首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.

An efficient protocol for the synthesis of unsymmetrical substituted diarylacetylenes by the C(sp2)–C(sp) cross-coupling reactions of substituted phenylacetylenes and electronically different arylboronic acids has been developed. Anthracen-9-ylmethylene-(4-methoxyphenyl)amine was employed as an efficient promoter in this Pd(OAc)2-catalyzed oxidative Sonogashira reaction in air in the absence of silver salt under optimized reaction conditions. The impact of reaction parameters such as solvent, base, reaction temperature and time in this silver-free aerobic oxidative Sonogashira cross-coupling reaction was also evaluated. Electron-deficient phenylacetylenes, which are sluggish coupling partners in the traditional Sonogashira reaction, underwent coupling in this protocol. The catalytic system is inexpensive, effortlessly attainable and highly flexible for functionalized phenylacetylenes and arylboronic acids.

Graphic abstract
  相似文献   

2.
Chen  Jin-Wei  Li  Xiong  Feng  An-Sheng  Zou  Xun-Zhong  Li  Yu  Gu  Jin-Zhong 《Transition Metal Chemistry》2022,47(7-8):301-309

Semi-flexible aromatic polycarboxylic acids are gaining impetus in crystal engineering of functional coordination polymers. This work opens up the use of a triphenyl-tricarboxylic acid, 3,5-(4'-carboxylphenyl) benozoic acid (H3cba), as a versatile and still unexplored linker for the synthesis of four new Mn(II), Ni(II), Zn(II), and Cd(II) coordination polymers, formulated as [Mn(μ3-Hcba)(bpy)]n?nH2O (1), [Ni(μ-Hcba)(py)(H2O)]n (2), [Zn(μ-Hcba)(phen)(H2O)]n?nH2O (3), and [Cd(μ3-Hcba)(bpy)]n?nH2O (4). These compounds were prepared via a facile hydrothermal procedure using metal(II) chlorides, H3cba, and supporting N-donor ligands (2,2?-pyridine, bpy; pyridine, py; 1,10-phenanthroline, phen) acting as crystallization mediators. Compounds 14 were fully characterized and their X-ray crystal structures were established, disclosing the metal–organic architectures that range from 1D double chains (1, 4) to 1D chains (2, 3). Thermal and catalytic properties of 14 were also investigated. In particular, catalytic potential of the obtained coordination polymers in the Knoevenagel condensation of benzaldehydes with propanedinitrile was evaluated, disclosing an excellent performance of several heterogeneous catalysts with up to 100% product yield.

Graphical abstract

Four new Mn(II), Ni(II), Zn(II), and Cd(II) 1D coordination polymers have been constructed and the structures and catalytic properties of the polymers were investigated.

  相似文献   

3.

By using an asymmetric ligand with triazole and imidazole groups, three Keggin-based complexes were obtained, [Cu(HMET)4(H2O)2](PMo12O40)2·2H2O (1), [Cu3(HMET)4Cl2(H2O)2(XM12O40)2]·4H2O (X?=?Si, M?=?W 2, X?=?Ge, M?=?Mo 3) (MET?=?4-(2-imidazol-1-yl-ethyl)-4H-[1,3,4]triazole). Complex 1 contains discrete Keggin anions and mono-nuclear [Cu(MET)4(H2O)2]2+ clusters. Complexes 2 and 3 are isostructural with tri-nuclear Cu clusters linked by Keggin anions to construct a 1D chain. The 1- to 3-CPEs show electrocatalytic properties and can also act as nitrite amperometric sensors. Complexes 13 exhibit photocatalytic activities for degradation of MB. Complexes 1–?3 own fluorescence sensing properties for detecting Hg2+ ions.

Graphical abstract

By using an asymmetric ligand three POM-based complexes were constructed. The 1– to 3–CPEs exhibit good electrocatalytic activities and can be used as nitrite amperometric sensors. The title complexes show good photocatalytic activities for degradation of MB. Moreover, complexes 13 can act as fluorescence sensors to selectively detect Hg2+.

