首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The structure of precursors is used to control the formation of six possible structural isomers that contain four structural units of PbSe and four structural units of NbSe2: [(PbSe)1.14]4[NbSe2]4, [(PbSe)1.14]3[NbSe2]3[(PbSe)1.14]1[NbSe2]1, [(PbSe)1.14]3[NbSe2]2[(PbSe)1.14]1[NbSe2]2, [(PbSe)1.14]2[NbSe2]3[(PbSe)1.14]2[NbSe2]1, [(PbSe)1.14]2[NbSe2]2[(PbSe)1.14]1[NbSe2]1[(PbSe)1.14]1[NbSe2]1, [(PbSe)1.14]2[NbSe2]1[(PbSe)1.14]1[NbSe2]2[(PbSe)1.14]1[NbSe2]1. The electrical properties of these compounds vary with the nanoarchitecture. For each pair of constituents, over 20 000 new compounds, each with a specific nanoarchitecture, are possible with the number of structural units equal to 10 or less. This provides opportunities to systematically correlate structure with properties and hence optimize performance.  相似文献   

2.
The reaction of o-C6H4(AsMe2)2 with VCl4 in anhydrous CCl4 produces orange eight-coordinate [VCl4{o-C6H4(AsMe2)2}2], whilst in CH2Cl2 the product is the brown, six-coordinate [VCl4{o-C6H4(AsMe2)2}]. In dilute CH2Cl2 solution slow decomposition occurs to form the VIII complex [V2Cl6{o-C6H4(AsMe2)2}2]. Six-coordination is also found in [VCl4{MeC(CH2AsMe2)3}] and [VCl4{Et3As)2]. Hydrolysis of these complexes occurs readily to form vanadyl (VO2+) species, pure samples of which are obtained by reaction of [VOCl2(thf)2(H2O)] with the arsines to form green [VOCl2{o-C6H4(AsMe2)2}], [VOCl2{MeC(CH2AsMe2)3}(H2O)] and [VOCl2(Et3As)2]. Green [VOCl2(o-C6H4(PMe2)2}] is formed from [VOCl2(thf)2(H2O)] and the ligand. The [VOCl2{o-C6H4(PMe2)2}] decomposes in thf solution open to air to form the diphosphine dioxide complex [VO{o-C6H4(P(O)Me2)2}2(H2O)]Cl2, but in contrast, the products formed from similar treatment of [VCl4{o-C6H4(AsMe2)2}x] or [VOCl2{o-C6H4(AsMe2)2}] contain the novel arsenic(V) cation [o-C6H4(AsMe2Cl)(μ-O)(AsMe2)]+. X-ray crystal structures are reported for [V2Cl6{o-C6H4(AsMe2)2}2], [VO(H2O){o-C6H4(P(O)Me2)2}2]Cl2, [o-C6H4(AsMe2Cl)(μ-O)(AsMe2)]Cl·[VO(H2O)3Cl2] and powder neutron diffraction data for [VCl4{o-C6H4(AsMe2)2}2].  相似文献   

3.
Reactions of R4Sb2 (R = Me, Et) with (Me3SiCH2)3M (M = Ga, In) and Crystal Structures of [(Me3SiCH2)2InSbMe2]3 and [(Me3SiCH2)2GaOSbEt2]2 The reaction of (Me3SiCH2)3In with Me2SbSbMe2 gives [(Me3SiCH2)2InSbMe2]3 ( 1 ) and Me3SiCH2SbMe2. [(Me3SiCH2)2GaOSbEt2]2 ( 2 ) is formed by the reaction of (Me3SiCH2)3Ga with Et2SbSbEt2 and oxygen. The syntheses and the crystal structures of 1 and 2 are reported.  相似文献   

