首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Considering the positive d-dimensional lattice point Z + d (d ≥ 2) with partial ordering ≤, let {X k: kZ + d } be i.i.d. random variables taking values in a real separable Hilbert space (H, ‖ · ‖) with mean zero and covariance operator Σ, and set $ S_n = \sum\limits_{k \leqslant n} {X_k } $ S_n = \sum\limits_{k \leqslant n} {X_k } , nZ + d . Let σ i 2, i ≥ 1, be the eigenvalues of Σ arranged in the non-increasing order and taking into account the multiplicities. Let l be the dimension of the corresponding eigenspace, and denote the largest eigenvalue of Σ by σ 2. Let logx = ln(xe), x ≥ 0. This paper studies the convergence rates for $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) . We show that when l ≥ 2 and b > −l/2, E[‖X2(log ‖X‖) d−2(log log ‖X‖) b+4] < ∞ implies $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} , where Γ(·) is the Gamma function and $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } .  相似文献   

2.
We consider the weighted Hardy integral operatorT:L 2(a, b) →L 2(a, b), −∞≤a<b≤∞, defined by . In [EEH1] and [EEH2], under certain conditions onu andv, upper and lower estimates and asymptotic results were obtained for the approximation numbersa n(T) ofT. In this paper, we show that under suitable conditions onu andv, where ∥wp=(∫ a b |w(t)|p dt)1/p. Research supported by NSERC, grant A4021. Research supported by grant No. 201/98/P017 of the Grant Agency of the Czech Republic.  相似文献   

3.
Let (Σ,σ) be a full shift space on an alphabet consisting ofm symbols and letM: Σ→L +(ℝ d , ℝ d ) be a continuous function taking values in the set ofd×d positive matrices. Denote by λ M (x) the upper Lyapunov exponent ofM atx. The set of possible Lyapunov exponents is just an interval. For any possible Lyapunov exponentα, we prove the following variational formula, , where dim is the Hausdorff dimension or the packing dimension,P M(q) is the pressure function ofM, μ is aσ-invariant Borel probability measure on Σ,h(μ) is the entropy ofμ, and . The author was partially supported by a HK RGC grant in Hong Kong and the Special Funds for Major State Basic Research Projects in China.  相似文献   

4.
We consider a (possibly) vector-valued function u: Ω→R N, Ω⊂R n, minimizing the integral , whereD iu=∂u/∂x i, or some more general functional retaining the same behaviour; we prove higher integrability forDu:D 1u,…,Dn−1u∈Lq, under suitable assumptions ona i(x).
Sunto Consideriamo una funzione u: Ω→R N, Ω⊂R n che minimizzi l'integrale , doveD iu=∂u/∂xi, o un funzionale con un comportamento simile; sotto opportune ipotesi sua i(x), dimostriamo la seguente maggiore integrabilità perDu:D 1u,…,Dn−1uεLq.
  相似文献   

5.
Quasi-implication algebras (QIA's) are intended to generalize orthomodular lattices (OML's) in the same way that implication algebras (J. C. Abbott) generalize Boolean lattices. A QIA is defined to be a setQ together with a binary operation → satisfying the following conditions (ab is denotedab). (Q1) $$\left( {ab} \right)a = a$$ (Q2) $$\left( {ab} \right)\left( {ac} \right) = \left( {ba} \right)\left( {bc} \right)$$ (Q3) $$\left( {\left( {ab} \right)\left( {ba} \right)} \right)a = \left( {\left( {ba} \right)\left( {ab} \right)} \right)b$$ Every OML induces a QIA, wherea → b=a ?(a?b). On the other hand, every QIA induces a join semi-lattice with a greatest element 1, where 1=aa,a≤b iffab=1, anda?b=((ab)(ba))a. A bounded QIA is defined to be a QIA with a least element 0 (w.r.t.≤). The QIA associated with any OML is bounded, the zero elements being the same. Conversely, every bounded QIA induces an OML, wherea =a0, anda?b=((ab)(a0))0. The relationC of compatibility is defined so thataCb iffa≤ba, and it is shown that every compatible sub-QIA of a QIA is an implication algebra.  相似文献   

