首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
聚合物本体异质结型太阳能电池研究进展   总被引:8,自引:0,他引:8  
聚合物本体异质结型太阳能电池是一种基于电子给体 /受体混合物薄膜的高效率有机光伏器件。文中介绍了近年来聚合物本体异质结型太阳能电池的最新研究进展 ,指出了目前存在的问题和今后的发展方向  相似文献   

2.
聚合物太阳电池因其结构简单、成本低、重量轻和可制成柔性器件等突出优点,近年来受到广泛关注,成为发展绿色可再生能源的重要方向。聚合物太阳电池中的给体和受体光伏材料是决定器件性能的关键,本文综述了共轭聚合物给体和富勒烯受体光伏材料的最新研究进展,并在共轭聚合物给体材料中对聚噻吩衍生物以及窄带隙D-A共聚物进行了重点介绍。同时讨论了薄膜优化和器件稳定性,最后从提高电池效率的几个方面展望了聚合物太阳电池的发展方向。  相似文献   

3.
In all-polymer solar cells (APSCs),number-average molecular weights (Mns) of polymer donors and polymer acceptors play an important role in active layer morphology and photovoltaic performance.In this work,based on a series of APSCs with power conversion efficiency of approaching 10%,we study the effect of Mns of both polymer donor and polymer acceptor on active layer morphology and photovoltaic performance of APSCs.We select poly[4-(5-(4,8-bis(5-((2-butyloctyl)thio)thiophen-2-yl)-6-methylbenzo[1,2-b:4,5-b']dithiophen-2-yl)thiophen-2-yl)-5,6-difluoro-2-(2-hexyldecyl)-7-(5-methylthiophen-2-yl)-2H-benzo[d][1,2,3]triazole](CD1) as the polymer donor and poly[4-(5-(5,10-bis(2-dodecylhexadecyl)-4,4,g,9-tetrafluuoro-7-methyl-4,5,9,10-tetrahydro3a,5,8,10-tetraaza-4,g-diborapyren-2-yl)thiophen-2-yl)-7-(5-methylthiophen-2-yl)benzo[c][1,2,5]thiadiazole](PBN-14) as the polymer acceptor.The Mns of polymer donor CD1 are 14.0,35.5 and 56.1 kg/mol,respectively,and the Mns of polymer acceptor PBN-14 are 32.7,72.4 and 103.4 kg/mol,respectively.To get the desired biscontinueous fibrous network morphololgy of the polymer donor/polymer acceptor blends,at least one polymer should have high or medium Mn.Moreover,when the Mn of polymer acceptor is high,the active layer morphology and APSC device performance are insensitive to the Mn of polymer donor.The optimal APSC device performance is obtained when the Mn of both the polymer donor and the polymer acceptor are medium.These results provide a comprehensive and deep understanding on the interplay and the effect of Mn of polymer donors and polymer acceptors in high-performance APSCs.  相似文献   

4.
A novel multifunctional conjugated polymer (RCP‐1) composed of an electron‐donating backbone (carbazole) and an electron‐accepting side chain (cyanoacetic acid) connected through conjugated vinylene and terthiophene has been synthesized and tested as a photosensitizer in two major molecule‐based solar cells, namely dye sensitized solar cells (DSSCs) and organic photovoltaic cells (OPVs). Promising initial results on overall power conversion efficiencies of 4.11% and 1.04% are obtained from the basic structure of DSSCs and OPVs based on RCP‐1, respectively. The well‐defined donor (D)‐acceptor (A) structure of RCP‐1 has made it possible, for the first time, to reach over 4% of power conversion efficiency in DSSCs with an organic polymer sensitizer and good operation stability.  相似文献   

