extracted with 4% Amberlite LA-1 in xylene at pH 2.5-4.0 from 0.001 M malonic acid. It was stripped from the organic phase with 0.01 M sodium hydroxide and determined spectrophotometrically at 530 nm as its complex with 4-(2-pyridylazo) resorcinol. Of various liquid anion-exchangers tested, Amberlite LA-1 was found to be best. Uranium was separated from alkali and alkaline earth metal ions, thallium(I), iron(II), silver, arsenic(III) and tin(IV) by selective extraction, and from zinc, cadmium, nickel, copper(II), cobalt(II), chromium(III), aluminium, iron(III), lead, bismuth, antimony(III) and yttrium by selective stripping. The separation from scandium, zirconium, thorium and vanadium(V) was done by exploiting differences in the stability of chloro-complexes.  相似文献   

6.
The reaction between cadmium and 2-(5-chloro-2-pyridylazo)-5-dimethylaminophenol (5-Cl DMPAP) in aqueous alcohol media at pH 8.8-10.7 results in an intense violet colour which is stable for at least 8 hr. The composition is 2:1 reagent:metal and the formation constant (5.29 +/- 0.01) x 10(18). Beer's law is obeyed up to 1.34 ppm of cadmium at 550 nm. The optimal concentration range (Ringbom) is between 0.16 and 0.72 ppm. The apparent molar absorptivity at 550 nm is (1.20 +/- 0.01) x 10(5) l.mole(-1). cm(-1), making the sensitivity one of the highest known. The interference due to copper(III), iron(III), cobalt(II), nickel(II), gold(III), zinc(II) and manganese(II) can be suppressed.  相似文献   

7.
Dawson MV  Lyle SJ 《Talanta》1990,37(4):443-446
Cobalt(II) in acetate-tartrate buffer (pH 6.0-7.3) is extracted quantitatively as cobalt(III) dithizonate with excess of dithizone in CCl(4). The molar absorptivity in the CCl(4) phase is 4.6 x 10(4) 1.mole(-1).cm(-1) at the absorption maximum 550 nm. The calibration graph is linear for 1-10 mug of cobalt in 10 ml of CCl(4) when excess of dithizone is removed by back-extraction with 0.01M aqueous ammonia. Most interferences can be overcome by (a) initial extraction with dithizone at pH 1.3, (b) selective back-extraction into hydrochloric acid (pH 1 to 2), (c) oxidation of iron and tin to iron(III) and tin(IV) and addition of fluoride to complex the former, and (d) selective reaction of nickel dithizonate with 1,10-phenanthroline in the CCl(4) phase followed by back-extraction of nickel into 0.1M acid. The method has been applied to determination of cobalt in a copper-nickel-zinc alloy and a nimonic alloy.  相似文献   

8.
A square wave voltammetric method with a static mercury drop electrode (SMDE) was developed for the quantitative determination of iron (III) in Zn-Fe alloy galvanic baths. Real alloy bath samples were analyzed by the standard addition method and recovery tests were carried out. 0.50 mol L-1 sodium citrate (pH 6.0) or 0.20 mol L-1 oxalic acid (pH 4.0) were applied as supporting electrolytes resulting in both cases in a peak potential of about -0.20 V vs. AgIAgCl (saturated KCl). The iron (III) concentration in the alloy bath was 9.0 x 10(-4) mol L-1. A good correlation (r = 0.9999) was achieved between the iron (III) concentration and the peak current in the electrolytes studied, with linear response ranges from 1.0 x 10(-6) to 1.2 x 10(-4) mol L-1. Interference levels for some metals such as copper (II), lead (II), chromium (III) and manganese (II) that can hinder the Zn-Fe alloy deposition were evaluated; only copper (II) interferes seriously.  相似文献   

9.
The solution properties of nickel complex with 4-(2'-benzo-thiazolylazo) salicylic acid (BTAS) have been studied by zero-order absorption spectrophotometry in 40% (v/v) ethanol at 20 degrees C and an ionic strength of 0.1 mol dm(-3) (KNO(3)). The equilibria that exist in solution were established and the basic characteristics of complexes formed were determined. A new direct spectrophotometric method for the determination of trace amounts of the nickel is proposed based on the formation of the Ni (BTAS) complex at pH 7.0. The absorption maximum, molar absorbtivity, and Sandell's sensitivity of 1:1 (M:L) complex are 525 nm, 0.6 x 10(4) l mol(-1) cm(-1) and 2.824 x 10(-9) microg cm(-2), respectively. The use of first-derivative spectrophotometry eliminates the interference of iron and enables the simultaneous determination of nickel and iron using BTAS. Quantitative determination of Ni(II) and Fe(III) is possible in the range (0.59-7.08) and (2.1-8.4) microg ml(-1), respectively with a relative standard deviation of 0.5%. The proposed method has been successfully applied to the simultaneous spectrophotometric determination of nickel and iron in steel alloys and aluminum alloys.  相似文献   

