首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
In this paper, we consider the stochastic second-order cone complementarity problems (SSOCCP). We first formulate the SSOCCP contained expectation as an optimization problem using the so-called second-order cone complementarity function. We then use sample average approximation method and smoothing technique to obtain the approximation problems for solving this reformulation. In theory, we show that any accumulation point of the global optimal solutions or stationary points of the approximation problems are global optimal solution or stationary point of the original problem under suitable conditions. Finally, some numerical examples are given to explain that the proposed methods are feasible.  相似文献   

2.
In this paper, we consider a least square semidefinite programming problem under ellipsoidal data uncertainty. We show that the robustification of this uncertain problem can be reformulated as a semidefinite linear programming problem with an additional second-order cone constraint. We then provide an explicit quantitative sensitivity analysis on how the solution under the robustification depends on the size/shape of the ellipsoidal data uncertainty set. Next, we prove that, under suitable constraint qualifications, the reformulation has zero duality gap with its dual problem, even when the primal problem itself is infeasible. The dual problem is equivalent to minimizing a smooth objective function over the Cartesian product of second-order cones and the Euclidean space, which is easy to project onto. Thus, we propose a simple variant of the spectral projected gradient method (Birgin et al. in SIAM J. Optim. 10:1196–1211, 2000) to solve the dual problem. While it is well-known that any accumulation point of the sequence generated from the algorithm is a dual optimal solution, we show in addition that the dual objective value along the sequence generated converges to a finite value if and only if the primal problem is feasible, again under suitable constraint qualifications. This latter fact leads to a simple certificate for primal infeasibility in situations when the primal feasible set lies in a known compact set. As an application, we consider robust correlation stress testing where data uncertainty arises due to untimely recording of portfolio holdings. In our computational experiments on this particular application, our algorithm performs reasonably well on medium-sized problems for real data when finding the optimal solution (if exists) or identifying primal infeasibility, and usually outperforms the standard interior-point solver SDPT3 in terms of CPU time.  相似文献   

3.
In the conic optimization problems, it is well-known that a positive duality gap may occur, and that solving such a problem is numerically difficult or unstable. For such a case, we propose a facial reduction algorithm to find a primal–dual pair of conic optimization problems having the zero duality gap and the optimal value equal to one of the original primal or dual problems. The conic expansion approach is also known as a method to find such a primal–dual pair, and in this paper we clarify the relationship between our facial reduction algorithm and the conic expansion approach. Our analysis shows that, although they can be regarded as dual to each other, our facial reduction algorithm has ability to produce a finer sequence of faces of the cone including the feasible region. A simple proof of the convergence of our facial reduction algorithm for the conic optimization is presented. We also observe that our facial reduction algorithm has a practical impact by showing numerical experiments for graph partition problems; our facial reduction algorithm in fact enhances the numerical stability in those problems.  相似文献   

4.
We study the rescheduling with new orders on a single machine under the general maximum allowable time disruptions. Under the restriction of general maximum allowable time disruptions, each original job has an upper bound for its time disruption (regarded as the maximum allowable time disruption of the job), or equivalently, in every feasible schedule, the difference of the completion time of each original job compared to that in the pre-schedule does not exceed its maximum allowable time disruption. We also consider a stronger restriction which additionally requires that, in a feasible schedule, the starting time of each original job is not allowed to be scheduled smaller than that in the pre-schedule. Scheduling objectives to be minimized are the maximum lateness and the total completion time, respectively, and the pre-schedules of original jobs are given by EDD-schedule and SPT-schedule, respectively. Then we have four problems for consideration. For the two problems for minimizing the maximum lateness, we present strong NP-hardness proof, provide a simple 2-approximation polynomial-time algorithm, and show that, unless \(\text {P}= \text {NP}\), the two problems cannot have an approximation polynomial-time algorithm with a performance ratio less than 2. For the two problems for minimizing the total completion time, we present strong NP-hardness proof, provide a simple heuristic algorithm, and show that, unless \(\text {P}= \text {NP}\), the two problems cannot have an approximation polynomial-time algorithm with a performance ratio less than 4/3. Moreover, by relaxing the maximum allowable time disruptions of the original jobs, we present a super-optimal dual-approximation polynomial-time algorithm. As a consequence, if the maximum allowable time disruption of each original job is at least its processing time, then the two problems for minimizing the total completion time are solvable in polynomial time. Finally, we show that, under the agreeability assumption (i.e., the nondecreasing order of the maximum allowable time disruptions of the original jobs coincides with their scheduling order in the pre-schedule), the four problems in consideration are solvable in polynomial time.  相似文献   