  相似文献   

4.
Wang  Li  Wu  Jindi  Su  Xiaolong  Huang  Jian  Zhang  Peng  Zhao  Saidi  Su  Biyun  Xu  Benhua 《Transition Metal Chemistry》2022,47(7-8):275-281

A novel linear tetranuclear Ni(II) complex Ni4L2 {[Ni4L2(H2O)3CH3OH]·CH3OH·2CH3CN·2H2O} was constructed by employing a well-tailored compartmental ligand H4L = (2E,N'E)-N'-(1-(3-((E)-2-hydroxy-3-methoxybenzylideneamino)-2-hydroxyphenyl)ethylidene)-2 -(hydroxyimino)propanehydrazideas with equal equivalent NiCl2·6H2O and NaOH via solvothermal reaction. The complex was well characterized by X-ray crystallography, elemental analysis, infrared emission spectra, UV–visible absorption spectra and thermogravimetry. The crystal structure shows that four nickel ions coordinate with two ligands to form a unique linear structure of Ni4L2. Besides, Ni4L2 act as a catalyst showed good catalytic activity for polymerization of methyl methacrylate (MMA) to obtain PMMA under mild condition.

Graphical abstract
  相似文献   

5.
The steric-switched ipso-defluoroamination-triggered and ipso-defluorooxylation-triggered cyclization of(trifluoromethyl)alkenes with amino alcohols and diamines are achieved under mild conditions. This regioselective strategy distinguishes the different nucleophilic heteroatom sites in amino alcohols and unsymmetric diamines by the sequential defluorinative functionalization of two C(sp3)–F bonds in a CF3 group. Various attractive monofluoroalkene-masked medium-sized heterocyclic lactams and lactones are obtained in moderate to excellent yields. Simple derivation of these masked-heterocycles efficiently affords useful skeletons of lactams, lactones, and 1,4-oxazepanes in a single diastereoisomer. Mechanism studies indicate that a unique sequential ipso-/γ-selective defluorinative functionalization pathway is involved in these transformations.  相似文献   

6.

Reactions of unsaturated [HOs3(CO)83-Ph2PCH(R)P(Ph)C6H4}] (R?=?H, Me) with Bu3SnH are examined. [HOs3(CO)83-Ph2PCH(R)P(Ph)C6H4}] reacts with Bu3SnH at room temperature to afford [H2Os3(CO)8(SnBu3){µ3-Ph2PCH(R)P(Ph)C6H4}] (1) via oxidative addition of the Sn?H bond to the parent cluster. Heating 1 in refluxing toluene leads to the formation of [H2Os3(CO)7(SnBu3){µ3-Ph2PCH(R)P(Ph)C6H4}] (2) through decarbonylation. Cluster 2 exists in two isomeric forms in solution which has been probed by VT NMR spectroscopy. The new Os-Sn bimetallic clusters have been characterized by a combination of analytical and spectroscopic data together with single-crystal X-ray diffraction analysis.

Graphic abstract
  相似文献   

7.

High pollution, low-productivity, formation of by-products, and costly recovery of the vitamin are the challenges in common vitamin K3 synthesis methods on the industrial scale. These have encouraged us to design and characterize novel magnetic dendrimer nanoparticles based on silica-coated iron oxide (SCIO-(l5/l8)-G2.0) for nano-encapsulation of Pd, Mn, and Co to highly efficiently selectively synthesize vitamin K3. The CHN, BET, ICP, AAS, TEM, FESEM, TGA, DLS, EDS and XPS techniques were employed to intensively identify the obtained dendritic catalysts. Furthermore, the chemical stability of dendritic catalysts and influence of four various experimental factors were assessed by long-term study and response surface methodology analysis, respectively. The characterization results confirmed that all dendritic catalysts have a quasi-spherical morphology with mean size 20–30 nm, which could provide abundant active sites, high specific surface area and also increase the contact efficiency between the active sites and reactants. These results illustrated that the catalytic efficiency (TOF) depend strongly on the chemical structures as well as Lewis sites and natures (SCIO-l8-G2.0-Pd(II)?>?SCIO-l8-G2.0-Co(II)?>?SCIO-l8-G2.0-Mn(II)?>?SCIO-l5-G2.0-Pd(II)).

Graphical abstract
  相似文献   

8.
Abstract  The title complexes and have been synthesized in excellent yields by reacting Co(OAc)2·4H2O with H2L1 and H2L2, respectively, in acetonitrile solution. Here, [L1]2− and [L2]2− are the deprotonated forms of N,N-bis(2-hydroxybenzyl)-N′,N′-dimethylethylenediamine and N,N-bis(2-hydroxybenzyl)-2-picolylamine, respectively. The crystal structures of and were determined by x-ray crystallography. In , each cobalt atom has distorted trigonal bipyramid geometry, while in , each cobalt atom has distorted octahedral geometry. Variable temperature magnetic moment measurements show weak antiferromagnetic interaction in . The magnetic characterization for is in agreement with the presence of Co(II) and Co(III) centers. Graphical Abstract  The title complexes and have been synthesized in excellent yields by reacting Co(OAc)2·4H2O with dianionic N2O2 coordinating ligands. In complex 1, each cobalt atom has distorted trigonal bipyramid geometry, while in complex 2, each cobalt atom has distorted octahedral geometry. Variable temperature magnetic moment measurements show weak antiferromagnetic interaction in complex 1. The magnetic characterization for complex 2 is in agreement with the presence of Co(II) and Co(III) centers. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.

