首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— Photochemical reactions of acridine orange (AO) in basic aqueous and ethanolic solutions were studied using the flash photolysis technique. The absorption spectrum of AO was determined in detail (230–900 nm) and extinction coefficients were obtained. The decay of the triplet state is the result of a first order process, a triplet-triplet annihilation process and a quenching by the dye in the ground state. The main part of the triplet decays to the ground state; however the observation of semi-reduced AO shows that the decay is partly due to chemical reactions.
An efficient reversible reaction is observed on flashing aqueous solutions of AO containing tetramethyl- p -phenylenediamine: semi-reduced AO is formed in high yield by reaction between the triplet dye and the diamine. In addition, irreversible reactions of AO occur; these are shown to be due to the triplet state by the method of triplet energy transfer.  相似文献   

2.
Abstract The Primary reactions of the cosin-and fluorescein-photosensitized autoxidation of L-tyrosine were studied in aqueous media (pH = 8.6) by the flash-photolysis technique. The dye molecules were quantitatively converted to their triplet states in a single flash. The triplet dye molecules were found to react with tyrosine or oxygen. Ground state or radical dye molecules were formed in these reactions. Some 40 per cent of the triplet-tyrosine reactions yielded radicals, in triplet dye-oxygen reactions the corresponding yield was less than 10 per cent. The ground state dye was regenerated from the semireduced dye in reactions with oxygen and from the semioxidized dye in reactions with tyrosine. In the absence of oxygen the radicals formed in the photoinduced electron-transfer between the triplet dye and tyrosine recombined to a large extent.  相似文献   

3.
The 355 nm laser flash photolysis of argon-saturated pH 8 phosphate buffer solutions of the fluoroquinolone antibiotic flumequine produces a transient triplet state with a maximum absorbance at 575 nm where the molar absorptivity is 14,000 M(-1) cm(-1). The quantum yield of triplet formation is 0.9. The transient triplet state is quenched by various Type-1 photodynamic substrates such as tryptophan (TrpH), tyrosine, N-acetylcysteine and 2-deoxyguanosine leading to the formation of the semireduced flumequine species. This semireduced form has been readily identified by pulse radiolysis of argon-saturated pH 8 buffered aqueous solutions by reaction of the hydrated electrons and the CO2*- radicals with flumequine. The absorption maximum of the transient semireduced species is found at 570 nm with a molar absorptivity of 2,500 M(-1) cm(-1). In argon-saturated buffered solutions, the semireduced flumequine species formed by the reaction of the flumequine triplet with TrpH stoichiometrically reduces ferricytochrome C (Cyt Fe3+) under steady state irradiation with ultraviolet-A light. In the presence of oxygen, O2*- is formed but the photoreduction of Cyt Fe3+ by O2*- competes with an oxidizing pathway which involves photo-oxidation products of TrpH.  相似文献   

4.
Abstract— The photoreduction of thiazine dyes by ethylene diamine tetraacetic acid (EDTA) was investigated by Rash photolysis. This reaction was found to occur according to a three-step mechanism. the first being the formation of the dye triplet state followed, in weakly acid solutions, by protonation. During the second step, the triplet state of the dye disappears through two competing processes: spontaneous deactivation and reaction with EDTA, which leads to the semireduced dye. The third step leads to the leucodye. It is shown that the overall quantum yield of photoreduction is governed by the second step and can be calculated from the ratio of the rate constants of the two elementary processes involved in this step. This ratio was measured over a wide pH range.  相似文献   