4.
Preparations and Properties of Tris(perfluoroalkyl) Arsenic and Antimony(III, V) Compounds As(Rf)3 and Sb(Rf)3 (Rf?C2F5, C4F9, C6F13) are prepared in good yields by the polar reactions of AsCl3 and SbCl3 with bis(perfluoroalkyl) cadmium compounds as colourless liquids or solids. The oxidation of As(C2F5)3 and Sb(C2F5)3 with XeF2 gives the difluorides M(C2F5)3F2 (M?As, Sb). As(C2F5)3Cl2 is prepared by chlorination of As(C2F5)3 in the presence of AlCl3, while Sb(C2F5)3Cl2 is formed in the reaction of Sb(C2F5)3F2 with (CH3)3SiCl. During the reaction of M(C2F5)3F2 with (CH3)3SiBr 19F-NMR spectroscopic evidence is found for M(C2F5)3 Br2. The thermal decompositions of M(C2F5)3F2 mainly yield C4F10 and M(C2F5)F2, while the thermal decompositions of M(C2F5)3Cl2 yield M(C2F5)2Cl and C2F5Cl. The properties and spectroscopic data of the new compounds are described.  相似文献   

5.
Seven new mixed oxochalcogenate compounds in the systems MII/XVI/TeIV/O/(H), (MII = Ca, Cd, Sr; XVI = S, Se) were obtained under hydrothermal conditions (210 °C, one week). Crystal structure determinations based on single‐crystal X‐ray diffraction data revealed the compositions Ca3(SeO4)(TeO3)2, Ca3(SeO4)(Te3O8), Cd3(SeO4)(Te3O8), Cd3(H2O)(SO4)(Te3O8), Cd4(SO4)(TeO3)3, Cd5(SO4)2(TeO3)2(OH)2, and Sr3(H2O)2(SeO4)(TeO3)2 for these phases. Peculiar features of the crystal structures of Ca3(SeO4)(TeO3)2, Ca3(SeO4)(Te3O8), Cd3(SeO4)(Te3O8), Cd3(H2O)(SO4)(Te3O8), and Sr3(H2O)2(SeO4)(TeO3)2 are metal‐oxotellurate(IV) layers connected by bridging XO4 tetrahedra and/or by hydrogen‐bonding interactions involving hydroxyl or water groups, whereas Cd4(SO4)(TeO3)3 and Cd5(SO4)2(TeO3)2(OH)2 crystallize as framework structures. Common to all crystal structures is the stereoactivity of the TeIV electron lone pair for each oxotellurate(IV) unit, pointing either into the inter‐layer space, or into channels and cavities in the crystal structures.  相似文献   

6.
Chloroselenates with Di- and Tetravalent Selenium: 77Se-NMR-Spectra, Syntheses, and Crystal Structures of (PPh4)2SeCl6 · 2 CH2Cl2, (NMe3Ph)2SeCl6, (K-18-crown-6)2SeCl6 · 2 CH3CN, PPh4Se2Cl9, (NEt4)2Se2Cl10, (PPh4)2Se3Cl8 · CH2Cl2, and (PPh4)2Se4Cl12 · CH2Cl2 The title compounds were obtained from reactions of selenium and selenium tetrachloride with PPh4Cl, NEt4Cl, NMe3PhCl, or (K-18-crown-6)Cl in dichloromethane or acetonitrile. (PPh4)2Se3Cl8 · CH2Cl2 was also formed from GeSe, PPh4Cl and chlorine in acetonitrile. The 77Se-NMR spectra of the solutions show the presence of dynamical equilibria which, depending on composition, mainly contain SeCl2, SeCl4, Se2Cl2, SeCl62–, Se2Cl62–, and/or Se2Cl102–. Solutions of AsCl3 and (PPh4)2Se4 in acetonitrile upon chlorination with Cl2 or PPh4AsCl6 yielded (PPh4)2Se2Cl6, while (PPh4)2As2Se4Cl12 was the product after chlorination with SOCl2. According to the X-ray crystal structure analyses the ions SeCl62–, Se2Cl9, and Se2Cl102– have the known structures with octahedral coordination of the Se atoms. The structure of the Se3Cl82– ion corresponds to that of Se3Br82– consisting of three SeCl2 molecules associated via two Cl ions. (PPh4)2Se4Cl12 · CH2Cl2 is isotypic with the corresponding bromoselenate and contains anions in which three SeCl2 molecules are attached to a SeCl62– ion; there is a peculiar Se–Se interaction.  相似文献   

