首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A microscopic approach to cluster decay including single-particle states in a continuum is given. The equations of motion describing cluster-like states are derived within the multistep shell-model approach. The lowest collective two-particle eigenmodes are used as building blocks for α-like states. Good agreement with low-lying states in 212Po is obtained. The spectroscopic factor for the α decay between ground states is reproduced. It is shown that only by including the continuum part of the single-particle spectrum is the decay width for α-and cluster-decay processes reproduced. The α-like structure of the lowest states in 212Po is analyzed, and strong high-lying resonances are predicted.  相似文献   

2.
Nuclear clustering based on α particles and strongly bound substructures with N=Z has been studied for many decades. Of particular interest are excited states close to the decay thresholds into substructures, as described by the Ikeda diagram. This diagram can be extended to neutron-rich nuclei; in these cases strongly deformed isomeric states consisting of clusters and loosely bound neutrons will appear. A possible approach to describe these states is to use explicitly molecular concepts, with neutrons in covalent binding orbits. Examples for molecular structure in beryllium isotopes and in other neutron-rich light nuclei (carbon and neon) are discussed.  相似文献   

3.
The four-particle photodisintegration of a carbon nucleus in the reactions 12C(γ, p)3H2α and 12C(γ, n)3H2α is investigated by a method that employs a diffusion chamber in a magnetic field. It is shown that these reactions proceed according a sequential-type scheme: excited states of 11B and 11C nuclei decay to weakly excited states of 8Be, 7Li, and 7Be nuclei. It is concluded that nucleons are knocked out from the s shell. In the excitation curve for the 2α system in the reaction 12C(γ, p)3H2α, a resonance is found between the maxima corresponding to the ground and the first excited state of the 8Be nucleus, and this resonance is identified as a ghost anomaly. The branching fractions of the decay modes are determined. The angular distributions of nucleons in the reaction c.m. frame are measured. The energy dependence of the asymmetry coefficient for the angular distributions is obtained. A fast increase in this coefficient is observed in the energy range 38–40 MeV. It is concluded that the asymmetry coefficient depends on the excitation energy of the final nucleus in the region of intermediate photon energies.  相似文献   

4.
The isomeric ratios of some nuclear products of (p, n), (d, 2n), (α, p3n) reactions were analyzed. A comparison of calculation data obtained by using TALYS 1.4 software package with experimental ones shows that the observed significant discrepancies for definite nuclei may be accounted for by the influence of high-spin states on the values of isomeric ratios.  相似文献   

5.
Tb158m was produced from Tb159 by (n, 2n) reaction and investigated using scintillation spectrometers. The following results were obtained: half-life\(T_{\tfrac{1}{2}} = (10.5 \pm 0.2)\) sec; energy of the isomeric transitionE γ =(109.9±1.4) keV; conversion coefficients α K =56±3; α L M +?=50±8; αtotal=106±10;K/L-ratioK/L=1.3±0.3, yielding the multipole order of the isomeric transition to beM3. Upper limits for the direct beta transitions from the isomeric state to the ground states of the neighbouring even-even nuclei Gd158 and Dy158 are 10?4 and 6·10?3, respectively.  相似文献   

6.
Calculations for (p, n) and (α, p3n) reactions were performed with the aid of the TALYS-1.4 code. Reactions in which the mass numbers of target and product nuclei were identical were examined in the range of A = 44–124. Excitation functions were obtained for product nuclei in ground and isomeric states, and isomeric ratios were calculated. The calculated data reflect well the dependence of the isomeric ratios on the projectile type. A comparison of the calculated and experimental data reveals, that, for some nuclei in a high-spin state, the calculated data fall greatly short of their experimental counterparts. These discrepancies may be due to the presence of high-spin yrast states and rotational bands in these nuclei. Calculations involving various level-density models included in the TALYS-1.4 code with allowance for the enhancement of collective effects do not remove the discrepancies in the majority of cases.  相似文献   

7.
The dinuclear system concept is applied to the explanation of the structure of nuclei. The appearance of a low-lying band with negative parity states near the ground-state band in actinides and other nuclei is described by oscillations of the dinuclear system in the mass-asymmetry coordinate. The results for the parity splitting and electric multipole moments in alternating parity bands of these nuclei are in agreement with experimental data. The ground-state band and the superdeformed band of 60Zn are interpreted as being caused by α-particle and Be clusterizations, respectively. Hyperdeformed nuclei are assumed as dinuclear systems which could directly be built up in heavy-ion collisions. Signatures of hyperdeformed states in such reactions could be γ transitions between these states and their decay into the nuclei forming the hyperdeformed nucleus.  相似文献   

8.
Properties and stability of superheavy nuclei resulting from hot fusion are discussed. It is shown that the microscopic–macroscopic approach allows obtaining the closed proton shell at Z ≥ 120. Isotopic trends of K-isomeric states in superheavy nuclei are predicted. Evaporation residue cross sections in hot fusion reactions are calculated using the predicted properties of superheavy nuclei. Interruption of α decay chains by spontaneous fission is analyzed. Alpha decay chains through isomeric states are considered. Internal level densities in superheavy nuclei are microscopically calculated.  相似文献   

