首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Several \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm C}_{{\rm 4}} {\rm H}_{{\rm\ 8}} } \right]_{}^{_.^ + } $\end{document} ion isomers yield characteristic and distinguishable collisional activation spectra: \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm 1-butene} } \right]_{}^{_.^ + } $\end{document} and/or \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm 2-butene} } \right]_{}^{_.^ + } $\end{document} (a-b), \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm isobutene} } \right]_{}^{_.^ + } $\end{document} (c) and [cyclobutane]+ (e), while the collisional activation spectrum of \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm methylcyclopropane} } \right]_{}^{_.^ + } $\end{document} (d) could also arise from a combination of a-b and c. Although ready isomerization may occur for \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm C}_{{\rm 4}} {\rm H}_{{\rm 8}} } \right]_{}^{_.^ + } $\end{document} ions of higher internal energy, such as d or ea, b, and/or c, the isomeric product ions identified from many precursors are consistent with previously postulated rearrangement mechanisms. 1,4-Eliminations of HX occur in 1-alkanols and, in part, 1-buthanethiol and 1-bromobutane. The collisional activation data are consistent with a substantial proportion of 1,3-elimination in 1- and 2-chlorobutane, although 1,2-elimination may also occur in the latter, and the formation of the methylcycloprpane ion from n-butyl vinyl ether and from n-butyl formate. Surprisingly, cyclohexane yields the \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm linear butene} } \right]_{}^{_.^ + } $\end{document} ions a-b, not \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm cyclobutane} } \right]_{}^{_.^ + } $\end{document}, e.  相似文献   

2.
The reaction of diphenyltin dichloride with the binary Zintl phase K4Sn9 in the presence of excess lithium and 18‐crown‐6 in liquid ammonia led to the ammoniate [K(18‐crown‐6)(NH3)2]2Sn2Ph4 ( 1 ). The analogous reaction with K4Ge9 and potassium in the absence of further alkali metal ligands resulted in the compound [K2(NH3)12]Sn6Ph12 ? 4 NH3 ( 3 ). Cs6[Sn4Ph4](NH2)2 ? 8 NH3 ( 2 ) was prepared by reacting diphenyltin dichloride with a surplus of caesium in liquid ammonia. The low‐temperature single‐crystal structure determinations show all compounds to contain phenyl‐substituted polyanions of tin. Compound 1 is built from Sn2Ph anions consisting of Sn dumbbells with two Ph substituents at each Sn‐atom. Compound 2 contains cyclo‐Sn4Ph anions formed by a four‐membered tin ring in butterfly conformation with one Ph substituent at each Sn‐atom in an (all‐trans)‐configuration. Sn6Ph in 3 is a zig‐zag Sn6 chain with two substituents at each of the Sn‐atoms. Both 1 and 3 have molecular counter cations, in the latter case the unprecedented dinuclear potassiumammine complex [K2(NH3)12]2+ is observed. Compound 2 shows a complicated three‐dimensional network of Cs? Sn interactions.  相似文献   

3.
\documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm C}_{{\rm 10}} {\rm H}_{{\rm 14}} } \right]_{}^{_.^ + } $\end{document} ions have been generated from a number of adamantanoid compounds, both by ionization and ionization followed-by fragmentation. Metastable ion abundance ratios of competitive reactions indicate the decomposition of these ions from common structures in all cases.  相似文献   

4.
5.
6.
7.
8.
To evaluate the redox behavior of \({\text{VO}}^{2 + } / {\text{VO}}_{2}^{ + }\) as a simulant of \({\text{NpO}}_{2}^{ + } / {\text{NpO}}_{2}^{2 + }\) in boiling nitric acid solution, i.e., typical operating conditions for nuclear fuel reprocessing plants, oxidation rate measurements for VO2+ in boiling and non-boiling nitric acid solutions, thermodynamic calculations, and kinetic calculations were performed. The results indicated that the apparent oxidation rate of VO2+ to \({\text{VO}}_{2}^{ + }\) is accelerated by a decrease in \({\text{NO}}_{2}^{ - }\) and HNO2 concentrations owing to the boiling phenomena of nitric acid solution.  相似文献   