7.
The photochemical reaction of piperazine with C70 produces a mono‐adduct (N(CH2CH2)2NC70) in high yield (67 %) along with three bis‐adducts. These piperazine adducts can combine with various Lewis acids to form crystalline supramolecular aggregates suitable for X‐ray diffraction. The structure of the mono‐adduct was determined from examination of the adduct I2N(CH2CH2)2NI2C70 that was formed by reaction of N(CH2CH2)2NC70 with I2. Crystals of polymeric {Rh2(O2CCF3)4N(CH2CH2)2NC70}n?nC6H6 that formed from reaction of the mono‐adduct with Rh2(O2CCF3)4 contain a sinusoidal strand of alternating molecules of N(CH2CH2)2NC70 and Rh2(O2CCF3)4 connected through Rh?N bonds. Silver nitrate reacts with N(CH2CH2)2NC70 to form black crystals of {(Ag(NO3))4(N(CH2CH2)2NC70)4}n?7nCH2Cl2 that contain parallel, nearly linear chains of alternating (N(CH2CH2)2NC70 molecules and silver ions. Four of these {Ag(NO3)N(CH2CH2)2NC70}n chains adopt a structure that resembles a columnar micelle with the ionic silver nitrate portion in the center and the nearly non‐polar C70 cages encircling that core. Of the three bis‐adducts, one was definitively identified through crystallization in the presence of I2 as 12{N(CH2CH2)2N}2C70 with addends on opposite poles of the C70 cage and a structure with C2v symmetry. In 12{I2N(CH2CH2)2N}2C70, individual 12{I2N(CH2CH2)2N}2C70 units are further connected by secondary I2???N2 interactions to form chains that occur in layers within the crystal. Halogen bond formation between a Lewis base such as a tertiary amine and I2 is suggested as a method to produce ordered crystals with complex supramolecular structures from substances that are otherwise difficult to crystallize.  相似文献   

8.
Hydrolysis reactions of di- and trinuclear organotin halides yielded large novel cage compounds containing Sn−O−Sn bridges. The molecular structures of two octanuclear tetraorganodistannoxanes showing double-ladder motifs, viz., [{Me3SiCH2(Cl)SnCH2YCH2Sn(OH)CH2SiMe3}2(μ-O)2]2 [ 1 , Y=p-(Me)2SiC6H4-C6H4Si(Me)2] and [{Me3SiCH2(I)SnCH2YCH2Sn(OH)CH2SiMe3}2(μ-O)2]2 ⋅ 0.48 I2 [ 2⋅ 0.48 I2, Y=p-(Me)2SiC6H4-C6H4Si(Me)2], and the hexanuclear cage-compound 1,3,6-C6H3(p-C6H4Si(Me)2CH2Sn(R)2OSn(R)2CH2Si(Me)2C6H4-p)3C6H3-1,3,6 ( 3 , R=CH2SiMe3) are reported. Of these, the co-crystal 2⋅ 0.48 I2 exhibits the largest spacing of 16.7 Å reported to date for distannoxane-based double ladders. DFT calculations for the hexanuclear cage and a related octanuclear congener accompany the experimental work.  相似文献   

9.
Phase relations have been established in the ternary system Ce-Rh-Si for the isothermal section at 800 °C based on X-ray powder diffraction and EPMA on about 80 alloys, which were prepared by arc melting under argon or by powder reaction sintering. From the 25 ternary compounds observed at 800 °C 13 phases have been reported earlier. Based on XPD Rietveld refinements the crystal structures for 9 new ternary phases were assigned to known structure types. Structural chemistry of these compounds follows the characteristics already outlined for their prototype structures: τ7—Ce3RhSi3, (Ba3Al2Ge2-type), τ8—Ce2Rh3−xSi3+x (Ce2Rh1.35Ge4.65-type), τ10—Ce3Rh4−xSi4+x (U3Ni4Si4-type), τ11—CeRh6Si4 (LiCo6P4-type), τ13—Ce6Rh30Si19.3 (U6Co30Si19-type), τ18—Ce4Rh4Si3 (Sm4Pd4Si3-type), τ21—CeRh2Si (CeIr2Si-type), τ22—Ce2Rh3+xSi1−x (Y2Rh3Ge-type) and τ24—Ce8(Rh1−xSix)24Si (Ce8Pd24Sb-type). For τ25—Ce4(Rh1−xSix)12Si a novel bcc structure was proposed from Rietveld analysis. Detailed crystal structure data were derived for τ3—CeRhSi2 (CeNiSi2-type) and τ6—Ce2Rh3Si5 (U2Co3Si5-type) by X-ray single crystal experiments, confirming the structure types. The crystal structures of τ4—Ce22Rh22Si56, τ5—Ce20Rh27Si53 and τ23—Ce33.3Rh58.2−55.2Si8.5−11.5 are unknown. High temperature compounds with compositions Ce10Rh51Si33 (U10Co51Si33-type) and CeRhSi (LaIrSi-type) have been observed in as-cast alloys but these phases do not participate in the phase equilibria at 800 °C.  相似文献   

