首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of [Pt25-C5Me5)2(η-Br)3]3+(Br)3 with C5R5H (R = H,Me) in the presence of AgBF4 gives the first platinocenium dications, [Pt(η5-C5Me5)(η5-C5R5)]2+(BF4 )2. On electrochemical reduction, [pt(η5-C5Me5)2]2+ yields [Pt(η4-C5Me5H)(η2-C5Me5)]+ BF4. kw]Cyclopentadienyl; Metallocenes; Platinum; Electrochemistry  相似文献   

2.
Upon UV irradiation in hexane at 243 K tricarbonyl-η5-cyclohexadienyl-manganese (1) and two equivalents of 2-butyne (2) or diphenylacetylene (4) yield in successive [5 + 2, 3 + 2] cycloadditions tricarbonyl-η2:2:1-1,2,3,10-tetramethyl-tricyclo[5.2.1.04,9]-deca-2,5-dien-10-yl-manganese (6), or tricarbonyl-η2:2:1-1,2,3,10-tetraphenyl-tricyclo[5.2.1.04,9]-deca-2,5-dien-10-yl-manganese (8), respectively. 3-Hexyne (3) reacts with 1 under the same conditions by successive [5 + 2, 3 + 2] cycloadditions and 1,4-H-shift to tricarbonyl-η2:2:1-1,2,3-triethyl-10-ethylidene-tricyclo[5.2.1.04,9]dec-2-en-5-yl-manganse (7). Identical products are also obtained when 1 is first irradiated in THF at 208 K and the thermolabile intermediate, dicarbonyl-η5-cyclohexadienyl-tetrahydrofurane-manganese (11), is treated with an excess of the alkynes 2–4. In contrast, bis(trimethylsily)acetylene (5) substitutes photochemically in 1 only a CO ligand to yield dicarbonyl-η5-cyclohexadienyl-η2-bis(trimethylsily)Acetylene-manganese (9). The crystal and molecular structure of 7 was determined by an X-ray diffraction analysis. Complex 7 crystallizes in the triclinic space group , a = 822.6(2) pm, B = 882.5(2) pm, C = 1344.6(2) pm, = 92.36(2)°, β = 107.13(2)°, γ = 99.71(2)°, V = 0.9152(3) nm3, Z = 2. The complexes 6–9 were studied in solution by IR and NMR spectroscopy. The structures of 6,8 and 9 were elucidated from the NMR spectra. A possible formation mechanism for the complexes 6–9 will be discussed.  相似文献   

3.
The crystal structures of propionaldehyde complex (RS,SR)-(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH3)]+ PF6 (1b+ PF6s−; monoclinic, P21/c (No. 14), a = 10.166 (1) Å, b = 18.316(1) Å, c = 14.872(2) Å, β = 100.51(1)°, Z = 4) and butyraldehyde complex (RS,SR)-[(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH2CH3)]+ PF6 (1c+PF6; monoclinic, P21/a (No. 14), a = 14.851(1) Å, b = 18.623(3) Å, c = 10.026(2) Å, β = 102.95(1)°, Z = 4) have been determined at 22°C and −125°C, respectively. These exhibit C O bond lengths (1.35(1), 1.338(5) Å) that are intermediate between those of propionaldehyde (1.209(4) Å) and 1-propanol (1.41 Å). Other geometric features are analyzed. Reaction of [(η5-C5H5)Re(NO)(PPh3)(ClCH2Cl)]+ BF4 and pivalaldehyde gives [(η5-C5H5)Re(NO)(PPh3)(η2-O=CHC(CH3)3)]+BF4 (81%), the spectroscopic properties of which establish a π C O binding mode.  相似文献   