5.
A New Self-Dual Embedding Method for Convex Programming   总被引:5,自引:0,他引:5  
In this paper we introduce a conic optimization formulation to solve constrained convex programming, and propose a self-dual embedding model for solving the resulting conic optimization problem. The primal and dual cones in this formulation are characterized by the original constraint functions and their corresponding conjugate functions respectively. Hence they are completely symmetric. This allows for a standard primal-dual path following approach for solving the embedded problem. Moreover, there are two immediate logarithmic barrier functions for the primal and dual cones. We show that these two logarithmic barrier functions are conjugate to each other. The explicit form of the conjugate functions are in fact not required to be known in the algorithm. An advantage of the new approach is that there is no need to assume an initial feasible solution to start with. To guarantee the polynomiality of the path-following procedure, we may apply the self-concordant barrier theory of Nesterov and Nemirovski. For this purpose, as one application, we prove that the barrier functions constructed this way are indeed self-concordant when the original constraint functions are convex and quadratic. We pose as an open question to find general conditions under which the constructed barrier functions are self-concordant.  相似文献   

6.
Polynomial optimization encompasses a very rich class of problems in which both the objective and constraints can be written in terms of polynomials on the decision variables. There is a well established body of research on quadratic polynomial optimization problems based on reformulations of the original problem as a conic program over the cone of completely positive matrices, or its conic dual, the cone of copositive matrices. As a result of this reformulation approach, novel solution schemes for quadratic polynomial optimization problems have been designed by drawing on conic programming tools, and the extensively studied cones of completely positive and of copositive matrices. In particular, this approach has been applied to solve key combinatorial optimization problems. Along this line of research, we consider polynomial optimization problems that are not necessarily quadratic. For this purpose, we use a natural extension of the cone of completely positive matrices; namely, the cone of completely positive tensors. We provide a general characterization of the class of polynomial optimization problems that can be formulated as a conic program over the cone of completely positive tensors. As a consequence of this characterization, it follows that recent related results for quadratic problems can be further strengthened and generalized to higher order polynomial optimization problems. Also, we show that the conditions underlying the characterization are conceptually the same, regardless of the degree of the polynomials defining the problem. To illustrate our results, we discuss in further detail special and relevant instances of polynomial optimization problems.  相似文献   

7.
A homogeneous interior-point algorithm for solving nonsymmetric convex conic optimization problems is presented. Starting each iteration from the vicinity of the central path, the method steps in the approximate tangent direction and then applies a correction phase to locate the next well-centered primal–dual point. Features of the algorithm include that it makes use only of the primal barrier function, that it is able to detect infeasibilities in the problem and that no phase-I method is needed. We prove convergence to \(\epsilon \)-accuracy in \({\mathcal {O}}(\sqrt{\nu } \log {(1/\epsilon )})\) iterations. To improve performance, the algorithm employs a new Runge–Kutta type second order search direction suitable for the general nonsymmetric conic problem. Moreover, quasi-Newton updating is used to reduce the number of factorizations needed, implemented so that data sparsity can still be exploited. Extensive and promising computational results are presented for the \(p\)-cone problem, the facility location problem, entropy maximization problems and geometric programs; all formulated as nonsymmetric convex conic optimization problems.  相似文献   

8.
We consider distributionally robust two-stage stochastic linear optimization problems with higher-order (say \(p\ge 3\) and even possibly irrational) moment constraints in their ambiguity sets. We suggest to solve the dual form of the problem by a semi-infinite programming approach, which deals with a much simpler reformulation than the conic optimization approach. Some preliminary numerical results are reported.  相似文献   

9.
It is well known that the robust counterpart introduced by Ben-Tal and Nemirovski (Math Oper Res 23:769–805, 1998) increases the numerical complexity of the solution compared to the original problem. Kočvara, Nemirovski and Zowe therefore introduced in Kočvara et al. (Comput Struct 76:431–442, 2000) an approximation algorithm for the special case of robust material optimization, called cascading. As the title already indicates, we will show that their method can be seen as an adjustment of standard exchange methods to semi-infinite conic programming. We will see that the adjustment can be motivated by a suitable reformulation of the robust conic problem.   相似文献   

10.
We consider in this paper the Lagrangian dual method for solving general integer programming. New properties of Lagrangian duality are derived by a means of perturbation analysis. In particular, a necessary and sufficient condition for a primal optimal solution to be generated by the Lagrangian relaxation is obtained. The solution properties of Lagrangian relaxation problem are studied systematically. To overcome the difficulties caused by duality gap between the primal problem and the dual problem, we introduce an equivalent reformulation for the primal problem via applying a pth power to the constraints. We prove that this reformulation possesses an asymptotic strong duality property. Primal feasibility and primal optimality of the Lagrangian relaxation problems can be achieved in this reformulation when the parameter p is larger than a threshold value, thus ensuring the existence of an optimal primal-dual pair. We further show that duality gap for this partial pth power reformulation is a strictly decreasing function of p in the case of a single constraint. Dedicated to Professor Alex Rubinov on the occasion of his 65th birthday. Research supported by the Research Grants Council of Hong Kong under Grant CUHK 4214/01E, and the National Natural Science Foundation of China under Grants 79970107 and 10571116.  相似文献   