10.
Four NNN tridentate ligands L1–L4 containing 2‐methoxypyridylmethene or 2‐hydroxypyridylmethene fragment were synthesized and introduced to ruthenium centers. When (HOC5H3NCH2C5H3NC5H7N2) (L2) and (HOC5H3NCH2C5H3NC6H6N3) (L4) reacted with RuCl2(PPh3)3, two ruthenium chloride products Ru(L2)(PPh3)Cl2 ( 1 ) and Ru(L4)(PPh3)Cl2 ( 2 ) were isolated, respectively. Reactions of (MeOC5H3NCH2C5H3NC5H7N2) (L1) and (MeOC5H3NCH2C5H3NC6H6N3) (L3) with RuCl2(PPh3)3 in the presence of NH4PF6 generated two dicationic complexes [Ru(L1)2][PF6]2 ( 3 ) and [Ru(L3)2][PF6]2 ( 4 ), respectively. Complex 1 reacted with CO to afford product [Ru(L2)(PPh3)(CO)Cl][Cl]. The catalytic activity for transfer hydrogenation of ketones was investigated. Complex 1 showed the highest activity, with a turnover frequency value of 1.44 × 103 h?1 for acetophenone, while complexes 3 and 4 were not active.  相似文献   

11.
The reactions of the fluoride-ion donor, XeF6, with the fluoride-ion acceptors, M′OF4 (M′=Cr, Mo, W), yield [XeF5]+ and [Xe2F11]+ salts of [M′OF5] and [M2O2F9] (M=Mo, W). Xenon hexafluoride and MOF4 react in anhydrous hydrogen fluoride (aHF) to give equilibrium mixtures of [Xe2F11]+, [XeF5]+, [(HF)nF], [MOF5], and [M2O2F9] from which the title salts were crystallized. The [XeF5][CrOF5] and [Xe2F11][CrOF5] salts could not be formed from mixtures of CrOF4 and XeF6 in aHF at low temperature (LT) owing to the low fluoride-ion affinity of CrOF4, but yielded [XeF5][HF2]⋅CrOF4 instead. In contrast, MoOF4 and WOF4 are sufficiently Lewis acidic to abstract F ion from [(HF)nF] in aHF to give the [MOF5] and [M2O2F9] salts of [XeF5]+ and [Xe2F11]+. To circumvent [(HF)nF] formation, [Xe2F11][CrOF5] was synthesized at LT in CF2ClCF2Cl solvent. The salts were characterized by LT Raman spectroscopy and LT single-crystal X-ray diffraction, which provided the first X-ray crystal structure of the [CrOF5] anion and high-precision geometric parameters for [MOF5] and [M2O2F9]. Hydrolysis of [Xe2F11][WOF5] by water contaminant in HF solvent yielded [XeF5][WOF5]⋅XeOF4. Quantum-chemical calculations were carried out for M′OF4, [M′OF5], [M′2O2F9], {[Xe2F11][CrOF5]}2, [Xe2F11][MOF5], and {[XeF5][M2O2F9]}2 to obtain their gas-phase geometries and vibrational frequencies to aid in their vibrational mode assignments and to assess chemical bonding.  相似文献   