4.
The hydrothermal reactions of vanadium oxide starting materials with divalent transition metal cations in the presence of nitrogen donor chelating ligands yield the bimetallic cluster complexes with the formulae [{Cd(phen2)2V4O12]·5H2O (1) and [Ni(phen)3]2[V4O12]·17.5H2O (2). Crystal data: C48H52Cd2N8O22V4 (1), triclinic. a=10.3366(10), b=11.320(3), c=13.268(3) Å, =103.888(17)°, β=92.256(15)°, γ=107.444(14)°, Z=1; C72H131N12Ni2O29.5V4 (2), triclinic. a=12.305(3), b=13.172(6), c=15.133(4), =79.05(3)°, β=76.09(2)°, γ=74.66(3)°, Z=1. Data were collected on a Siemens P4 four-circle diffractometer at 293 K in the range 1.59° <θ<26.02° and 2.01°<θ<25.01° using the ω-scan technique, respectively. The structure of 1 consists of a [V4O12]4− cluster covalently attached to two {Cd(phen)2}2+ fragments, in which the [V4O12]4− cluster adopts a chair-like configuration. In the structure of 2, the [V4O12]4− cluster is isolated. And the complex formed a layer structure via hydrogen bonds between the [V4O12]4− unit and crystallization water molecules.  相似文献   

5.
The DANTE technique and NOESY two-dimensional method have been employed to observe the isomerization of the chiral cationic complex [Pd(η3-CH2CMeCH2(P-P′)]+ (1a), where P-P′ = the chiral chelating ligand (S)(N-diphenylphosphino)(2-diphenylphosphinoxymethyl)pyrrolidine. The rate constant was found to be 0.5 s−1 in CHCl3 at 295 K and 1.50 s−1 in the presence of added free ligand. In the latter case the epimerization proceeds by a π-σ-π mechanism via the intermediacy of a primary η1-allylpalladium complex. Although the intermediate was not detected, the NMR findings reveal that it has the allylic terminus η1-bonded to palladium. The structure of 1a in its PF6 salt has been determined. The compound crystallizes in the orthorhombic space group P212121 with a 10.029(4) b 19.203(8) c 36.115(6) Å, Z = 8, R = 0.0572 and Rw = 0.0712 for 3716 observed reflections with I > 3σ(I).  相似文献   

6.
The compound [RU332- -ampy)(μ3η12-PhC=CHPh)(CO)6(PPh3)2] (1) (ampy = 2-amino-6-methylpyridinate) has been prepared by reaction of [RU3(η-H)(μ32- ampy) (μ,η12-PhC=CHPh)(CO)7(PPh3)] with triphenylphosphine at room temperature. However, the reaction of [RU3(μ-H)(μ3, η2 -ampy)(CO)7(PPh3)2] with diphenylacetylene requires a higher temperature (110°C) and does not give complex 1 but the phenyl derivative [RU332-ampy)(μ,η 12 -PhC=CHPh)(μ,-PPh2)(Ph)(CO)5(PPh3)] (2). The thermolysis of complex 1 (110°C) also gives complex 2 quantitatively. Both 1 and 2 have been characterized by0 X-ray diffraction methods. Complex 1 is a catalyst precursor for the homogeneous hydrogenation of diphenylacetylene to a mixture of cis- and trans -stilbene under mild conditions (80°C, 1 atm. of H2), although progressive deactivation of the catalytic species is observed. The dihydride [RU3(μ-H)232-ampy)(μ,η12- PhC=CHPh)(CO)5(PPh3)2] (3), which has been characterized spectroscopically, is an intermediate in the catalytic hydrogenation reaction.  相似文献   

7.
1-Phenyl-4-vinylpyrazole reacts with methyl propiolate and N-phenylmaleimide giving via the Diels-Alder 1:1 adducts, products (4) and (8), and also the 1:2 adducts (5), (6) and (9) resulting from an “ene” reaction of the initially forced cycloadducts. The obtention of the adducts (5) and (6) in equimolecular amounts is a good example of the non-regioselective character of the “ene” reaction. The reaction with tetracyanoethylene takes place through the olefinic substituent giving the π2 + π2 adduct (10).  相似文献   