6.
We consider associativePI-algebras over a field of characteristic zero. The main goal of the paper is to prove that the codimensions of a verbally prime algebra [11] are asymptotically equal to the codimensions of theT-ideal generated by some Amitsur's Capelli-type polynomialsE M,L * [1]. We recall that two sequencesa n,b nare asymptotically equal, and we writea n ≃b n,if and only if lim n→∞(a n/b n)=1.In this paper we prove that % MathType!End!2!1!, whereG is the Grassmann algebra. These results extend to all verbally primePI-algebras a theorem of A. Giambruno and M. Zaicev [9] giving the asymptotic equality % MathType!End!2!1! between the codimensions of the matrix algebraM k(F) and the Capelli polynomials. The second author is partially supported by grants RFFI 04-01-00739a, E02-2.0-26.  相似文献   

7.
Carleman estimates for one-dimensional degenerate heat equations   总被引:1,自引:0,他引:1  
In this paper, we are interested in controllability properties of parabolic equations degenerating at the boundary of the space domain. We derive new Carleman estimates for the degenerate parabolic equation $$ w_t + \left( {a\left( x \right)w_x } \right)_x = f,\quad \left( {t,x} \right) \in \left( {0,T} \right) \times \left( {0,1} \right), $$ where the function a mainly satisfies $$ a \in \mathcal{C}^0 \left( {\left[ {0,1} \right]} \right) \cap \mathcal{C}^1 \left( {\left( {0,1} \right)} \right),a \gt 0 \hbox{on }\left( {0,1} \right) \hbox{and }\frac{1} {{\sqrt a }} \in L^1 \left( {0,1} \right). $$ We are mainly interested in the situation of a degenerate equation at the boundary i.e. in the case where a(0)=0 and / or a(1)=0. A typical example is a(x)=xα (1 − x)β with α, β ∈ [0, 2). As a consequence, we deduce null controllability results for the degenerate one dimensional heat equation $$ u_t - (a(x)u_x )_x = h\chi _w ,\quad (t,x) \in (0,T) \times (0,1),\quad \omega \subset \subset (0,1). $$ The present paper completes and improves previous works [7, 8] where this problem was solved in the case a(x)=xα with α ∈[0, 2). Dedicated to Giuseppe Da Prato on the occasion of his 70th birthday  相似文献   

8.
Let X, X 1, X 2,… be i.i.d. \mathbbRd {\mathbb{R}^d} -valued real random vectors. Assume that E X = 0 and that X has a nondegenerate distribution. Let G be a mean zero Gaussian random vector with the same covariance operator as that of X. We study the distributions of nondegenerate quadratic forms \mathbbQ[ SN ] \mathbb{Q}\left[ {{S_N}} \right] of the normalized sums S N  = N −1/2 (X 1 + ⋯ + X N ) and show that, without any additional conditions,
DN(a) = supx | \textP{ \mathbbQ[ SN - a ] \leqslant x } - \textP{ \mathbbQ[ G - a ] \leqslant x } - Ea(x) | = O( N - 1 ) \Delta_N^{(a)} = \mathop {{\sup }}\limits_x \left| {{\text{P}}\left\{ {\mathbb{Q}\left[ {{S_N} - a} \right] \leqslant x} \right\} - {\text{P}}\left\{ {\mathbb{Q}\left[ {G - a} \right] \leqslant x} \right\} - {E_a}(x)} \right| = \mathcal{O}\left( {{N^{ - 1}}} \right)  相似文献   

9.
Summary LetX(t) be a linear autoregressively generated explosive time series, with autoregressive coefficientsb 1,…,bq, and a constant termb 0, and an error term ; a0=1. Where ε(t),t≧1 are independent, Eε(t)=0, and Eε 2(t)=σ2 is positive and finite. In this paper two categories of -consisent and asymptotically singularly normal estimators are proposed for (b 1,…,bq, b0) thus settling an open problem since the publication of the paper (Venkataraman [5]). Based on these estimators several additional limit theorems based on estimated error residuals are proved. The parameter-free limit theorems of Spectral and Quenouille types of this paper serve as asymptotic goodness of fit tests for the model generatingX(t).  相似文献   