5.
基于苝酸酯受体光伏器件的性能表征   总被引:1,自引:0,他引:1  
近十几年来,基于有机聚合物半导体材料的太阳能电池,由于具有价格低廉,易于加工,不受材料种类限制和易于制备大面积柔性器件等优点,而受到极大关注.自从1992年发现从共轭聚合物的基态到富勒烯存在光诱导电子转移现象以来,有机聚合物太阳能电池的研究取得了较大进展,研究较多的是共轭聚合物为给体(D),富勒烯为受体(A)的体系,能量转换效率可达3.3%,苝酸酯是一类液晶材料,其结构高度有序且含有4个吸电子的酰基,使得它们适合电子传输,且在普通有机溶剂中具有良好的溶解性,与共轭聚合物有较好的相容性,因此可制成薄膜,本文的研究表明,苝酸酯也是一类良好的电子受体,与共轭聚合物给体匹配,可用于制备光伏器件——太阳能电池。  相似文献   

6.
A series of donor‐acceptor conjugated polymers incorporating benzodithiophene (BDT) as donor unit and phenanthrenequnioxaline as acceptor unit with different side chains have been designed and synthesized. For polymer P1 featuring the BDT unit and alkoxy chains substituted phenanthrenequnioxaline unit in the backbone, serious steric hindrance resulted in quite low molecular weight. The implementation of thiophene ring spacer in polymer P2 greatly suppressed the interannular twisting to extend the effective conjugation length and consequently gave rise to improved absorption property and device performance. In addition, utilizing the alkylthienyl side chains to replace the alkyl side chains at BDT unit in polymer P3 further enhanced the photovoltaic performance due to the increased conjugation length. For polymer P4, translating the alkoxy side chains at the phenanthrenequnioxaline ring into the alkyl side chains at thiophene linker group enhanced molecular planarity and strengthened π?π stacking. Consequently improved absorption property and increased hole mobility were achieved for polymer P4. Our results indicated that side chain engineering not only can influence the solubility of polymer but also can determine the polymer backbone planarity and hence the photovoltaic properties. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1915–1926  相似文献   

7.
可溶性聚噻吩和富勒烯(主要是C60)及其衍生物,是聚合物太阳能电池中被广泛使用的给体和受体材料,它们之间的相容性和富勒烯的聚集效应对于太阳能电池能量转换效率有很大影响。将富勒烯与聚噻吩通过共价键连接在一起,可解决它们的共混膜中的相分离问题,有望提高器件效率,是未来有机和聚合物光伏材料研究的一个重要方向。本文按主链是聚噻吩或齐聚噻吩将这种连有富勒烯的材料分为两类,介绍了这些材料的合成方法、电化学性质及基于这些材料的太阳能电池器件近几年来的研究进展。  相似文献   

8.
A star‐shaped electron acceptor based on porphyrin as a core and perylene bisimide as end groups was constructed for application in non‐fullerene organic solar cells. The new conjugated molecule exhibits aligned energy levels, good electron mobility, and complementary absorption with a donor polymer. These advantages facilitate a high power conversion efficiency of 7.4 % in non‐fullerene solar cells, which represents the highest photovoltaic performance based on porphyrin derivatives as the acceptor.  相似文献   

9.
Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells   总被引:3,自引:0,他引:3  
Bulk heterojunction photovoltaic devices based on blends of a conjugated polymer poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) as electron donor and crystalline ZnO nanoparticles (nc-ZnO) as electron acceptor have been studied. Composite nc-ZnO:MDMO-PPV films were cast from a common solvent mixture. Time-resolved pump-probe spectroscopy revealed that a photoinduced electron transfer from MDMO-PPV to nc-ZnO occurs in these blends on a sub-picosecond time scale and produces a long-lived (milliseconds) charge-separated state. The photovoltaic effect in devices, made by sandwiching the active nc-ZnO:MDMO-PPV layer between charge-selective electrodes, has been studied as a function of the ZnO concentration and the thickness of the layer. We also investigated changing the degree and type of mixing of the two components through the use of a surfactant for ZnO and by altering the size and shape of the nc-ZnO particles. Optimized devices have an estimated AM1.5 performance of 1.6% with incident photon to current conversion efficiencies up to 50%. Photoluminescence spectroscopy, atomic force microscopy, and transmission electron microscopy have been used to gain insight in the morphology of these blends.  相似文献   

