首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, an implicit coupling algorithm for fluid–structure interaction problems with under-time steps for the solid is presented. Its implementation on two configurations is achieved by using the CASTEM finite-elements code. First, the free oscillations of a cylinder in an annular fluid domain where its movement is determined by the coupled fluid–solid action is considered in the case of viscous fluid. It should be noted that the implicit coupling algorithm gives the best prediction of the structure oscillations. The under-time steps for the solid are introduced in order to obtain better results. Then, an application whose final objective is to model a floating barrage is studied. The main goal of this application is to predict the displacements of a ring completely immersed and anchored by a cable to the lower boundary of the fluid domain. The finite-element discretization of the Navier–Stokes equations in the ALE formulation is used  相似文献   

2.
The linear steady problem of an irrotational uniform flow past a horizontal circular cylinder located in the upper or in the lower layer of a two-layer fluid is solved by the multipole-expansion method. The flow is perpendicular to the axis of the cylinder. The fluid is assumed to be inviscid and incompressible, and the flow in each layer is assumed to be potential. The upper layer can be bounded by a free surface or a solid lid, and the lower layer by a rigid horizontal bottom. Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 6, pp. 91–101, November–December, 1998.  相似文献   

3.
A solution of an initial-boundary-value problem for a system of integrodifferential equations which describes the plane waves excited in an initially stationary heavy two-layer ideal fluid by a cylinder moving at an angle to the horizontal is investigated. The homogeneous fluid fractions of different densities are assumed to be separated by an evolving fluid interface (horizontal plane, if the liquid is at rest). An approximate solution of two problems for the waves excited by a cylinder moving with a constant acceleration and an oscillating cylinder is constructed analytically. Nizhnii Novgorod. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 137–152, July–August, 1998.  相似文献   

4.
Numerical simulation of Poiseuille flow of liquid Argon in a nanochannel using the non-equilibrium molecular dynamics simulation (NEMD) is performed. The nanochannel is a three-dimensional rectangular prism geometry where the concerned numbers of Argon atoms are 2,700, 2,550 and 2,400 at 102, 108 and 120 K. Poiseuille flow is simulated by embedding the fluid particles in a uniform force field. An external driving force, ranging from 1 to 11 PN (Pico Newton), is applied along the flow direction to inlet fluid particles during the simulation. To obtain a more uniform temperature distribution across the channel, local thermostating near the wall are used. Also, the effect of other mixing rules (Lorenthz–Berthelot and Waldman–Kugler rules) on the interface structure are examined by comparing the density profiles near the liquid/solid interfaces for wall temperatures 108 and 133 K for an external force of 7 PN. Using Kong and Waldman–Kugler rules, the molecules near the solid walls were more randomly distributed compared to Lorenthz–Berthelot rule. These mean that the attraction between solid–fluid atoms was weakened by using Kong rule and Waldman–Kugler rule rather than the Lorenthz–Berthelot rule. Also, results show that the mean axial velocity has symmetrical distribution near the channel centerline and an increase in external driving force can increase maximum and average velocity values of fluid. Furthermore, the slip length and slip velocity are functions of the driving forces and they show an arising trend with an increase in inlet driving force and no slip boundary condition is satisfied at very low external force (<1 PN).  相似文献   

5.
We study flow and heat transfer to a cylinder in cross flow at Re = 3,900–80,000 by means of three-dimensional transient RANS (T-RANS) simulations, employing an RNG k − ε turbulence model. Both the case of a bare solid cylinder and that of a solid cylinder surrounded at some fixed distance by a thin porous layer have been studied. The latter configuration is a standard test geometry for measuring the insulating and protective performance of garments. In this geometry, the flow in the space between the solid cylinder and the porous layer is laminar but periodic, whereas the outer flow is transitional and characterized by vortex shedding in the wake of the cylinder. The results from the T-RANS simulations are validated against data from Direct Numerical Simulations and experiments. It is found that T-RANS is very well suited for simulating this type of flow. The transient nature of the flow underneath the porous layer is well reproduced, as well as the influence of vortex shedding on the heat transfer in the downstream stagnation zone. T-RANS results are found to be in much better agreement with DNS and experimental data than results from steady-state RANS.  相似文献   

6.
The problem of interaction of a rigid body and a boundary of a viscous fluid under acoustic wave propagation is investigated. An example of the motion of a cylinder in the vicinity of a flat rigid wall caused by acoustic field forces is examined. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 35, No. 10, pp. 74–79, October, 1999.  相似文献   

7.
The turbulent fluid and particle interaction in the turbulent boundary layer for cross flow over a cylinder has been experimentally studied. A phase-Doppler anemometer was used to measure the mean and fluctuating velocities of both phases. Two size ranges of particles (30μm–60μm and 80μm–150μm) at certain concentrations were used for considering the effects of particle sizes on the mean velocity profiles and on the turbulent intensity levels. The measurements clearly demonstrated that the larger particles damped fluid turbulence. For the smaller particles, this damping effect was less noticeable. The measurements further showed a delay in the separation point for two phase turbulent cross flow over a cylinder. The project supported by the National Natural Science Foundation of China  相似文献   