8.
The reactions of the diruthenium carbonyl complexes [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]X (X=BF4 (1a) or PF6 (1b)) with neutral or anionic bidentate ligands (L,L) afford a series of the diruthenium bridging carbonyl complexes [Ru2(μ-dppm)2(μ-CO)22-(L,L))2]Xn ((L,L)=acetate (O2CMe), 2,2′-bipyridine (bpy), acetylacetonate (acac), 8-quinolinolate (quin); n=0, 1, 2). Apparently with coordination of the bidentate ligands, the bound acetate ligand of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ either migrates within the same complex or into a different one, or is simply replaced. The reaction of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ (1) with 2,2′-bipyridine produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)2] (2), [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-bpy)]+ (3), and [Ru2(μ-dppm)2(μ-CO)22-bpy)2]2+ (4). Alternatively compound 2 can be prepared from the reaction of 1a with MeCO2H–Et3N, while compound 4 can be obtained from the reaction of 3 with bpy. The reaction of 1b with acetylacetone–Et3N produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-acac)] (5) and [Ru2(μ-dppm)2(μ-CO)22-acac)2] (6). Compound 2 can also react with acetylacetone–Et3N to produce 6. Surprisingly [Ru2(μ-dppm)2(μ-CO)22-quin)2] (7) was obtained stereospecifically as the only one product from the reaction of 1b with 8-quinolinol–Et3N. The structure of 7 has been established by X-ray crystallography and found to adopt a cis geometry. Further, the stereospecific reaction is probably caused by the second-sphere π–π face-to-face stacking interactions between the phenyl rings of dppm and the electron-deficient six-membered ring moiety of the bound quinolinate (i.e. the N-included six-membered ring) in 7. The presence of such interactions is indeed supported by an observed charge-transfer band in a UV–vis spectrum.  相似文献   

9.
The stereoselective [2+2] cycloaddition reaction between the chiral tricarbonyl(η6arene) chromium(0) complexed imines 1 and 6 and phthalimidoketene affords tricarbonyl (η6arene)chromium(0) complexed 3-phthalimido-2-azetidinones 3, 7 and 8, both in racemic and enantiopure form. Decomplexation and the cleavage of the phthalimido group give 3-amino-4-substituted-2-azetidinones 5 and 10. Some insights into the stereochemical outcome of the [2+2] cycloaddition process are discussed.  相似文献   

10.
The and -benzyl derivatives (1 and 2, respectively) of (+)-camphor have been synthesized and are found to exert a strong influence on the circular dichroism n→π* Cotton effects: 1: Δε301max -0.36 (n- heptane) and 2: Δε302max +3.22, relative to camphor: Δε304max +1.8 (n-heptane). Evidence for electric dipole transition moment coupling in these γ, δ -unsaturated systems is found in the n→π* UV: 1: ε291max 84 (n-heptane) and 2: ε285max 303, relative to camphor: ε290max 25.  相似文献   

11.
New substituted η3-allyl(η5-cyclopentadienyl)dicarbonylmanganese cations have been prepared as their tetrafluoroborates. They readily add a wide range of nucleophiles yielding η2-alkene(η5-cyclopentadienyl)dicarbonylmanganese complexes. Of the latter, in general only those involving terminal alkenes are sufficiently stable to permit ready isolation; otherwise metal-free alkenes are obtained. Regioselectivity in these additions depends on the nucleophile.  相似文献   

12.
X-Ray diffraction, IR and 1H NMR studies were performed on the 1:1 adduct of 1,8-bis(dimethylamino)naphthalene (DMAN) with 1,8-dihydroxy-2,4-dinitronaphthalene (DHDNN). The adduct crystallizes in the triclinic system, space group , a = 9.911(2) Å, b = 11.212(2) Å, c = 11.194(2) Å, = 68.95(2)°, β = 79.72(2)°, γ = 73.78(2)°, Z = 2. Both [NHN]+ and [OHO] hydrogen bonds formed in the ion pairs are asymmetrical with lengths equal to 2.574(2) Å and 2.466(4) Å respectively. The [NHN]+ bridge shows a typical behaviour in the IR spectrum, i.e. a low-frequency absorption between 300 and 700 cm−1. The coupling of [OHO] hydrogen bonds with the naphthalene π-electron system is so strong that no absorption related to the proton stretching vibrations can be detected in the high- and low-frequency regions. The 1H NMR chemical shifts for the [NHN]+ and [OHO] bridge protons of 18.63 and 15.81 ppm respectively confirm the strong hydrogen bonds.  相似文献   