12.
Fluoride‐azide exchange reactions of Me3SiN3 with MnF2 and MnF3 in acetonitrile resulted in the isolation of Mn(N3)2 and Mn(N3)3?CH3CN, respectively. While Mn(N3)2 forms [PPh4]2[Mn(N3)4] and (bipy)2Mn(N3)2 upon reaction with PPh4N3 and 2,2′‐bipyridine (bipy), respectively, the manganese(III) azide undergoes disproportionation and forms mixtures of [PPh4]2[Mn(N3)4] and [PPh4]2[Mn(N3)6], as well as (bipy)2Mn(N3)2 and (bipy)Mn(N3)4. Neat and highly sensitive Cs2[Mn(N3)6] was obtained through the reaction of Cs2MnF6 with Me3SiN3 in CH3CN.  相似文献   

13.
Three high‐nuclearity Ni‐substituted polyoxotungstates (POTs)—[Ni(enMe)2(H2O)2]2[Ni(H2O)6]2‐ [Ni(enMe)2][Ni(H2O)2]1.5[HNi20X4W34‐ (OH)4O136(H2O)6(enMe)8] ? 11 H2O ( 3 ), [Ni(en)2(H2O)]2[H8Ni21X4W34(OH)4‐ O136(en)10(H2O)5] ? 22 H2O ( 4 ), and [Ni‐(enMe)2]2[H6Ni22X4W34(OH)4O136(H2O)6(enMe)10] ? 18 H2O ( 5 ), in which en=ethylenediamine, enMe=1,2‐diaminopropane, X=0.5 P+0.5 Ge—were made under hydrothermal conditions and characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis, powder X‐ray diffraction, and single‐crystal X‐ray diffraction. The structures of 3 – 5 can be viewed as novel derivatives of [H6Ni20P4W34(OH)4O136(enMe)8‐ (H2O)6] ? 12 H 2O ( 1 ) and [Ni(en)2‐ (H2O)]2[H8Ni20P4W34(OH)4O136(en)9‐ (H2O)4] ? 16 H 2O ( 2 ), which both contain 20 nickel ions per structural unit. Compound 3 is the first example of a 1D cluster chain constructed from Ni20‐substituted polyanions [HNi20X4‐ W34(OH)4O136(H2O)6(enMe)8]11? and [Ni(enMe)2]2+ bridges. Compound 4 is a novel cluster–organic chain built by Ni21‐substituted polyanions [H8Ni21X4W34(OH)4O136(en)10(H2O)5]4? and en molecule bridges. Compound 5 is a discrete POT with 22 Ni centers, and is not only the largest nickel‐substituted POT, but also contains the highest number of nickel ions in one polyanion to date. Magnetic measurements illustrate that overall ferromagnetic interactions exist in 1 – 5 . The magnetic behavior of 1 and 2 was theoretically simulated by the MAGPACK magnetic program package.  相似文献   

14.
Electron-transferable oxidants such as B(C6F5)3/nBuLi, B(C6F5)3/LiB(C6F5)4, B(C6F5)3/LiHBEt3, Al(C6F5)3/(o-RC6H4)AlH2 (R=N(CMe2CH2)2CH2), B(C6F5)3/AlEt3, Al(C6F5)3, Al(C6F5)3/nBuLi, Al(C6F5)3/AlMe3, (CuC6F5)4, and Ag2SO4, respectively were employed for reactions with (L)2Si2C4(SiMe3)2(C2SiMe3)2 (L=PhC(NtBu)2, 1 ). The stable radical cation [ 1 ]+. was formed and paired with the anions [nBuB(C6F5)3] (in 2 ), [B(C6F5)4] (in 3 ), [HB(C6F5)3] (in 4 ), [EtB(C6F5)3] (in 5 ), {[(C6F5)3Al]2(μ-F)] (in 6 ), [nBuAl(C6F5)3] (in 7 ), and [Cu(C6F5)2] (in 8 ), respectively. The stable dication [ 1 ]2+ was also generated with the anions [EtB(C6F5)3] ( 9 ) and [MeAl(C6F5)3] ( 10 ), respectively. In addition, the neutral compound [(L)2Si2C4(SiMe3)2(C2SiMe3)2][μ-O2S(O)2] ( 11 ) was obtained. Compounds 2 – 11 are characterized by UV-vis absorption spectroscopy, X-ray crystallography, and elemental analysis. Compounds 2 – 8 are analyzed by EPR spectroscopy and compounds 9 – 11 by NMR spectroscopy. The structure features are discussed on the central Si2C4-rings of 1 , [ 1 ]+., [ 1 ]2+, and 11 , respectively.  相似文献   