A high-precision exact-matching quadruple isotope dilution method (ID4MS) was employed for the quantitation of nitrate in an air-dried spinach powder Certified Reference Material (CRM). The analyte was extracted in hot water following addition of 15NO\({}_{3}^{-}\) internal standard. The blend was then treated with sulfamic acid to remove nitrite and with triethyloxonium tetrafluoroborate to promote aqueous conversion of nitrate into volatile EtONO2. The derivative was analyzed by headspace GC–MS with 3-min elution time. The method performance was validated with a series of tests which demonstrated adequate selectivity and ruggedness. This method supported the development of novel SPIN-1 CRM giving a modest contribution to its uncertainty (uchar = 0.85%). With respect to previous attempts, the SPIN-1 was proven stable, homogeneous (uhom = 0.44%), and suitable for spinach monitoring under EU regulations. On dried basis, the nitrate content of SPIN-1 was found to be 22.53 ± 0.43 mg/g (Uc = 1.9%, k = 2). The material was also used in an inter-laboratory study where four laboratories employed a total of ten measurement methods.

SPIN-1 Certified Reference Material for nitrate in spinach powder

  相似文献   

10.

Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized from hydrazone ligands (HL1–HL4) obtained by condensation reaction of 6-chlorothiochroman-4-one with benz hydrazide/nicotinic hydrazide/isonicotinic hydrazide/p-toluic hydrazide. The synthesized compounds (1–20) were characterized by physicochemical procedures, i.e. (FTIR, 1H NMR, 13C NMR, mass, ESR, UV–Vis), TGA/DTA, powder XRD, elemental analysis (CHN), magnetic susceptibility and molar conductance measurements. The various data suggested bidentate nature (NO) of hydrazones, which coordinate with central metal ions via nitrogen of azomethine (–C=N–) group and deprotonated carbonyl oxygen in the enolized form, resulting in octahedral complexes. Low values of molar conductance suggested their non-electrolytic nature. Thermal decomposition pattern of complexes confirms the metal oxides as end product. In vitro antimicrobial activity of hydrazones and their metal complexes were evaluated against two gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus); two gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli); and two fungal strains (Candida albicans and Aspergillus niger) by serial dilution method, and it was found that the metal complexes were highly active as compared to hydrazones. Among all the compounds, complexes 11, 13, 14 and 19 were found most efficient antimicrobial agent. The anticancer activity of (1–20) compounds was performed on human cancer cell lines A549 (lung), DU145 (prostate) and SW620 (colorectal) by MTT assay using paclitaxel as reference drug. The cytotoxicity results suggested compounds [Cu(L2)2(H2O)2] 11 as most potent against A549, DU145 and SW620 cancer cell lines with IC50 values of 3.46, 18.21 and 7.61 µM. Furthermore, compounds (9, 10, 11, 12) were also investigated on A549 cell line for their ROS generation and mitochondrial membrane potential loss and suggested that complex [Cu(L2)2(H2O)2] 11 has highest ROS production and induction of apoptosis by mitochondrial depolarization in cancer cells.

Graphic abstract

The synthesized compounds (1–20) were screened for in vitro cytotoxicity against A549 (lung), DU145 (prostate), SW620 (colorectal) human cancer cell lines. Copper complex (11) was found to be the most active antitumor agent which enhance ROS production and MMP loss on A549 cells.

  相似文献   

11.
All six constitutional isomers of the dimethoxy-terminated clathrochelate FeBd2((CH3OOCC6H4S)2Gm)(BF)2 (where Bd2? is α-benzildioxime dianion, Gm is glyoxime residue, and BF is fluoroboron capping group) were obtained under mild reaction conditions by nucleophilic substitution of their dichloroclathrochelate precursor with the corresponding methyl ester of carboxyphenylthiolate anion generated in situ in the presence of triethylamine. In the case of homodifunctionalized cage complexes with equivalent ortho-, meta-, or para-substituted arylsulfide groups, 1.5-fold excess of methyl ester of the corresponding mercaptobenzoic acid was added. In the case of their heterodifunctionalized macrobicyclic analogs, subsequent addition of one equivalent of the first nucleophilic agent and one equivalent of the second nucleophile was used. The complexes were characterized using elemental analysis, MALDI-TOF mass spectrometry, IR, UV–vis, 1H and 13C{1H} NMR spectra, and by single-crystal X-ray diffraction. In all these molecules, the encapsulated iron(II) is situated in the center of FeN6-coordination polyhedron, the geometry of which is intermediate between a trigonal prism and a trigonal antiprism with the average distortion angles φ from 24.7 to 25.2°. The absence of strong intermolecular interactions and the substantial sterical clashes hampering a rotation around the single C–S bonds, resulted in different orientations of the functionalizing arylsulfide substituents at a cage framework.  相似文献   

12.