8.
Wave motions in a fluid cylinder rotating about the axis are investigated within the framework of the linear theory. The cylinder is assumed to be fairly long. This makes it possible to restrict attention to the study of the plane oscillation pattern. The fluid is assumed to be ideal and incompressible. The models in which the fluid particles are confined by gravitational (body) or/and capillary forces (surface stress forces) are considered. A mode analysis is carried out and the dispersion relations are constructed. Traveling and steady-state waves on the surface of the fluid cylinder are investigated; qualitative effects ("wave inertia") are established. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 128–133, May–June, 1998. The work was carried out with financial support from the Russian Foundation for Basic Research (project No. 96-01-00221). An erratum to this article is available at .  相似文献   

9.
A method of solving the problem of the motion of a cylinder of given shape below the free surface of an infinitely deep heavy fluid is perfected for large Froude numbers. The motion of a circular cylinder is investigated at small distances from the free surface. Solutions of the problem are given for cylinders with noncircular cross-sections. Kazan. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 34–45, July–August, 2000. The work was carried out with financial support from the Russian Foundation for Basic Research (projects Nos. 99-01-00169 and 99-01-00173).  相似文献   

10.
A numerical study is performed to analyze steady laminar forced convection in a channel in which discrete heat sources covered with porous material are placed on the bottom wall. Hydrodynamic and heat transfer results are reported. The flow in the porous medium is modeled using the Darcy–Brinkman–Forchheimer model. A computer program based on control volume method with appropriate averaging for diffusion coefficient is developed to solve the coupling between solid, fluid, and porous region. The effects of parameters such as Reynolds number, Prandtl number, inertia coefficient, and thermal conductivity ratio are considered. The results reveal that the porous cover with high thermal conductivity enhances the heat transfer from the solid blocks significantly and decreases the maximum temperature on the heated solid blocks. The mean Nusselt number increases with increase of Reynolds number and Prandtl number, and decrease of inertia coefficient. The pressure drop along the channel increases rapidly with the increase of Reynolds number.  相似文献   

11.
The mixed convection in a horizontal fluid layer which is generated by uniform heating from below and by rotation of one of the boundaries of the layer was studied experimentally. The region occupied by the fluid is a cylinder of radius320 mm and height45 mm. Either the upper or the lower boundary together with the side wall rotates. For Rayleigh numbersRa≃2·10 7, in a broad range of Reynolds numbers, based on experimental data we constructed mean-temperature profiles along the normal to the upper boundary and with a uniform step over the radius. In addition, we obtained data on the radial thermal stratification of the fluid, the integral flow through the fluid layer, and information on temperature fluctuations. The complicated character of the dependence of the heat transfer on the Reynolds number was shown. The obtained dependences of the heat transfer and temperature inhomogeneity on Reynolds numbers was explained qualitatively. Kutateladze Institute of Thermal Physics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 3, pp. 126–133, May–June, 1998.  相似文献   

12.
The influence of the contained wall on the drag of a sphere moving through a non-Newtonian fluid is analysed in this work separately for the low Reynolds number and the high Reynolds number regions. In the former, we make use of the two-concentric-sphere model. It is predicted that the wall effect will decrease with the increase of the shear-thinning anomaly and this is in a reasonable agreement with the available experimental data and correlations. The wall effect in the high Reynolds number region is analysed in this work using the cell model (used to study the motion of an assemblage of solid spheres) and the predictions are in satisfactory agreement with the available empirical correlation for non-Newtonian fluids. Presented at the First Conference of European Rheologists, Graz (Austria), April 14–16, 1982.  相似文献   

13.
The flow of a viscous fluid through a porous matrix undergoing only infinitesimal deformation is described in terms of intrinsic variables, namely, the density, velocity and stress occurring in coherent elements of each material. This formulation arises naturally when macroscopic interfaces are conceptually partitioned into area fractions of fluid–fluid, fluid–solid, and solid–solid contact. Such theory has been shown to yield consistent jump conditions of mass, momentum and energy across discontinuities, either internal or an external boundary, unlike the standard mixture theory jump conditions. In the previous formulation, the matrix structure has been considered isotropic; that is, the area fractions are independent of the interface orientation. Here, that is not assumed, so in particular, the cross-section area of a continuous fluid tube depends on its orientation, which influences the directional fluxes, and in turn the directional permeability, anisotropy of the structure. The simplifications for slow viscous flow are examined, and particularly for an isotropic linearly elastic matrix in which area partitioning induces anisotropic elastic response of the mixture. A final specialization to an incompressible fluid and stationary matrix leads to potential flow, and a simple plane flow solution is presented to illustrate the effects of anisotropic permeability.  相似文献   