10.
On Approximation by Reciprocals of Spherical Harmonics in L p Norm   总被引:1,自引:0,他引:1  
Let S^1-1,q≥2,be the surface of the unit sphere in the Euclidean space R^1,f(x)∈L^p(S^q-1),f(x)≥0,f absohutely unegual to 0,1≤p≤+∞,Then,it is proved in the present paper that there is a spherical harmonics PN(x) of order≤N and a constant C〉0 such that where ω(f,δ)L^p=sup 0〈t≤δ‖St(f)-f‖L^p is a kind of moduli of continuity and ^‖f-1/PN‖L^p≤Cω(f,N^-1)L^p,St(f,μ)=1/|S^q-2|Sin^2λt ∫-μμ’=t f(μ')dμ' is a translation operator.  相似文献   

11.
In this paper we consider the Cauchy problem for the equation , where the matrix {a jk(x)} is non-negative, and the first derivatives of the coefficients have a singularity of orderq≥3 att=T>0; under these assumptions, the Cauchy problem is well-posed in all Gevrey classes of indexs<q/(q−1).  相似文献   

12.
Let G be a permutation group on a set Ω with no fixed points in,and m be a positive integer.Then the movement of G is defined as move(G):=sup Γ {|Γg\Γ| | g ∈ G}.It was shown by Praeger that if move(G) = m,then |Ω| 3m + t-1,where t is the number of G-orbits on.In this paper,all intransitive permutation groups with degree 3m+t-1 which have maximum bound are classified.Indeed,a positive answer to her question that whether the upper bound |Ω| = 3m + t-1 for |Ω| is sharp for every t > 1 is given.  相似文献   

13.
Abstract Let q ≥ 3 be an odd number, a be any fixed positive integer with (a, q) = 1. For each integer b with 1 ≤ b < q and (b, q) = 1, it is clear that there exists one and only one c with 0 < c < q such that bca (mod q). Let N(a, q) denote the number of all solutions of the congruent equation bca (mod q) for 1 ≤ b, c < q in which b and c are of opposite parity, and let . The main purpose of this paper is to study the distribution properties of E(a, q), and give a sharper hybrid mean-value formula involving E(a, q) and general Kloosterman sums. This work is supported by the NSF and the PSF of P. R. China  相似文献   

14.
The system of exponents $ \left\{ {e^{i\lambda _n t} } \right\}_{n \in \mathbb{Z}} $ \left\{ {e^{i\lambda _n t} } \right\}_{n \in \mathbb{Z}} is considered. A sufficient condition for a Riesz-property basis in the weighted space L p (−π, π) is obtained.  相似文献   

15.
This paper which is a continuation of [2], is essentially expository in nature, although some new results are presented. LetK be a local field with finite residue class fieldK k. We first define (cf. Definition 2.4) the conductorf(E/K) of an arbitrary finite Galois extensionE/K in the sense of non-abelian local class field theory as wheren G is the break in the upper ramification filtration ofG = Gal(E/K) defined by . Next, we study the basic properties of the idealf(E/K) inO k in caseE/K is a metabelian extension utilizing Koch-de Shalit metabelian local class field theory (cf. [8]). After reviewing the Artin charactera G : G → ℂ ofG := Gal(E/K) and Artin representationsA g G → G →GL(V) corresponding toa G : G → ℂ, we prove that (Proposition 3.2 and Corollary 3.5) where Χgr : G → ℂ is the character associated to an irreducible representation ρ: G → GL(V) ofG (over ℂ). The first main result (Theorem 1.2) of the paper states that, if in particular,ρ : G → GL(V) is an irreducible representation ofG(over ℂ) with metabelian image, then where Gal(Eker(ρ)/Eker(ρ)•) is any maximal abelian normal subgroup of Gal(Eker(ρ)/K) containing Gal(Eker(ρ) /K)′, and the break nG/ker(ρ) in the upper ramification filtration of G/ker(ρ) can be computed and located by metabelian local class field theory. The proof utilizes Basmaji’s theory on the structure of irreducible faithful representations of finite metabelian groups (cf. [1]) and on metabelian local class field theory (cf. [8]). We then discuss the application of Theorem 1.2 on a problem posed by Weil on the construction of a ‘natural’A G ofG over ℂ (Problem 1.3). More precisely, we prove in Theorem 1.4 that ifE/K is a metabelian extension with Galois group G, then Kazim İlhan ikeda whereN runs over all normal subgroups of G, and for such anN, V n denotes the collection of all ∼-equivalence classes [ω]∼, where ‘∼’ denotes the equivalence relation on the set of all representations ω : (G/N) → ℂΧ satisfying the conditions Inert(ω) = {δ ∈ G/N : ℂδ} = ω =(G/N) and where δ runs over R((G/N)/(G/N)), a fixed given complete system of representatives of (G/N)/(G/N), by declaring that ω1 ∼ ω2 if and only if ω1 = ω 2,δ for some δ ∈ R((G/N)/(G/N)). Finally, we conclude our paper with certain remarks on Problem 1.1 and Problem 1.3.  相似文献   