9.
10.
The topology of the electron density ρ(r) of \({\mathrm {H}}_{3}^{+}\) is revisited by series of ultra fine tuned geometry optimizations within Hartree-Fock self-consistent virial scaling (SCVS) approach in combination with correlation consistent cc-pVXZ basis sets. The calculations are extended to approach the Hartree-Fock complete basis set (CBS) limit. It is discussed that within such tuned ab initio calculations, the sources of errors that are mapped to the final density matrix in normal calculations are essentially eliminated. The results of electron density analysis on such error-free ρ(r) function via the quantum theory of atoms in molecules (QTAIM) confirm unambiguously the non-nuclear attractor (NNA) as the fundamental topological building block (together with three H atomic basins) to describe the bonding in \({\mathrm {H}}_{3}^{+}\) ion-molecule. The convergence patterns of the values of different density-dependent properties toward CBS limit are also explored. It is reported that the cc-pVXZ sets are not only energy-consistent but also density-consistent. Therefore, on the basis of this important density consistency behavior, the CBS limit values of different atomic and bonding indexes are estimated and ultimately the structure and bonding pattern of \({\mathrm {H}}_{3}^{+}\) are concluded.  相似文献   

11.
12.
The results of some 3C and 2H labelling experiments plus some measurements of reaction thermochemistry and translational energy releases, permit a significant simplification of the mechanistic pathways by which [C3H7O]+ ions of structure fragment by loss of C2H4. The relationships between these ions and some of their isomeric forms are explored and clarified.  相似文献   

13.
An X-ray analysis of the crystal structure of di-(L-alanine)monophosphite monohydrate was carried out. The symmetrically nonequivalent L-alanine molecules were found to be present in the structure in two different forms coupled by a strong hydrogen bond: monoprotonated positively charged [CH3CH(NH3)COOH] molecule and CH3CH(NH3)COO zwitterion. Two layers are distinguished in the structure: one is a positively charged layer formed by L-alanine molecules and the other is a negatively charged layer composed of phosphite ions and water molecules. These layers, alternating along the a axis, are connected to each other by a network of hydrogen bonds.  相似文献   

14.
Ion cyclotron resonance spectrometry and deuterium labeling have been used to determine that nondecomposing \documentclass{article}\pagestyle{empty}\begin{document}${\rm (CH}_{\rm 3} {\rm)}_{\rm 2} \mathop {\rm N}\limits^{\rm + } {\rm = CH}_{\rm 2}$\end{document} ions do not isomerize to \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 3} {\rm CH = }\mathop {\rm N}\limits^{\rm + } {\rm HCH}_{\rm 3}$\end{document}.  相似文献   

15.
The reactions of metastable $ {\rm CH}_{\rm 2} = {\rm CHCH =}\mathop {{\rm OCH}_{\rm 3}}\limits^{\rm +} $ oxonium ions generated by alkyl radical loss from ionized allylic alkenyl methyl ethers are reported and discussed. Three main reactions occur, corresponding to expulsion of H2O, C2H4/CO and CH2O. There is also a very minor amount of C3H6 elimination. The mechanisms of these processes have been probed by 2H- and 13C-labelling experiments. Special attention is given to the influence of isotope effects on the kinetic energy release accompanying loss of formaldehyde from 2H-labelled analogues of $ {\rm CH}_{\rm 2} = {\rm CHCH =}\mathop {{\rm OCH}_{\rm 3}}\limits^{\rm + } $. Suggestions for interpreting these reactions in terms of routes involving ion–neutral complexes are put forward.  相似文献   

16.
The two‐dimensional mixed‐ligand network catena‐[(μ‐4,4′‐bipyridine)‐bis(μ‐L‐tryptophanato‐κ3N,O,O′)‐diaqua‐dicopper(II) dinitrate] is constructed through the bridging action of both the tridentate amino carboxylato and the bidentate 4,4′‐bipyridine ligand. The enantiomeric L‐tryptophanato ligand acts as an N,O chelate towards one copper atom and bridges through the second carboxylate oxygen atom to the adjacent copper ion. Stacking of the corrugated nets creates channels which are occupied by the hydrogen‐bonded and very weakly Cu‐coordinating nitrate ions.  相似文献   