10.
Zhao  Yun-Li  Zhang  Yue  Yuan  Xi-Yue  Deng  Wan-Yuan  Zhang  Bo  Pang  Shu-Ting  Yin  Bing-Yan  Wu  Hong-Bin  Lin  Kai-Wen  Liu  Zhi-Tian  Duan  Chun-Hui  Huang  Fei  Cao  Yong 《高分子科学》2022,40(8):905-913
Chinese Journal of Polymer Science - Polymer solar cells (PSCs) consisting of a polymer donor and a small molecular acceptor is a promising photovoltaic technology, whose device performance is...  相似文献   

11.
We report photovoltaic cells based on solution-processed blends using a novel anthradithiophene derivative as the donor and a fullerene derivative as the acceptor. Solvent vapor annealing of these blends leads to the formation of spherulites, which consist of a network of anthradithiophene crystallites dispersed in an amorphous matrix composed primarily of fullerene. We observe a direct correlation between coverage of a device with spherulites and its performance. Devices with 82% spherulite coverage reach a power conversion efficiency of 1%, which makes them one of the highest performing solution-processed small molecule photovoltaic cells to date.  相似文献   

12.
稠环电子受体光伏材料   总被引:1,自引:0,他引:1  
代水星  占肖卫 《高分子学报》2017,(11):1706-1714
基于非富勒烯受体的有机太阳能电池是化学和材料领域的热点前沿之一,中国领跑这个热点前沿.中国学者在非富勒烯受体材料方面取得了一系列重要的创新成果.我们提出了"稠环电子受体(FREA)"这一新概念,构建了高性能稠环电子受体新体系,发明了明星分子ITIC.我们的原创性工作引起了国内外同行的广泛关注和跟进.目前,基于稠环电子受体的有机太阳能电池效率已达到13%~14%,超过富勒烯体系.ITIC等稠环电子受体的出现颠覆了富勒烯受体在有机太阳能电池领域的统治地位,开创了有机太阳能电池的非富勒烯时代.本文简要评述了我们在高性能稠环电子受体设计与器件应用中的研究进展,并展望稠环电子受体的未来发展.  相似文献   

13.
The performance of organic photovoltaic devices based upon bulk heterojunction blends of donor and acceptor materials has been shown to be highly dependent on the thin film microstructure. In this tutorial review, we discuss the factors responsible for influencing blend microstructure and how these affect device performance. In particular we discuss how various molecular design approaches can affect the thin film morphology of both the donor and acceptor components, as well as their blend microstructure. We further examine the influence of polymer molecular weight and blend composition upon device performance, and discuss how a variety of processing techniques can be used to control the blend microstructure, leading to improvements in solar cell efficiencies.  相似文献   

14.
A series of crosslinkable maleimide conjugated polymers with different vinyl group contents as side‐chain crosslinking sites have been synthesized by the Suzuki coupling reaction. Polymer solar cells (PSCs) were fabricated based on an interpenetrating network of the crosslinkable maleimide polymers as the electron donor, and a fullerene derivative, (6,6)‐phenyl‐C61‐butyric acid methyl ester (PCBM), as the electron acceptor. The crosslinkable maleimide polymers underwent crosslinking reaction at the side‐chain vinyl groups upon the thermal treatment with or without the addition of initiator, azobisisobutyronitrile (AIBN). Better photovoltaic (PV) performances were obtained for the PSCs based on the polymer crosslinking without using initiator, whereas poorer PV performances were observed for the PSCs based on the polymer crosslinking with the AIBN initiator. In addition, higher operational stability was observed for the crosslinked polymer based solar cell as compared to the solar cell based on the un‐crosslinked polymer. The photo‐physical and PV properties of the cross‐linked maleimide polymers/PCBM based PSCs are discussed in detail as the morphology and crosslinking density of the polymers are taken into account. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A new method of preparing conductive polymer composites by growing crystalline networks of conductive additives in polymer matrices (reticulate doping) is described. The method consists of treating the polymer containing molecularly dispersed donor additive with acceptor/solvent vapors. In the swollen polymer layer simultaneously CT complex formation and crystallization takes place which for proper conditions leads to the formation of a network of the CT complex crystallites, making the film surface-conducting. The preparation and properties of surface conductive films using several electron donors and an iodine acceptor are described. The films obtained show surface resistivities of 104–106 ohm and are generally stable under ambient conditions.  相似文献   