14.
This paper considers the interaction between an absolutely rigid wall or a steel plate and the rarefaction wave arising in solid deuterium when a 30–150 GPa shock wave arrives at the free surface. It is shown that, in the entropy trace near the wall or interface with the plate, a high-temperature plasma arises, in which a thermonuclear fusion is possible, at least, for shock-wave pressures above 70 GPa. The dimension of the plasma region and the time of its establishment are proportional to the distance between the free surface and the wall. Estimates of the proportionality coefficients are given. It is noted that, in this case, unlike in other methods of high-temperature plasma generation, the time of existence of the plasma may not depend on the sound velocity in it. It is shown that, by using a conical solid-state target wit an exit hole, the shock-wave pressure in solid deuterium can be increased from 10 to 100 GPa. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 3, pp. 15–24, May–June, 2009.  相似文献   

15.
The initial-boundary value problem of the vertical ascent of a circular cylinder in a multilayer fluid is considered within the nonlinear theory. In each layer the fluid is ideal, incompressible, heavy, and homogeneous. At the initial instant of time the cylinder is located in the lower layer and begins smoothly to accelerate vertically from zero to a constant velocity. A system of integrodifferential equations of the problem is obtained. As unknowns, this system contains both the intensities of the singularities simulating the fluid and rigid boundaries and the functions describing the shape of the interface between the fluid media. The numerical solution of this system is based on two iteration processes, one of which is associated with time integration using the Runge-Kutta-Felberg scheme, while the other is associated with the solution of a system of linear algebraic equations obtained by discretization of the integral relations in each time step. The problem of the vertical ascent of a cylinder in a three-layer fluid (seawater, fresh water and air) is considered in detail. The results of calculating the perturbations of the fluid interfaces and the distributed and total hydrodynamic contour characteristics are given. The results obtained are compared with the solution of the problem of the ascent of a circular cylinder to the interface between water and air media. It is concluded that the third layer and the Froude number significantly affect the nature of the perturbations induced by the contour. Omsk, e-mail: gorlov@iitam.omsk.net.ru. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 153–159, March–April, 2000. The work was carried out with financial support from the Russian Foundation for Basic Research (project No. 96-01-00093).  相似文献   

16.
Let an infinitely long cylinder move perpendicular to its length in an infinite mass of liquid which is at rest at infinity. If the cylinder is rigid, the whole effect of the presence of the liquid may be represented by adding to the inertia per unit length of the solid cylinder the mass per unit length of the displaced fluid. If, however, the cylinder is elastically deformable, the mass of the moving fluid depends on the change in shape of the, initially circular, cross-sections of the cylinder. Thus the added mass is no longer a constant, but a function of the pressure exerted by the fluid on the solid cylinder.  相似文献   

17.
The flow pattern around a horizontal cylinder towed at constant velocity in a continuously stratified fluid is visualized by the shadow method. The velocities in the leading flow disturbance, i. e., in the flow-blocking region ahead of the cylinder, are presented. In the body wake, a new class of small-size structures in the density gradient field is revealed against the background of a smooth velocity profile. The evolution of the flow pattern with variation of the parameters of body motion is studied. Institute of Mechanics Problems, Moscow 117526. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 1, pp. 80–88, January–February, 1999.  相似文献   

18.
A. K. Kuzin 《Fluid Dynamics》2000,35(3):331-338
The problem of the equilibrium shape of a steady rotating rectilinear infinite cord of ideal self-gravitating homogeneous fluid is considered. The question whether, apart from the obvious solution, namely, an infinite circular cylinder, noncylindrical equilibrium figures can exist is investigated. A search is carried out among axisymmetric figures with periodic surface structure (“wavy” cylinders). The period of the wave structure and, in the first approximation, the shape of the surface are found as functions of the angular velocity of rotation. Sankt-Peterburg. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 22–30, May–June, 2000.  相似文献   

19.
The properties of harmonic surface waves in an elastic cylinder made of a rigid material and filled with a fluid are studied. The problem is solved using the dynamic equations of elasticity and the equations of motion of a perfect compressible fluid. It is shown that two surface (Stoneley and Rayleigh) waves exist in this waveguide system. The first normal wave generates a Stoneley wave on the inner surface of the cylinder. If the material is rigid, no normal wave exists to transform into a Rayleigh wave. The Rayleigh wave on the outer surface forms on certain sections of different dispersion curves. The kinematic and energy characteristics of surface waves are analyzed. As the wave number increases, the phase velocities of all normal waves, except the first one, tend to the sonic velocity in the fluid from above __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 9, pp. 48–62, September 2007.  相似文献   

20.
A numerical solution is obtained to the problem concerning a pressure measurement at the boundary between an ideal compressible fluid and a solid wall. It is assumedthat the fluid occupies a semiinfinite cylinder with a rigid bottom into which an elastic disc is inserted and heldfirmly around its edges. Motion is produced by a pressure wave originating at infinity. A finite-difference grid for this application is described and the results of actual calculations are shown.Deceased.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 84–91, January–February, 1972.The authors thank L. M. Flitman for reviewing the work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号