9.
The capabilities and limitations of the conventional many-particle shell model and modern potential cluster models are discussed. New revaluated and more accurate calculations of one-nucleon spectroscopic characteristics of the light nuclei of 1p shell are presented. In many-particle shell model for nuclei with A = 7, 9, 11, 13, and 15 nucleon partial widths of highly excited states with the isotopic spin T = 3/2 were calculated both for “allowed” and “forbidden” transitions. One-nucleon spectroscopic factors were calculated in threebody multicluster models of 6Li{αnp}, 8Li{αtn}, and 9Be{ααn} nuclei. For isobar-analogue nuclei 7Li and 7Be, the spectroscopic proton S p and neutron S n factors for transitions to the ground and excited states of corresponding residue nuclei of the triplet 6Li-6He-6Be were calculated in the framework of binary potential αtand ατ models. Integral, differential and polarization characteristics of photonuclear processes 7Li(γ, n 0)6Li, 6He(p, γ0 + 1)7Li, 7Li(γ, p 0)6He, and 9Be(γ, p 0 + 1)8Li were calculated in this approach.  相似文献   

10.
11.
Tl197m was produced by the (α, 4n) reaction on Au197 using 49 MeVα particles. The following results were obtained: Half-lifeT 1/2=(0.55±0.02) sec; energy of the isomeric level (607±4) keV, determined directly by summing up the cascade transitions in a well-type scintillator; energy of the isomeric transition (222±2) keV; conversion coefficients of this transitionα K222=0.41±0.05 andα tot222=2.1±0.2, indicating anE3 multipolarity; energy of the second transition (385±3)keV; conversion coefficientsα K385=0.09±0.03 andα tot385<0.1. This transition was identified asE2 with aM1 admixture of 20 to 30%. Spins and parities are 1/2+, 3/2+ and 9/2? for the ground state, the 385 keV state and the 607 keV isomeric state, respectively, in disagreement with the extreme single-particle model. If this model were correct, anotherM1 transition should appear. No furtherM1 transition having an energy greater than theL-shell binding energy of T1 was observed.  相似文献   

12.
The state of experimental studies and promising proposals for the application of nuclear isomers presented as controlled energy or γ-ray sources are reviewed. The properties of isomeric states, methods of their production, and approaches to their efficient stimulation using various types of radiation are analyzed. The long-lived isomers, which can be accumulated in reactor irradiations or in other nuclear interactions with abundant yield, are listed. The isomers are estimated according to their specific energy accumulated per nucleus and the level of the cross section for their formation in reactions with neutrons. The nuclei are classified as promising either for obtaining controlled γ-ray pulses, for the enhanced release of the radioactive decay energy, or for experimental studies on detecting forbidden electromagnetic transitions from the ground to isomeric state. In all cases, the possibility of external-stimulus action on nuclear transitions has key significance, which should become the subject of investigations. The results of successful observation of stimulation of isomers are described at excitation energy E* > 1 MeV in the reactions with bremsstrahlung photons and Coulomb excitation in the ion beam. The essential increase in the K-hindered transitions with increasing energy and also the K-mixing at high rotational frequency for high-spin levels are discussed. The attention is focused on attempts to detect the triggering induced by the radiation in the x-ray range, in particular, that of the 178m2Hf isomer with the help of x-ray sources and the synchrotron radiation. Proposals for experiments with other isomers are considered. The possibility of affecting the nuclear states by means of ionization of electron shells of a corresponding atom is discussed as promising, and various schemes of similar experiments are proposed. The atomic cross sections are eight orders of magnitude higher than the nuclear ones; therefore, the stimulation of an isomer can occur even if the conversion from atomic excitations to nuclear ones has a low probability.  相似文献   

13.
The \(\alpha \) decay half-lives of hyper and normal isotopes of Po nuclei are studied in the present work. The inclusion of \(\Lambda \)N interaction changes the half-life for \(\alpha \) decay. The theoretical predictions on the \(\alpha \) decay half-lives of normal Po isotopes are compared with experimental results and are seen to be matching well with each other. The neutron shell closure at \(N = 126\) is found to be the same for both normal and hypernuclei. The Geiger–Nuttal (G–N) law for \(\alpha \) decay is unaltered in the case of hypernuclei. The hypernuclei will decay into normal nuclei by mesonic or non-mesonic decay modes. Since the half-lives of normal Po nuclei are well within the experimental limits, our theoretical results suggest experimental verification of the \(\alpha \) emission from hyper Po nuclei in a cascade process.  相似文献   