17.
18.
A porous silicate is obtained from octa-anionic cage-like poly-silicate (PS) and Ru3+ cations in an ethanol-based layer-by-layer assembly process. Electrochemical experiments (voltammetry and impedance spectroscopy) confirm the formation of redox-active ruthenium centers in the form of hydrous ruthenium oxide throughout the film deposit. Oxidation of Ru(III) to Ru(IV) at a potential below 0.5 V vs saturated Calomel electrode (SCE) is reversible, but a potential positive of 0.5 V vs SCE is associated with an irreversible change in reactivity, which is characteristic for very small hydrous ruthenium oxide nanoparticles. Further voltammetric experiments are performed in aqueous phosphate buffer solutions, and the effects of number of layers, scan rate, and pH are investigated. Three aqueous redox systems are studied in contact with the PS–Ru3+ films. The reduction of cationic methylene blue adsorbed onto the negative surface of the nanocomposite silicate is shown to occur, although most of the bound methylene blue appears to be electrochemically inactive either bound to silicate or buried into small pores. The PS–Ru3+-catalyzed oxidations of hydroquinone and arsenite(III) are investigated. Scanning electron microscopy images show that a macroscopically uniform porous surface is formed after deposition of 50 layers of the PS–Ru3+ nanocomposite. However, atomic force microscopy images demonstrate that in the initial deposition stages, irregular island growth occurs. The average rate of thickness increase for PS–Ru3+ nanocomposite films is 6 nm per deposition cycle.  相似文献   

19.
The development of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document}-based materials has become one of research hotspots due to the increasing demands on high-efficient photocatalyst responding to visible light. In this work, the effect of high energy radiation (\begin{document}$\gamma$\end{document}-ray) on the structure and the photocatalytic activity of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} nanocrystals was first studied. No morphological change of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} nanocrystals was observed by SEM under \begin{document}$\gamma$\end{document}-ray radiation. However, the XRD spectra of the irradiated \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} nanocrystals showed the characteristic 2\begin{document}$\theta$\end{document} of (113) plane shifts slightly from 28.37\begin{document}$^{\rm{o}}$\end{document} to 28.45\begin{document}$^{\rm{o}}$\end{document} with the increase of the absorbed dose, confirming the change in the crystal structure of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document}. The XPS results proved the crystal structure change was originated from the generation of oxygen vacancy defects under high-dose radiation. The photocatalytic activity of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} on the decomposition of methylene blue (MB) in water under visible light increases gradually with the increase of absorbed dose. Moreover, the improved photocatalytic performance of the irradiated \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} nanocrystals remained after three cycles of photocatalysis, indicating a good stability of the created oxygen vacancy defects. This work gives a new simple way to improve photocatalytic performance of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} through creating oxygen vacancy defects in the crystal structure by \begin{document}$\gamma$\end{document}-ray radiation.  相似文献   

20.
The barriers to partial rotation around the central single bond in chiral dienes \documentclass{article}\pagestyle{empty}\begin{document}${\rm HOCMe}_{\rm 2} \rlap{--} ({\rm CCl =\!= CCl\rlap{--})}_{\rm 2} {\rm X}$\end{document} have been determined by coalescence of either 1H NMR signals (X = CH2OCH3) or 13C NMR signals (X = H). In the presence of the optically active shift reagent (+) ? Eu(hfbc)3 all 1H signals were split at temperatures where the interconversion of enantiomers is slow. The temperature dependence of these spectra also yielded free activation enthalpies for the enantiomerizations which were in agreement with the ones obtained without Eu(hfbc)3. The assignment of the four methyl resonances appearing in the presence of (+) ? Eu(hfbc)3 at low temperature was possible by gradually increasing the rate of enantiomerization or gradually replacing the optically active auxiliary compound by the racemic one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号