15.
Syntheses and Crystal Structures of Novel Heterobimetallic Tantalum Coin Metal Chalcogenido Clusters In the presence of phosphine the thiotantalats (Et4N)4[Ta6S17] · 3MeCN reacts with copper to give a number of new heterobimetallic tantalum copper chalcogenide clusters. These clusters show metal chalcogenide units some of which here already known from the chemistry of vanadium and niobium. New Ta—M‐chalcogenide clusters could also be synthesised by reaction of TaCl5 and silylated chalcogen reagents with copper or silver salts in presence of phosphine. Such examples are: [Ta2Cu2S4Cl2(PMe3)6] · DMF ( 1 ), (Et4N)[Ta3Cu5S8Cl5(PMe3)6] · 2MeCN ( 2 ), (Et4N)[Ta9Cu10S24Cl8(PMe3)14] · 2MeCN ( 3 ), [Ta4Cu12Cl8S12(PMe3)12] ( 4 ), (Et4N)[Ta2Cu6S6Cl5(PPh3)6] · 5MeCN ( 5 ), (Et4N)[Ta2Cu6S6Cl5(PPh2Me)6] · 2MeCN ( 6 ), (Et4N)[Ta2Cu6S6Cl5(PtBu2Cl)6] · MeCN ( 7 ) [Ta2Cu2S4Br4(PPh3)2(MeCN)2] · MeCN ( 8 ), [Cu(PMe3)4]2[Ta2Cu6S6(SCN)6(PMe3)6] · 4MeCN ( 9 ), [TaCu5S4Cl2(dppm)4] · DMF ( 10 ), [Ta2Cu2Se4(SCN)2(PMe3)6] ( 11 ), [Cu(PMe3)4]2[Ta2Cu6Se6(SCN)6(PMe3)6] · 4MeCN ( 12 ), [TaCu4Se4(PnPr3)6][TaCl6] ( 13 ), [Ta2Ag2Se4Cl2(PMe3)6] · MeCN ( 14 ), [TaAg3Se4(PMe3)3] ( 15 ). The structures of these compounds were obtained by X‐ray single crystal structure analysis.  相似文献   

16.
A reliable synthesis of unstable and highly reactive BrO2F is reported. This compound can be converted into BrO2+SbF6?, BrO2+AsF6?, and BrO2+AsF6??2 BrO2F. The latter decomposes into mixed‐valent Br3O4?Br2+AsF6? with five‐, three‐, one‐, and zero‐valent bromine. BrO2+ H(SO3CF3)2? is formed with HSO3CF3. Excess BrO2F yields mixed‐valent Br3O6+OSO3CF3? with five‐ and three‐valent bromine. Reactions of BrO2F and MoF5 in SO2ClF or CH2ClF result in Cl2BrO6+Mo3O3F13?. The reaction of BrO2F with (CF3CO)2O and NO2 produces O2Br‐O‐CO‐CF3 and the known NO2+Br(ONO2)2?. All of these compounds are thermodynamically unstable.  相似文献   

17.
Microwave‐assisted synthesis has been used to obtain the family of dodecanuclear NiII complexes [Ni12(NO3)(MeO)12(MeC6H4CO2)9(MeOH)10(H2O)2][ClO4]2 ( 1 ), [Ni12(NO3)(MeO)12(BrC6H4CO2)9(MeOH)10(H2O)2][ClO4]2 ( 2 ), [Ni12(CO3)(MeO)12(MeC6H4CO2)9(MeOH)10(H2O)2]2[SO4] ( 3 ) and [Ni12(NO3)(MeO)12(MeC6H4CO2)9(MeOH)8(H2O)7][NO3]2 ( 4 ). They contain three {Ni4O4} cubane units which template around a central μ6 anion, either NO3? or CO32?. Their magnetic properties have been studied by superconducting quantum interference device (SQUID) magnetometry and high‐field EPR measurements. The nanostructuration of the Ni12 species on mica surfaces is studied by AFM and grazing‐incidence X‐ray diffraction, which reveal the formation of polycrystalline thin layers.  相似文献   