16.
Let G = (V, E) be an undirected graph and C(G){{\mathcal C}(G)} denote the set of all cycles in G. We introduce a graph invariant cycle discrepancy, which we define as
${\rm cycdisc}(G) = \min_{\chi: V \mapsto \{+1, -1\}} \max_{ C \in {\mathcal C} (G)} \left|\sum_{v \in C} \chi(v)\right|.${\rm cycdisc}(G) = \min_{\chi: V \mapsto \{+1, -1\}} \max_{ C \in {\mathcal C} (G)} \left|\sum_{v \in C} \chi(v)\right|.  相似文献   

17.
  We obtain a new sharp inequality for the local norms of functions x ∈ L ∞, ∞ r (R), namely,
where φ r is the perfect Euler spline, on the segment [a, b] of monotonicity of x for q ≥ 1 and for arbitrary q > 0 in the case where r = 2 or r = 3. As a corollary, we prove the well-known Ligun inequality for periodic functions x ∈ L r , namely,
for q ∈ [0, 1) in the case where r = 2 or r = 3. Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 60, No. 10, pp. 1338–1349, October, 2008.  相似文献   

18.
We generalize a Hilbert space result by Auscher, McIntosh and Nahmod to arbitrary Banach spaces X and to not densely defined injective sectorial operators A. A convenient tool proves to be a certain universal extrapolation space associated with A. We characterize the real interpolation space ( X,D( Aa ) ?R( Aa ) )q,p{\left( {X,\mathcal{D}{\left( {A^{\alpha } } \right)} \cap \mathcal{R}{\left( {A^{\alpha } } \right)}} \right)}_{{\theta ,p}} as
{ x  ?  X|t - q\textRea y1 ( tA )xt - q\textRea y2 ( tA )x ? L*p ( ( 0,¥ );X ) } {\left\{ {x\, \in \,X|t^{{ - \theta {\text{Re}}\alpha }} \psi _{1} {\left( {tA} \right)}x,\,t^{{ - \theta {\text{Re}}\alpha }} \psi _{2} {\left( {tA} \right)}x \in L_{*}^{p} {\left( {{\left( {0,\infty } \right)};X} \right)}} \right\}}  相似文献   

19.
Let $|\frac{{s_n (z)}} {{f(z)}} - 1| $|\frac{{s_n (z)}} {{f(z)}} - 1| when f ∈ $\left| {f'(z)\left( {\frac{z} {{f(z)}}} \right)^2 - 1} \right| < 1$\left| {f'(z)\left( {\frac{z} {{f(z)}}} \right)^2 - 1} \right| < 1  相似文献   

20.
We consider generalized Morrey type spaces Mp( ·),q( ·),w( ·)( W) {\mathcal{M}^{p\left( \cdot \right),\theta \left( \cdot \right),\omega \left( \cdot \right)}}\left( \Omega \right) with variable exponents p(x), θ(r) and a general function ω(x, r) defining a Morrey type norm. In the case of bounded sets W ì \mathbbRn \Omega \subset {\mathbb{R}^n} , we prove the boundedness of the Hardy–Littlewood maximal operator and Calderón–Zygmund singular integral operators with standard kernel. We prove a Sobolev–Adams type embedding theorem Mp( ·),q1( ·),w1( ·)( W) ? Mq( ·),q2( ·),w2( ·)( W) {\mathcal{M}^{p\left( \cdot \right),{\theta_1}\left( \cdot \right),{\omega_1}\left( \cdot \right)}}\left( \Omega \right) \to {\mathcal{M}^{q\left( \cdot \right),{\theta_2}\left( \cdot \right),{\omega_2}\left( \cdot \right)}}\left( \Omega \right) for the potential type operator I α(·) of variable order. In all the cases, we do not impose any monotonicity type conditions on ω(x, r) with respect to r. Bibliography: 40 titles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号