14.
Isomeric ratios (IR) in the (p, n) and (d, 2n) reactions are considered. The dependence of IR values on the projectile type and energy, the target- and product-nucleus spin, the spin difference between the isomeric and ground states of products, and the product mass number is discussed. The isomeric ratios for 46 product nuclei (from 44m,gSc to 127m,gXe) obtained in reactions where target and product nuclei have identical mass numbers were calculated at energies from the reaction threshold to 50 MeV (with a step of ΔE = 1 MeV). The calculations in question were performed with the aid of the TALYS 1.4 code package. The calculated IR values were compared with their experimental counterparts available from the literature (EXFOR database). In the majority of cases, the calculated IR values agree well with the experimental data in question. It is noteworthy that the IR values obtained in (d, 2n) reactions are substantially greater than those in (p, n) reactions.  相似文献   

15.
Doppelkonversion     
An excited nuclear state can decay by three different modes of double quantum emission, namely doubleγ-emission,γ-electron emission and double conversion electron emission. The emission of twoγ-quanta has been considered in an earlier paper1. The purpose of the present work is to treat all three processes together in a systematic manner. It is shown that the connection between the transition rates forγ-electron emissionT γc and doubleγ-quantum emissionT γγ is more complicated than in the case of single quantum processes. However,T γc can still be expressed in terms of the usual conversion coefficients. This is also true for the transition rate Tcc for the emission of twoK-shell electrons, although only approximately. For the emission of electrons from different atomic shells the formulas become rather complicated, because of interference effects. The electron andγ-quantum spectra in all of the three second order processes are discussed in detail for the decay of the isomeric level in Xe131.  相似文献   

16.
Experimental double-differential and integral spectra of (3He, xp), (3He, xd), (3He, xt), (3He, x3He) and (3He, ) reactions on 112Sn nuclei induced by 50 MeV 3He ions are presented. Theoretical calculations of the experimental inclusive spectra of the reactions are performed using the exciton model of preequilibrium decay. The corresponding mechanisms of reactions are determined. The experimental results can be used to develop new approaches in the theory of nuclear reactions, and to design safe and wasteless hybrid nuclear power plants.  相似文献   

17.
Absolute cross-sections and isomeric cross-section ratios have been measured for the reactions89Y(α, 3n)90g, 90m Nb. The energy of the α-particles was varied between 34 and 54 MeV. The experimental isomeric ratios are compared with statistical-model calculations.  相似文献   

18.
Co60m was produced by the reaction Co59 (n,γ) Co60m ; its decay has been investigated by scintillation spectrometers. The half-period has been remeasured yielding a value ofT 1/2=(10·35 ±0·20) min. The isomeric decay mainly leads to the Co60 ground state by a (58·6±0·6) keV transition. TheK-conversion coefficientα K= 41±3 and the total conversion coefficientα=47±3 indicate the transition to beM3 and the spin of Co60m to be 2+. Further Co60m decays by beta transitions to Ni60. The beta component (8·6±1·2)·10?3%, log ft=7·32 leading to a (2·16±0·02) MeV level has been measured for the first time. A second component (0·24±0·03)%, log ft=7·23 leads to the 1·33 MeV level. The 2·16 MeV level decays to the Ni60 ground state mainly by a 0·83–1·33 MeV cascade, in a few cases by a direct transition. The spin of the 2·16 MeV level is 2+. Zr90m was produced by the reaction Zr90 (n,n′) Zr90m . The half-period was measured yielding a value ofT 1/2=(0·83±0·03) sec. Zr90m decays in the following way: (77±5) % by a direct (2·31±0·02) MeV —E 5 transition to the Zr ground state and (23±5)% by a (132·5±1·5) keV-(2·18±0·03) MeV cascade detected for the first time in the isomeric decay. TheK-conversion coefficient of the 132·5 keV transition isα k=(2·2±0·3) indicating this transition to beE3 and the spin of the 2·18 MeV level to be 2+. The Zr90m -decay sheme is in accordance with the level sequence of Zr90 as measured in the Nb90 decay.  相似文献   

19.
It is shown that the wave functions for isobaric analog, double isobaric analog, configuration, and double configuration states may simultaneously have components corresponding to nn, np, and pp halos. The difference in the halo structure between the ground and excited states of a nucleus may lead to the formation of halo isomers. A halo structure of both Borromean and tango types can be observed for np configurations. The structure of ground and excited states with various isospins in halo-like nuclei is discussed. The reduced probabilities B() and B() for gamma transitions in 6?8Li, 8?10Be, 8,10,11B, 10?14C, 13?17N, 15?17,19O, and 17F nuclei are analyzed. Particular attention is given to the cases where the ground state of a nucleus does not have a halo structure, but where its excited state may have it.  相似文献   

20.
Theoretically motivated smallness of the penguin amplitude in Bππ decays allows one to calculate the value of the unitarity-triangle angle α(ø 2) with good accuracy. The relatively large branching ratio of the decay into π 0 π 0 is explained by the large value of FSI phase difference between decay amplitudes with I = 0 and I = 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号