Circularly polarized luminescence (CPL) organic dyes are currently receiving a great interest, but there are still not many reported observations of CPL spectra of hydrophobic dyes from aqueous solution. We have prepared hydrophobic pyrene derivatives and dissolved them into aqueous solutions with γ-cyclodextrin (γ-CD) by using grinding technique. Among these derivatives, (pyrene-1-carbonyl)serine (PySer) forms a spatially restricted dimer in the hydrophobic chiral cavity of γ-CD and exhibits excimer emission with a high quantum yield of Φf?=?0.68. In addition, circular dichroism and CPL signals were induced for the complex. The strong gCPL value of gCPL?=?+?2.2?×?10?3 was obtained, which may be attributed to the interaction between the hydroxyl groups in the side chain of PySer with those of γ-CD and it strengthens the chiral dimeric structure.

Graphic abstract
  相似文献   

13.

The engineering of switchable molecules with magnetic multistability is lying on the cutting-edge research topics for integrating multi-switches and ternary memory devices. Here we presented a cyanide-bridged {FeIII2FeII} desolvated complex {[(pzTp)FeIII-(CN)3]2[FeII(L)]} (1), obtained through single-crystal-to-single-crystal (SCSC) transformation from its solvated phase {[(pzTp)-FeIII(CN)3]2[FeII(L)]}·2CH3OH·5H2O (1·sol). Remarkably, 1 exhibited unprecedented three-step transition in magnetization with wide thermal hysteresis (44, 40, and 36 K) in the temperature range of 80–320 K. The detailed studies demonstrated that the tristable character originates from both an order-disorder structural phase transition (SPT) and a strongly cooperative two-step spin crossover (SCO) process. This work thus provides a new promising strategy for realizing multiple bistablity in magnetization by introducing two different transitions.

  相似文献   

14.
Yan  Shiqiang  Jiang  Xia  Wang  Zhaolin  He  Shuwang  Zhang  Wei 《Research on Chemical Intermediates》2022,48(6):2413-2427

A simple, efficient and green approach to the synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones has been developed via one-pot three-component reaction of aromatic aldehyde, malononitrile and phthalhydrazide catalyzed by zinc–proline complex (Zn[L-proline]2) using H2O: PEG400?=?6: 4 as solvent. Atom economy, good to excellent yield, operational simplicity and easy workup are important features of this method.

Graphical abstract
  相似文献   

15.

An electrochemical cycle for the grid energy storage in the redox potential of Fe involves the electrolysis of a highly concentrated aqueous FeCl2 solution yielding solid iron deposits. For the high overall energy efficiency of the cycle, it is crucial to maximize the energy efficiency of the electrolysis process. Here we present a study of the influence of electrolysis parameters on the energy efficiency of such electrolysis, performed in an industrial-type electrolyzer. We studied the conductivity of the FeCl2 solution as a function of concentration and temperature and correlated it with the electrolysis energy efficiency. The deviation from the correlation indicated an important contribution from the conductivity of the ion-exchange membrane. Another important studied parameter was the applied current density. We quantitatively showed how the contribution of the resistance polarization increases with the current density, causing a decrease in overall energy efficiency. The highest energy efficiency of 89 ± 3% was achieved using 2.5 mol L−1 FeCl2 solution at 70 °C and a current density of 0.1 kA m−2. In terms of the energy input per Fe mass, this means 1.88 Wh g−1. The limiting energy input per mass of the Fe deposit was found to be 1.76 Wh g−1.

Graphical abstract
  相似文献   

16.

The AHA coupling of amines, haloalkane and alkynes under UV visible light was achieved with a higher yield in the presence of Au/Fe2O3. The catalyst was prepared by two methods using different gold content and then characterized by XRD, UV–vis, BET, TEM, ICP-OES and TPR spectroscopies. A comparative study of the ordinary and photocatalytic conditions, showed that the UV visible light could activate the gold nanoparticles and lead to the formation of CH2Cl? and Cl? radicals through CH2Cl2 fragmentation. The propargylamine was afforded at low temperature and a short time using 2% Au/Fe2O3. The catalyst was stable for five cycles with good photoactivity.