5.
Abstract— We have characterized the spectra, acidity constants and decay kinetics of the triplet and semireduced radical species of Safranin-O. Between pH 3.0 and 10.6, there are three triplet species denoted 3DH2 +2, 3DH+ and 3D, the p K as being 7.5 and 9.2. All three triplet species exhibit first order decay, the rate constant for 3DH+ being ca. 5-fold lower than the rate constants of 3DH+ and 3D. Ascorbic acid and ethylenediaminetetraacetic acid (EDTA) quench the triplet state under appropriate pH conditions and the pH dependencies of the yield of semireduced dye indicate that 3DH+ is more reactive than 3DH+ or 3D. With EDTA as the reducing agent, there is the additional requirement that at least one of the amino nitrogens be deprotonated to obtain a significant yield of semireduced dye. In these reactions, ascorbic acid is oxidized reversibly, but EDTA is oxidized irreversibly, so that with the latter reducing agent photolysis causes buildup of the leucodye, which on subsequent photolysis can reduce triplet state dye. With ascorbic acid as the reducing agent, the regeneration of the ground state dye is reversible, the decay of the semireduced radical being second order. In general, the transient photochemistry of Safranin-O resembles that of Thionine, the major difference being that the lifetimes of 3DH2 +2 and 3DH+ are much longer for Safranin-O than for Thionine.  相似文献   

6.
Abstract— Flash photolysis at 450 nm has been used to study the quenching of the excited triplet state of lumiflavin and the transient species formed in subsequent reactions in deaerated phosphate buffer (pH 6.9).
The effect of the presence of ferricyanide on the life time of triplet lumiflavin has been studied. The results suggest an energy transfer reaction without concurrent electron transfer reactions. The rate constant for the process was 2.8 times 109 M -1 s-1. The analogous reaction with ferrocyanide could not be observed because of the efficient electron transfer reaction (δG = -20.6 kcal mol-1) leading to the formation of the semireduced lumiflavin and ferricyanide. The rate constant for this reaction was 3.3 times 109 M -1 s-1. The semireduced lumiflavin radical was found to disappear in a second order reaction with a rate constant of 1.7 times 109 M -1 s-1. It was found to react with ferricyanide with a rate constant of 0.7 times 109 M -1 s-1.
A model for the various photochemical and photophysical processes involved in the decay and quenching of the lumiflavin triplet state is suggested and discussed.  相似文献   

7.
Abstract— Flash photolysis was used to study the reduction of the triplet state of methylene blue by both alkyl- and aryl-amines. The extent of the formation of the semireduced form of the dye yielded rate constants of interaction between the triplet state and the amine ( k 5). A correlation between log k 5 and ionization potentials for alkylamines (slope = -1.75 eV-1) was interpreted as evidence for the formation of a partial charge-transfer intermediate. The rate constants ( k 5) calculated for aryl-amines approached the rate of diffusion in many cases. A Hammett plot for a series of N, N-dimethyl-anilines yielded a moderately large p value (– 3.28) consistent with the formation of a charge-transfer intermediate. It was concluded that reaction of amines with triplet methylene blue leads to the formation of a partial charge-transfer intermediate which may undergo complete electron transfer to yield radicals, or undergo spin inversion and return to the ground state.  相似文献   

8.
Abstract—Rate constants, k q , for the reaction of cationic and neutral acridine orange and 10-methylacridine orange triplet states (3AOH +, 3AO, 3MAO+) with a series of electron donors have been measured. Two different protolytic forms of the semireduced dye radical are produced by acridine orange triplet quenching at various pHM values in methanolic solution.
It is found that k 4 decreases with increasing oxidation potential of the reducing agent for all triplet states in a manner which is expected for electron transfer reactions. The different reactivities of the cationic and neutral triplet forms can, therefore, be attributed to the difference in reduction potentials of these species. The difference in reduction potentials is related to the p K M values of triplet state, p K TM , and semireduced dye radical, p K MS , by thermodynamic consideration. p K TM (3AOH+/3AO) is determined to be 11.2. From thisp K SM (AOH./AO;) is estimated to be 17–18. This is in striking contrast to the protolytic equilibrium of the semireduced dye radicals found to be pKF= 4.1. We conclude that the last value represents the second protonation equilibrium (AOH+2./AOH). This conclusion is confirmed by spectroscopic data.  相似文献   