16.
The molecular weight of an electron donor‐conjugated polymer is as essential as other well‐known parameters in the chemical structure of the polymer, such as length and the nature of any side groups (alkyl chains) positioned on the polymeric backbone, as well as their placement, relative strength, the ratio of the donor and acceptor moieties in the backbone of donor–acceptor (D–A)‐conjugated polymers, and the arrangement of their energy levels for organic photovoltaic performance. Finding the “optimal” molecular weight for a specific conjugated polymer is an important aspect for the development of novel photovoltaic polymers. Therefore, it is evident that the chemistry of functional conjugated polymers faces major challenges and materials have to adopt a broad range of specifications in order to be established for high photovoltaic performance. In this review, the approaches followed for enhancing the molecular weight of electron‐donor polymers are presented in detail, as well as how this influences the optoelectronic properties, charge transport properties, structural conformation, morphology, and the photovoltaic performance of the active layer.

  相似文献   


17.
We report the photovoltaic response of composite films formed by polymer transport matrices poly(3-octylthiophene) (P3OT) and poly(3-decylthiophene) (PDT) with incorporated 1H-pyrazolo[3,4-b]quinoline (PAQ) chromophore (see the first figure). The photovoltage (PV) data were obtained for different substituted PAQ possessing different state dipole moments. The photovoltaic cells were formed between ITO and aluminum electrodes. We found that the PV signal of polymer/PAQ substantially depends on the state dipole moments of the pyrazoloquinoline chromophore. This fact indicates on a possibility of significant enhancement of PV efficiency by appropriate variations of the state dipole moments of chromophore. This results in photoinduced electron transfer from polymer serving as donors to PAQ being the electron acceptor. Despite an efficiency of the PV devices is below 1%, however, it may be substantially enhanced in future varying the chromophore state dipole moments appropriately.  相似文献   

18.
Two soluble poly(p-phenylenevinylene) derivatives (PPVs) with two bithiophenes as conjugated side chains, P1 and P2, were synthesized and characterized for application in polymer solar cells (PSCs). The thermal, photophysical, electrochemical and photovoltaic properties of the PPVs were investigated and compared with those of the PPVs without conjugated side chains. Bulk heterojunction solar cell devices are fabricated using the copolymers as the electron donor and PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) as the electron acceptor. The power conversion efficiencies (η) based on the P1 and P2 are 1.1% and 1.41% under AM 1.5 illumination (100 mW/cm2), respectively.  相似文献   

19.
Small molecule donor/polymer acceptor(SD/PA)-type organic solar cells(OSCs) have attracted widespread attention in recent years due to the continuing power conversion efficiency(PCE) growth, near 10%, and the excellent thermal stability for the practical applications. However, the development of SD/PA-type OSCs lags far behind that of polymer donor/small molecule acceptor(PD/SA)-type OSCs, which are also based on the combination of small molecule and polymer, with the PCEs exceeding 18%. The rea...  相似文献   

20.
王藜  徐苗  应磊  刘烽  曹镛 《高分子学报》2008,(10):993-997
以PC[70]BM(phenyl C71-butyric acid methyl ester)取代PC[60]BM(phenyl C61-butyric acid methyl ester)作为电子受体材料,以MEH-PPV(poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene])为电子给体材料,制成了本体异质结(bulk heterojunction,BHJ)聚合物太阳能电池.MEH-PPV/PC[70]BM器件在AM1.5G(80 mW/cm2)模拟太阳光的光照条件下得到了3.42%的能量转换效率,短路电流值达到了6.07 mA/cm2,开路电压0.85 V,填充因子为53%.通过紫外可见吸收光谱和外量子效率的研究,发现PC[70]BM作为电子受体,对扩大光谱的吸收范围和增加活性层的吸收系数有明显的作用.同时比较了不同溶剂对该体系器件性能的影响.通过原子力显微镜(AFM)、光暗导I-V曲线等研究,分析了1,2-二氯苯有利于给体相和受体相的微相分离和载流子的传输的原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号