18.
Photoirradiation of Os3(CO)10(C14H20) (1) in n-hexane produces the double-decker cluster [Os3(CO)9(C28H40)] [Os3(CO)10] (7), which can also be prepared from the reaction of Os3(CO)9(C28H40) (2) and Os3(CO)10(NCMe)2. Further reaction of 7 with Os3(CO)10(NCMe)2 affords the triple-decker cluster [Os3(CO)9(C28H40)][Os3(CO)10]2 (8). The bis(diyne) complex Os3(CO)8(C14H20)2 (3) reacts with Os3(CO)10(NCMe)2 sequentially to yield the double-decker cluster [Os3(CO)8(C14H20)2][Os3(CO)10] (4) and the triple-decker cluster [Os3(CO)8(C14H20)2][Os3(CO)10]2 (5). Treatment of 3 with Co2(CO)8 at room temperature leads to the mixed-metal triple-decker cluster [Os3(CO)8(C14H20)2][Co2(CO)6]2 (6), while the reaction of 2 and Co2(CO)8 produces [Os3(CO)9(C28H40)][Co2(CO)6]2 (9) and [Os2(CO)6(C28H40)][Co2(CO)6]2 (10). Compound 10, which involves cluster degradation from Os3 to Os2, has been structurally characterized by an X-ray diffraction study.  相似文献   

19.
The reaction between Cl2Te(NSO)2, Cl6Te2N2S and Cl2Te(N=S=N)2TeCl2 with MCl3 provided the compounds [(Cl2Te)2N+][MCl4] (M = Ga, Al, Fe). Treating Cl6Te2N2S with M′Cl3 yielded besides [(Cl2Te)2N+][M′Cl4] (M′ = Al, Fe) the sulfur containing compound [ClTeNSNS+][M′Cl4]. The structure for [ClTeNSNS+][FeCl4] was established by an X‐ray structure analysis. With Te(NSO)2 and CF3SCl, via Cl2Te(NSO)2, the known compound Te2NCl5 was formed. Tetrafluoroditelluradiazetidine was obtained from TeF4 and [(CH3)3Si]2NH which on treating with (CH3)3SiCl provided the corresponding chloroderivative. In addition metathetical reaction between Cl2TeNSNS and CF3C(O)OAg yielded [CF3C(O)O]2TeSNSN. Similarly (CH3)2Te(NSO)2–xClx (x = 0,1) and (CH3)2Te(NCO)2 were made from (CH3)2TeCl2 and AgNSO or AgNCO, respectively. Halogination of Cl2Te(N=S=N)2TeCl2 with Cl2 or Br2 yielded Cl6Te2N2S and Cl4Br2Te2N2S. The bromoderivate was also prepared from Cl2Te(NSO)2 and Br2. AgNSO was synthesized by treating CF3C(O)OAg with (CH3)3SiNSO. Two other synthons (CF3Se)2Te and (CF3S)2Se were obtained from CF3SeCl and Na2Te and from Hg(SCF3)2 plus SeCl4, respectively.  相似文献   

20.
Eu3+-doped Ca2SnO4 (solid solutions of Ca2−xEu2xSn1−xO4, 0?x?0.3) and Eu3+ and Y3+-codoped Ca2SnO4 (Ca1.8Y0.2Eu0.2Sn0.8O4) were prepared by solid-state reaction at 1400 °C in air. Rietveld analysis of the X-ray powder diffraction patterns revealed that Eu3+ replaced Ca2+ and Sn4+ in Eu3+-doped Ca2SnO4, and that Eu3+ replaced Ca2+ and Y3+ replaced Sn4+ in Ca1.8Y0.2Eu0.2Sn0.8O4. Red luminescence at 616 nm due to the electric dipole transition 5Do7F2 was observed in the photoluminescence (PL) spectra of Ca2−xEu2xSn1−xO4 and Ca1.8Y0.2Eu0.2Sn0.8O4 at room temperature. The maximum PL intensity in the solid solutions of Ca2−xEu2xSn1−xO4 was obtained for x=0.1. The PL intensity of Ca1.8Y0.2Eu0.2Sn0.8O4 was 1.26 times greater than that of Ca2−xEu2xSn1−xO4 with x=0.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号