9.
The ground and excited state processes of eosin, erythrosin and rose bengal in aqueous solution were studied in the presence of lysozyme or bovine serum albumin (BSA). Noncovalent protein-dye binding was analyzed by circular dichroism (CD), fluorescence and UV–Vis absorption spectroscopy. The effects of protein concentrations and pH were studied. Fluorescence quenching of the dye takes place due to binding to lysozyme and fluorescence enhancement due to low loading to BSA. The effects of proteins on the xanthene triplet state and its precursor were observed by time-resolved 530 nm photolysis. The triplet lifetime is quenched by lysozyme and prolonged by loading to BSA. Light-induced damages on both the dyes and proteins were observed under exclusion of oxygen. Photo-oxidation is efficient for lysozyme and lower for BSA. The CD signal of the eosin/BSA system is maximum at pH 4, where the photo-oxidation is minor.  相似文献   

10.
Styrene can be photopolymerized with methanolic solutions of safranine T(STH+) in the absence of any additives. Under these conditions the monomer acts as an electron donor for the excited singlet state of STH+, and after electron transfer an initiating semireduced STH+ radical is produced. The experimentally determined monomer exponent of α = 2 indicates additional deactivation reactions of the primary radicals. The polymerization rate depends on the dye concentration also in those regions, in which all light is already absorbed. Presumably, this dependence is caused by a comproportionation reaction between STH+ and substituted leuco-safranine T formed in the course of polymerization. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
Abstract— A flash photolysis investigation was made of the photo-oxidation of aqueous aniline, resorcinol, βnaphthol, p-sulfanilic acid, and p-bromophenol induced by ultraviolet and visible light irradiation in the presence of eosin Y. The transient spectra show that u.v. irradiation generates the hydrated electron (except in p-bromophenol) and the radical products of one-electron oxidation. The initial products of the eosin-sensitized oxidations are the dye semi-quinone and aromatic radicals which coincide with the u.v. photolysis products in at least several cases. The investigation of the reaction kinetics by rapid spectrophotometry with analog computer analysis shows that the aromatics quench the triplet state of eosin and also react with it in a slower electron-transfer process, in competition with ‘dye-dye’ quenching and electron-transfer reactions. The u.v. and dye-sensitized oxidations are discussed in terms of their energetics.  相似文献   

12.
Abstract— The photoreduction of methylene blue in the presence of arylaminomethanesulfonates (RAMS = RC6H4NHCH2SO3Na) was studied by laser and conventional flash photolysis. These compounds quenched the methylene blue triplet deviating from a normal Stern-Volmer behaviour. For low quencher concentrations, a Rehm-Weller relationship was found between the k q's and the DL G 's obtained for the electron transfer reactions. The lack of further quenching at higher [RAMS] is ascribed to the formation of a ground state ion pair between the dye and the anionic quencher which, on excitation, forms a triplet state unable to under go electron transfer for steric reasons. A second order decay rate constant was found for the semireduced species (MB') ( ca. 5 × 109 M -1 s-1, independent of the RAMS used) and is attributed to a proton transfer from the radical zwitterion (RC6H4NH CH2SO3) to MB. The overall dependence on the substituent of the bleaching observed by continuous irradiation follows the triplet behaviour.  相似文献   

13.
Photo‐DSC and in situ, time‐resolved, laser‐induced, steady‐state fluorescence spectroscopy were used to study the initiation mechanism of the three‐component system: Eosin Y spirit soluble (EYss), N‐methyldiethanolamine, and diphenyliodonium chloride. Kinetic studies based on photo‐DSC revealed that the fastest polymerization occurred when all three components were present (the next fastest was with the dye/amine pair, and the slowest was with the dye/iodonium pair). However, the laser‐induced fluorescence experiments showed that the pairwise reaction between the eosin and iodonium bleaches the dye much more rapidly than does the reaction between the eosin and amine. We concluded that although a direct eosin/amine reaction can produce active radicals in the three‐component system, this reaction is largely overshadowed by the eosin/iodonium reaction, which does not produce active radicals as effectively. We proposed that the amine reduces the oxidized dye radical formed in the eosin/iodonium reaction back to its original state as well as the simultaneous production of an active initiating amine‐based radical. Because of the difference in the pairwise reaction rates for eosin/amine and eosin/iodonium, it is likely that this regeneration reaction was the primary source of active radicals in the three‐component eosin/amine/iodonium system. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 715–723, 2001  相似文献   