10.
Budesinsky BW  Sagat M 《Talanta》1973,20(2):228-232
The overall stability constants of electroneutral dithizonates of bismuth, cadmium, cobalt(II), copper(II), iron(II), lead(II), manganese(II), mercury(II), nickel, palladium(II), silver, tin(II) and zinc were determined by means of stoichiometric dilution in aqueous solution stabilized by hydroxylamine hydrochloride, at pH 5.50-10.02. Stability constants of complexes ML of bivalent metals were determined under similar conditions but with an excess of metal.  相似文献   

11.
Svancara I  Vytras K  Hua C  Smyth MR 《Talanta》1992,39(4):391-396
The determination of mercury(II) ions can be achieved by monitoring the decrease in the oxidation peak of the tetraphenylborate ion in the presence of this metal ion at a carbon paste electrode. The reaction between mercury(II) and the tetraphenylborate ion results in the formation of diphenylmercury, thus providing the method with good selectivity over other metal ions. Using anodic stripping voltammetry in a neutral electrolyte, a linear dependence of the decrease of peak height was observed on increasing the mercury(II) concentration in the range 1 x 10(-6)-8 x 10(-9)M mercury(II). Zinc(II), cadmium(II), lead(II), nickel(II), cobalt(II), tin(II), potassium(I) and ammonium(I) ions did not interfere at a 1000-fold concentration excess. Iron(III) and chromium(III) did not interfere at a 250-fold and 50-fold concentration excess, respectively. Following masking procedures, copper(II), bismuth(III) and silver(I) did not interfere at a 100-fold concentration excess. The method can be used to determine the concentration of mercury(II) in natural waters contaminated by this metal.  相似文献   

12.
Fogg AG  Ismail R  Yusoff AR  Ahmad R  Banica FG 《Talanta》1997,44(3):497-500
Trimercapto-s-triazine (TMT) is available commercially for precipitating heavy metals in effluents prior to discharge and for recovering silver and copper. The TMT content of an effluent for discharge is normally monitored down to about 2 ppm by means of its UV absorption at 285 nm. Indirect cathodic-stripping voltammetric methods of determining TMT at sub-ppb levels in standard solutions are reported here. These methods might prove suitable for the determination of TMT in effluent at levels lower than is currently possible. TMT can be accumulated and determined indirectly at pH 9.0 as its mercury salt down to sub-ppb levels. Accumulation is made at 0 V and the mercury TMT reduction peak is at -0.47 V. Alternatively, by adding nickel(II), TMT can be determined optimally at pH 7.8, using the catalytic nickel peak at -0.73 V and accumulating between -0.10 and -0.60 V: at this pH the HgTMT peak at -0.47 V is small. At slightly higher pH (pH 8.6) the nickel TMT complex can be accumulated directly at -0.40 V, but at this pH, however, a slightly increased sensitivity can be achieved by accumulating TMT as its mercury salt, at -0.1 V in the presence of nickel(II), the nickel TMT complex being formed during the potential sweep on the release of the TMT when the mercury salt is reduced. Unlike many other thiols TMT is not accumulated as its copper(I) salt on addition of copper(II) to the solution.  相似文献   

13.
Composite electrodes made of graphite, paraffin and metal hexacyanoferrates exhibit a voltammetric response of the hexacyanoferrate ions, the potential of which depends linearly on the logarithm of concentration of alkali and alkaline-earth metal ions. This behaviour has been observed on account of the fact that the electrochemical reaction is accompanied by an exchange of these ions between the solution and the zeolitic lattice of the hexacyanoferrates for charge compensation. The voltammetric determination of the formal potential of these electrodes in a solution allows the quantitative analysis of the ions which are exchanged between the metal hexacyanoferrates and the aqueous solutions. Iron(III), copper(II), silver(I), nickel(II) and cadmium(II) hexacyanoferrates have been studied for the determination of H(+), Li(+), Na(+), K(+), Rb(+), Cs(+), NH(+)(4), Mg(2+), Ca(2+) and Ba(2+). In some cases, the selectivity constants are as low as 3.10(-4), or even so small that their exact value is inaccessible. Electrodes made of iron (III), copper (II), silver (I), nickel (II) and cadmium (II) hexacyanoferrates are most suitable for the determination of potassium ions. Electrodes with nickel (II) and cadmium (II) hexacyanoferrates are also suitable for the determination of caesium ions. The working range of the electrodes also depends on the conductivity of the solutions and can range from 10(-5) to 1 mol l(-1). Typical standard deviations of the potential measurements are 3 mV.  相似文献   

14.
Tarek M  Zaki M  Mahmoud WH  El-Sayed AY 《Talanta》1988,35(4):253-257
A method for iron(II) determination based on reaction with Pyrocatechol Violet to form a 1:2 binary complex at pH 5-7 is described and has been extended to an extraction-spectrophotometric procedure for the determination of iron(II) by formation of the 1:2:2 iron(II)-Pyrocatechol Violet-cetyltrimethylammonium bromide ternary complex. The molar absorptivities of the binary and ternary complexes at 595 and 605 nm are 6.55 x 10(4) and 1.35 x 10(5)1.mole(-1).cm(-1), respectively. The method has been successfully applied to the determination of iron in felspar, Portland cement and sodium hydroxide.  相似文献   