13.
CpIr(η4-C6H6) (2) has been obtained in high yield by a four-step synthesis. Thermal reaction of 2 with CpCO(C2H4)2 and photochemical reaction of 2 with CpRh(C2H4)2 or CpRh(C2H4)2 give the compounds μ-(η3: η3-C6H6)CoIrCp2 (3), μ-(η3: η3-C6H6)RhIrCp2 (4), and μ-(η3: η3-C6H6)(RhCp)(IrCp) (5), respectively. The X-ray crystallography data of 3 and 4 reveal a boat-shaped conformation of the synfacially bridging benzene ligand with a rather long Co---Ir bond distance in 3 and a relatively short Rh---Ir bond length in 4 which are caused by almost constant folding angles of the benzene unit. The dynamic behaviour of the benzene bridge was investigated by NMR spectrometry.  相似文献   

14.
The neutral nitrogen-bidentate ligand, diphenylbis(3,5-dimethylpyrazol-1-yl)methane, Ph2CPz′2, can readily be obtained by the reaction of Ph2CCl2 with excess HPz′ in a mixed-solvent system of toluene and triethylamine. It reacts with [Mo(CO)6] in 1,2-dimethoxyethane to give the η2-arene complex, [Mo(Ph2CPz′2)(CO)3] (1). This η2-ligation appears to stabilize the coordination of Ph2CPz′ 2 in forming [Mo(Ph2CPz′2)(CO)2(N2C6H4NO2-p)][BPh4] (2) and [Mo(Ph2CPz′2)(CO)2(N2Ph)] [BF4] (3) from the reaction of 1 with the appropriate diazonium salt but the stabilization seems not strong enough when [Mo{P(OMe)3} 3(CO)3] is formed from the reaction of 1 with P(OMe)3. The solid-state structures of 1 and 3 have been determined by X-ray crystallography: 1-CH2Cl2, monoclinic, P21/n, a = 11.814(3), b = 11.7929(12), c = 19.46 0(6) Å, β = 95.605(24)°, V = 2698.2(11) Å3, Z = 4, Dcalc = 1.530 g/cm3 , R = 0.044, Rw = 0.036 based on 3218 reflections with I > 2σ(I); 2 (3)-1/2 hexane-1/2 CH3OH-1/2 H2O-1 CH2Cl2, monoclinic, C2/c, a = 41.766(10), b = 20.518(4), c = 16.784(3) Å, β = 101.871(18)°, V = 14076(5) Å3, Z = 8, Dcalc = 1.457 g/cm3, R = 0.064, Rw = 0.059 based on 5865 reflections with I > 2σ(I). Two independent cations were found in the asymmetric unit of the crystals of 3. The average distance between the Mo and the two η2-ligated carbon atoms is 2.574 Å in 1 and 2.581 and 2.608 Å in 3. The unfavourable disposition of the η2-phenyl group with respect to the metal centre in 3 and the rigidity of the η2-arene ligation excludes the possibility of any appreciable agostic C---H → Mo interaction.  相似文献   

15.
Treatment of CpZrCl3 with 3-methylbutenyl-Grignard reagent yields thermally labile tris(1,1-dimethylallyl) ZrCp (6), which is slowly decomposed (5d) at −15°C to give (η-cyclopentadienyl)(η3-1,1-dimethylallyl)(η4-isoprene)zirconium (7), which is thermally unstable; with a half-live of 43 h at 20°C it rearranges to the η3-1,2-dimethylallyl isomer and an (isoprene) zirconium hydride is proposed as the intermediate for this hydrogen-migration reaction.  相似文献   

16.
The complex [MoW(μ-CC6H4Me-4)(CO)27-C7H7)(η5-C2B9H10Me)] reacts with diazomethane in Et2O containing EtOH to afford the dimetal compound [MoW(OEt)(μ-CH2){μ-C(C6H4Me-4)C(Me)O}(η7-C7H7)(η5-C2B9H10Me)]. The structure of this product was established by X-ray diffraction. The Mo---W bond [2.778(4) Å] is bridged by a CH2 group [μ-C---Mo 2.14(3), μ-C---W 2.02(3) Å] and by a C(C6H4Me-4)C(Me)O fragment [Mo---O 2.11(3), W---O 2.18(2), Mo---C(C6H4Me-4) 2.41(3), W---C(C6H4Me-4) 2.09(3), Mo---C(Me) 2.26(3) Å]. The molybdenum atom is η7-coordinated by the C7H7 ring and the tungsten atom is η5-coordinated by the open pentagonal face of the nido-icosahedral C2B9H10Me cage. The tungsten atom also carries a terminally bound OEt group [W---O 1.88(3) Å]. The 1H and 13C-{1H} NMR data for the dimetal compound are reported and discussed.  相似文献   