14.
Abstract

The large rate of intersystem crossing between singlet and triplet states of tellurapyrylium dyes leads to efficient generation of singlet oxygen in irradiated airsaturated aqueous solutions containing these dyes. One reaction of tellurapyrylium dyes with singlet oxygen and water is the formation of dihydroxy tellurane [tellurium(IV)] species. We have found that the photochemical generation of dihydroxy telluranes is reversible thermally. The tellurapyrylium dye is regenerated while a molecule of hydrogen peroxide is produced. The thermal generation of hydrogen peroxide coupled with a photochemical generation of singlet oxygen allows a catalytic cycle to be devised for the conversion of oxygen and water to hydrogen peroxide. The dihydroxy telluranes are efficient two-electron oxidizing agents and can be used as catalysts to accelerate reactions using hydrogen peroxide as a two-electron oxidizing agent. Examples of tellurapyrylium dye-mediated reactions of hydrogen peroxide include reactions of leucodyes normally oxidized by horseradish peroxidase and hydrogen peroxide. These processes lead to thermal and photochemical reactions that are potentially cytotoxic following the generation of singlet oxygen in photodynamic therapy. The regeneration of the original catalyst allows repeated treatment from a single dose.  相似文献   

15.
A borondipyrromethene (bodipy) dye is equipped with a 4-pyridine residue attached via the meso position. The strong fluorescence inherent to this class of dye is extinguished on protonation of the pyridine N atom. For the corresponding N-methylpyridinium derivative, fluorescence from the dye fragment is also extensively quenched due to the onset of a light-induced charge-shift reaction. The resultant charge-transfer state (CTS) is weakly fluorescent and decays primarily by way of population of the triplet excited state localized on the bodipy dye. Time-resolved spectral studies provide rate constants for all the steps involved in the forward and reverse charge-shift reactions. An interesting feature is that the lifetime of the CTS, around 1 ns, correlates with the viscosity of the solvent as might be expected if the rate-limiting step involves a substantial change in geometry. There is an unexpectedly small activation energy for the reverse charge-shift reaction, even allowing for the fact that this involves triplet formation. Local fluorescence is restored on cooling to 77 K.  相似文献   

16.
Abstract— The transient absorption spectra of aqueous solutions of eosin and of the lysozyme-eosin complex have been examined after excitation with a Q -switched frequency-doubled (347 nm) ruby laser pulse. Eosin itself gives three broad, intense short-lived absorption bands with maxima at wavelengths of 410, 460 and 580 nm, which other workers have identified with the semi-reduced and semi-oxidized radicals and the triplet state of the dye, respectively. In the complex with lysozyme, the yield and lifetime of the eosin triplet are greatly reduced in comparison with the free dye. It is suggested that excited eosin, when bound to lysozyme, decays mainly from the singlet state by pathways such as charge transfer which are not available to the free molecule.  相似文献   