15.
The synthesis of o-methylbenzenediazoaminobenzene-p-azobenzene (o-MDAP) was made. At pH 12, copper and silver formed a sensitive complex with o-MDAP. The characteristics of copper and silver complexes have been determined. The results showed that the formed complexes were Cu(o-MDAP)2 and Ag(o-MDAP), respectively. Their true molar absorptivities were equal to ε = 7.79 x 104 L mol-1 cm-1 at 510 nm and 2.21 x 104 L mol-1 cm-1, and their overall stability constants were K = 3.41 x 109 and 1.80 x 104 respectively. The precision of copper and silver determinations was 2.3% and 3.1%, respectively.  相似文献   

16.
Khuhawar MY  Lanjwani SN 《Talanta》1998,46(4):485-490
The complexing reagent 2-thiophenaldehyde-4-phenyl-3-thiosemicarbazone (TAPT) was examined for high performance liquid chromatographic (HPLC) separations of cobalt(II), copper(II) and iron(II) or cobalt(II), nickel(II), iron(II), copper(II) and mercury(II) as metal chelates on a Microsorb C-18, 5-mum column (150x4.6 mm i.d.) (Rainin Instruments Woburn, MA, USA). The complexes were eluted isocratically with methanol:acetonitrile:water containing sodium acetate and tetrabutyl ammonium bromide (TBA). UV detection was at 254 nm. The solvent extraction procedure was developed for simultaneous determination of the metals, with detection limits within 0.5-2.5 mug ml(-1) in the final solution. The method was applied for the determination of copper, cobalt and iron in pharmaceutical preparation.  相似文献   

17.
The feasibility of using bis(delta2-2-imidazolinyl)-5,5'-dioxime (H2L) for the selective extraction of iron(III) from aqueous solutions was investigated by employing an solvent-extraction technique. The extraction of iron(III) from an aqueous nitrate solution in the presence of metal ions, such as cobalt(II), copper(II) and nickel(II), was carried out using H2L in binary and multicomponent mixtures. Iron(III) extraction has been studied as a function of the pH, equilibrium time and extractant concentration. From the extracted complex species in the organic phase, iron(III) was stripped with 2 M HNO3, and later determined using atomic-absorption spectrometry. The extraction was found to significantly depend on the aqueous solution pH. The extraction of iron(III) with H2L increases with the pH value, reaching a maximum in the zone of pH 2.0, remaining constant between 2 and 3.5 and subsequently decreasing. The quantitative extraction of iron(III) with 5 x 10(-30 M H2L in toluene is observed at pH 2.0. H2L was found to react with iron(III) to form ligand complex having a composition of 1:2 (Fe:H2L).  相似文献   

18.
Iron(II) and copper(II) ions are determined simultaneously in a simple manifold by using a multichannel photodiode-array detector. 1-(2-Pyridlazo)-2-hydroxy-7-sulfonaphthalene (PAN-7S) is used as the sole chromogenic reagent. The absorbance at 550 nm is related to the PAN-7S chelates of iron(II) and copper(II)and that at 764 nm to the iron(II) chelate alone. Calibrations are linear over the range 0–8.0 x 10?6 M for each metal. Interference from zinc is avoided by addition of nitrilotriacetic acid; nickel interferes. Appliation to the determination of iron and copper ions in blood serum is discussed.  相似文献   

19.
A simple and sensitive method for the determination of trace amounts of nickel(II) is described. The method is based on the adsorptive enrichment of nickel(II) as the complex with quinoxaline-2,3-dithiol using a finely divided anion-exchange resin, collection of the resin on a membrane filter by filtration, and direct measurement of the absorbance of the resultant circular thin layer by reflective spectrophotometry at 605 nm. In the presence of interfering cations such as copper(II) and cobalt(II) a sample solution is first filtered, after the addition of ammonium thiocyanate and Zephiramine, to extract these cations onto a membrane filter as the ion-pair precipitate formed between the metal-thiocyanate complex anions and Zephiramine cations, then nickel(II) in the filtrate is determined. Interferences from iron(III), silver(I), bismuth(III), cadmium(II), mercury(II), indium(III), palladium(II), platinum(IV), tin(IV), and zinc(II) can also be eliminated. The proposed method was applied to the determination of nickel in white wine. The concentrations of nickel found in 5-ml aliquots of 10 different wine samples were in the range 16.1-68.0 ng ml−1.  相似文献   

20.
Al-Jabari G  Jaselskis B 《Talanta》1988,35(8):655-657
A new spectrophotometric method for the determination of micro amounts of formaldehyde in aqueous and methanol solutions is based on the oxidation of formaldehyde by hydrous silver oxide at pH 11-12.5 and oxidation of the metallic silver produced, with iron(III) in the presence of Ferrozine. The absorbance of the resulting iron(II)-Ferrozine complex at 562 nm is proportional to the amount of formaldehyde and corresponds to an apparent molar absorptivity of 5.58 x 10(4) 1.mole(-1).cm(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号