Graphical abstract
  相似文献   

17.
Conventional anti-Stokes materials-involved deep photodynamic therapy(dPDT)requires much high-intensity irradiance due to low photosensitization efficiency.Herein,we proposed a"booster effector"approach to construct highly efficient hot band absorption phototherapeutics for low/biosafety power anti-Stokes light-triggered d PDT.Se,as"booster effector",was introduced into hot band absorption luminophores(HBAs),which not only significantly facilitated intersystem crossing,but also simultaneously enhanced hot band excitation efficiency atν808,as a result successfully enabling excellent photogenerated singlet oxygen capability of HBAs under ultra-low power anti-Stokes excitation(10 mW cm-2in vitro).As far as we know,such low laser power-initiated photosensitization activity has never been reported in the existing anti-Stokes material systems.Importantly,FUC-Se ME can self-assemble into uniform nanospheres in water,greatly boosting cellular uptake(>25-fold larger than FUC-Se),and achieve superior cancer-killing effect(808 nm,10 mW cm-2,5 min,the half-maximal inhibitory concentration IC50=1.36μM).After further PEGylation with folate-attached polymer,the resultant FUC-Se ME@FA can effectively enrich at the tumor(signal-to-background ratio,10).Under safety irradiation(330 mW cm-2),FUC-Se ME@FA effectively inhibits deep-seated tumor progression(the tumor growth inhibition rate,84%).This work provides a successful paradigm,possibly being more clinically beneficial than conventional anti-Stokes materials.  相似文献   

18.

A biomass nitrogen and sulfur codoped carbon dots (NS-Cdots) was prepared by a simple and clean hydrothermal method using leek, and was employed as efficient fluorescent probes for sensitive detection of organophosphorus pesticides (OPs). The leek-derived NS-Cdots emitted blue fluorescence, but was quenched by H2O2. Due to acetylcholinesterase/choline oxidase–based cascade enzymatic reaction that produces H2O2 and the inhibition effect of OPs on acetylcholinesterase activity, a NS-Cdots-based fluorescence “off-on” method to detect OPs-dichlorvos (DDVP) was developed. More sensitivity and wider linear detection range were achieved from 1.0 × 10−9 to 1.0 × 10−3 M (limit of detection = 5.0 × 10−10 M). This developed method was applied to the detection of DDVP in Chinese cabbage successfully. The average recoveries were in the range of 96.0~104.0% with a relative standard deviation of less than 3.3%. In addition, the NS-Cdots fluorescent probes were also employed successfully in multicolor imaging of living cells, manifesting that the NS-Cdots fluorescent probes have great application potential in agricultural and biomedical fields.

Graphical Abstract

  相似文献   

19.

Here, iron, sulfur and poly(ethylene glycol) doping to TiO2 nanoparticles toward the effect on photodegradation of the methylene blue (MB) and Evans blue (EB) was investigated. The present nanostructured photocatalysts displayed notable catalytic activity for the decomposition of colorants in water under visible light irradiation. The photocatalytic reaction constants of different samples were determined for EB and MB to be 0.007, 0.008, 0.009 and 0.01, 0.026, 0.021 1/min, respectively. The values of optical band gap for pure TiO2, Fe–S/TiO2, and Fe–S/TiO2@PEG were estimated to be 3.21, 2.75, and 2.81, respectively. X-ray analysis was performed and correlated with BET, Fe–SEM, and TEM results. The lattice structure was studied by W–H (Williamson–Hall) and H–W (Halder–Wagner) methods with a different assumption in the isotropic and homogenous nature. The results revealed that the SSP model shows the most accuracy and adaption to determine the lattice structure.

Graphic abstract
  相似文献   

20.

It has recently been established that 1-octanethiol in the electrolyte can allow iron electrodes to be discharged at higher rates. However, the effect of thiol additives on the air electrode has not yet been studied. The effect of solvated thiols on the surface positive electrode reaction is of prime importance if these are to be used in an iron-air battery. This work shows that the air-electrode catalyst is poisoned by the presence of octanethiol, with the oxygen reduction overpotential at the air electrode increasing with time of exposure to the solution and increased 1-octanethiol concentration in the range 0–0.1 mol dm−3. Post-mortem XPS analyses were performed over the used air electrodes suggesting the adsorption of sulphur species over the catalyst surface, reducing its performance. Therefore, although sulphur-based additives may be suitable for nickel-iron batteries, they are not recommended for iron-air batteries except in concentrations well below 10 × 10−3 mol dm−3.

Graphical abstract

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号