17.
Horseradish peroxidase catalyzes the aerobic oxidation of 2-phenylpropanal and diphenylacetaldehyde at physiological pH to yield acetophenone and benzophenone partly in the triplet state, respectively. These excited products plus formic acid are expected from the thermolysis of dioxetane intermediates. The presence of acetophenone was demonstrated spectrophotometr-ically and the chemiluminescence spectrum (δmax - 430 nm) was consistent with its triplet state. Energy transfer to 9,10-dibromoanthracene-2-sulfonate ion, a triplet carbonyl counter, but not to anthracene-2-sulfonate ion, a singlet carbonyl acceptor, occurred, confirming the triplet nature of the main emitter. In the case of the diphenylacetaldehydelperoxidase system, benzophenone could also be detected spectrophotometrically but the corresponding chemiluminescence spectrum showed only red emission (δmax - 630 nm), which was tentatively attributed to singlet oxygen formed by triplet-triplet energy transfer to ground state oxygen. Horseradish peroxidase can be replaced by other he-meproteins such as myoglobin, hemoglobin and micro-peroxidase as catalyst of the chemiluminescent reaction. The distinct emission spectra achieved with different hemeproteins suggest a role of the microenvi-ronment in totally or partly protecting the excited species from oxygen collisions, resulting in emission maxima around 430 nm, 630 nm or both.  相似文献   

18.
Abstract— Quite often the primary photochemical reaction of an excited state molecule is transfer of an electron to or from another molecule in its ground state. Rates of such reactions are closely dependent on differences between ground and excited state redox potentials of the reagents. The solvent also plays an important role in stabilizing ion pairs formed by the electron transfer. This Review discusses experimental data relating rates to electrochemical energy parameters in the context of a scheme which portrays the energy and electron transactions in a unified manner. Three consequences of reaction of a singlet excited state are distinguished: (S1) quenching without detectable products, (S2) exciplex fluorescence, (S3) transient radical ion production, and energetically necessary conditions are derived for each. Similarly, four kinds of reactions involving the triplet state are distinguished, which depend on the relation between the energy of the triplet state and that of the ion pair states: (TI) rapid quenching, (T2) slow quenching, (T3) accelerated intersystem crossing and (T4) generation by reaction between radical ions of like spin. The last may be followed by electrochemiluminescence. Classes of compounds for which data are available include chlorophylls, porphyrins and a few other molecules of biological interest, aromatic hydrocarbons and their derivatives, heterocyclic systems, carbonyl compounds, dyes, and complexes of Ru and U. A Table compiling median or selected values of ground and excited state electrochemical potentials of chlorophylls, some porphyrins, and a few other compounds is presented.  相似文献   

19.
The self‐recombination reactions of 4‐aminophenyl cations and parent phenyl cations, each in ground triplet states, are studied within the framework of density functional theory. Only the total zero spin (singlet state) is chosen, as the quintet and triplet counterparts are nonreactive in these systems. The recombination products are the benzidine and biphenyl doubly charged cations. These species are unexpectedly stable. The transition state of the 4‐aminophenyl cations reaction is located at the distance of about 4.0 Å between the ipso‐carbon atoms. The activation barrier is predominantly formed by electrostatic repulsion between two cations and is estimated to be 27.6 kcal mol?1 [B3LYP/6–311+G(d,p)]. Similar results are obtained for the phenyl cations recombination. The general importance of the participation of other aryl cations in analogous organic reactions is discussed. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
The quenching of the excited singlet and triplet states of the synthetic dye safranine-O by low generation PAMAM and DAB dendrimers was investigated in methanol. The rate constants for the quenching of the excited singlet state depend on the number of primary amino groups in the dendrimer. The first-order rate constant for the decay of the triplet state presents a downward curvature as a function of the quencher concentration. This behavior was interpreted in terms of the reversible formation of an intermediate complex in the excited state. From a kinetic analysis of the quenching mechanism the equilibrium constant Kexc could be extracted. The values of Kexc may be related to the proton affinity of the quencher. The results were interpreted in terms of a reversible proton transfer quenching. This was further confirmed by the transient absorption spectra obtained by laser flash photolysis. The transient absorption immediately after the triplet state quenching could be assigned to the unprotonated form of the dye. At later times the spectrum matches the semireduced form of the dye. The overall process corresponds to a one-electron reduction of the dye mediated by the deprotonated triplet state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号