17.
Synthesis and spectroscopic data of carbonyl(η5-cyclopentadienyl)(η2-cyclopropylketenyl) (trimethylphosphine)tungsten and dicarbonyl(η5-cyclopentadienyl)(η1-cyclopropylketenyl) (trimethylphosphine)tungsten are reported. The electronic structure of, and types of bonding in carbonyl(η5-cyclopentadienyl)(η2-cyclopropylketenyl) (trimethylphosphine)tungsten are described.  相似文献   

18.
The synthesis and reactivity of {(η5-C5H4SiMe3)2Ti(CCSiMe3)2} MCl2 (M = Fe: 3a; M = Co: 3b; M = Ni: 3c) is described. The complexes 3 are accessible by the reaction of (η5-C5H4SiMe3) 2Ti(CSiMe3)2 (1) with equimolar amounts of MCl2 (2) (M = Fe, Co, Ni). 3a reacts with the organic chelat ligands 2,2′-dipyridyl (dipy) (4a) or 1,10-phenanthroline (phen) (4b) in THF at 25°C to afford in quantitative yields (η5-C5H4SiMe3)2Ti(CSiMe3)2 (1) and [Fe(dipy)2]Cl2 (5a) or [Fe(phen)2]Cl2 (5b). 1/n[CuIHal]n (6) or 1/n[AgIHal]n (7) (Hal = Cl, Br) react with {(η5 -C5H4SiMe3)2Ti(CCSiMe3)2}FeCl2 (3a), by replacement of the FeCl2 building block in 3a, to yield the compounds {(η5-C5H4SiMe3)2Ti(C CSiMe3)2}CuIHal (8) or {(η5-C5H4SiMe3)2Ti(CSiMe3)2}AgIHal (9) (Hal = Cl, Br), respectively. In 8 and 9 each of the two Me3SiCC-units is η2-coordinated to monomeric CuI Hal or AgIHal moieties. Compounds 8 and 9 can also be synthesized by the reaction of (η5-C5H4SiMe3)2 Ti(CSiMe3)2 (1) with 1/n[CuIHal]n (6) or 1/n [AgIHal]n (7) in excellent yields. All new compounds have been characterized by analytical and spectroscopic data (IR, 1H-NMR, MS). The magnetic moments of compounds 3 were measured.  相似文献   

19.
1H, 13C and 15N NMR spectroscopy has been applied for investigation of amine adducts with rhodium(II) tetraacetate dimer and rhodium(II) tetratrifluoroacetate dimer in CDCl3 solution. Subsequent formation of two adducts, 1:1 and 2:1, was proved by NMR and VIS titration experiments, and by NMR measurements at reduced temperatures, from 233 to 273 K. The adduct formation shift, defined as Δδadductδligand and characterizing complexation reaction, varies from ca. 0 to +1.6 ppm for 1H, from ca. −10 to +6 ppm for 13C and from −4.4 to −39 ppm for 15N NMR. Formation of N–Rh bond slows the inversiof on the nitrogen atom and generates, in the case of N-methyl-(1-phenylethyl)-amine, a nitrogenous chiral center in the molecule. VIS spectra of amine-dirhodium salt mixture contain two bands in the 532–597 nm spectral range, assigned to 1:1- and 2:1-adducts.  相似文献   

20.
The reaction of (η5-cyclopentadienyl)(1,2-benzenedithiolato)cobalt(III) (1) in quadricyclane (Q) at 90°C gives 1:1 adducts of 1 and Q. The main adduct (40% yield) has a unique structure, in which the 5-and 7-positions of norbornene are bonded to Co and S of 1. A mechanism of the formation of the adduct (by the use of deuterium-labeled Q), including a skeletal rearrangement of Q, is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号