11.
In this paper, we consider the problem of approximately solving standard quartic polynomial optimization (SQPO). Using its reformulation as a copositive tensor programming, we show how to approximate the optimal solution of SQPO by using a series of polyhedral cones to approximate the cone of copositive tensors. The established quality of approximation is sharper than the ones studied in the literature. As an interesting extension, we also propose some approximation bounds on multi-homogenous polynomial optimization problems.  相似文献   

12.
Let be a 0-1 quadratic program which consists in minimizing a quadratic function subject to linear equality constraints. In this paper, we present QCR, a general method to reformulate into an equivalent 0-1 program with a convex quadratic objective function. The reformulated problem can then be efficiently solved by a classical branch-and-bound algorithm, based on continuous relaxation. This idea is already present in the literature and used in standard solvers such as CPLEX. Our objective in this work was to find a convex reformulation whose continuous relaxation bound is, moreover, as tight as possible. From this point of view, we show that QCR is optimal in a certain sense. State-of-the-art reformulation methods mainly operate a perturbation of the diagonal terms and are valid for any {0,1} vector. The innovation of QCR comes from the fact that the reformulation also uses the equality constraints and is valid on the feasible solution domain only. Hence, the superiority of QCR holds by construction. However, reformulation by QCR requires the solution of a semidefinite program which can be costly from the running time point of view. We carry out a computational experience on three different combinatorial optimization problems showing that the costly computational time of reformulation by QCR can however result in a drastically more efficient branch-and-bound phase. Moreover, our new approach is competitive with very specific methods applied to particular optimization problems.  相似文献   

13.
《Optimization》2012,61(2):141-156
This paper studies a linear programming problem in measure spaces (LPM). Several results are obtained. First, the optimal value of LPM can be equal to the optimal value of the dual problem (DLPM), but the solution of DLPM may be not exist in its feasible region. Sccond, :he relations between the optimal solution of LPM and the extreme point of the feasible region of LPM are discussed. In order to investigate the conditions under which a feasible solution becomes an extremal point, the inequality constraint of LPM is transformed to an equality constraint. Third, the LPM can be reformulated to be a general capacity problem (GCAP) or a linear semi-infinite programming problem (LSIP = SIP), and under appropriate restrictioiis, the algorithm developed by the authors in [7] and [8] are applicable for developing an approximation scheme for the optimal solution of LPM  相似文献   

14.
In exact arithmetic, the simplex method applied to a particular linear programming problem instance with real data either shows that it is infeasible, shows that its dual is infeasible, or generates optimal solutions to both problems. Most interior-point methods, on the other hand, do not provide such clear-cut information. If the primal and dual problems have bounded nonempty sets of optimal solutions, they usually generate a sequence of primal or primaldual iterates that approach feasibility and optimality. But if the primal or dual instance is infeasible, most methods give less precise diagnostics. There are methods with finite convergence to an exact solution even with real data. Unfortunately, bounds on the required number of iterations for such methods applied to instances with real data are very hard to calculate and often quite large. Our concern is with obtaining information from inexact solutions after a moderate number of iterations. We provide general tools (extensions of the Farkas lemma) for concluding that a problem or its dual is likely (in a certain well-defined sense) to be infeasible, and apply them to develop stopping rules for a homogeneous self-dual algorithm and for a generic infeasible-interior-point method for linear programming. These rules allow precise conclusions to be drawn about the linear programming problem and its dual: either near-optimal solutions are produced, or we obtain certificates that all optimal solutions, or all feasible solutions to the primal or dual, must have large norm. Our rules thus allow more definitive interpretation of the output of such an algorithm than previous termination criteria. We give bounds on the number of iterations required before these rules apply. Our tools may also be useful for other iterative methods for linear programming. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.  相似文献   

15.
Network data envelopment analysis (DEA) models the internal structures of decision-making units (DMUs). Unlike the standard DEA model, multiplier-based network DEA models are often highly non-linear and cannot be converted into linear programs. As such, obtaining a non-linear network DEA's global optimal solution is a challenge because it corresponds to a nonconvex optimization problem. In this paper, we introduce a conic relaxation model that searches for the global optimum to the general multiplier-based network DEA model. We reformulate the general network DEA models and relax the new models into second order cone programming (SOCP) problems. In comparison with linear relaxation models, which is potentially applicable to general network DEA structures, the conic relaxation model guarantees applicability in general network DEA, since McCormick envelopes involved are ensured to be finite. Furthermore, the conic relaxation model avoids unnecessary linear relaxations of some nonlinear constraints. It generates, in a more convenient manner, feasible approximations and tighter upper bounds on the global optimal overall efficiency. Compared with a line-parameter search method that has been applied to solve non-linear network DEA models, the conic relaxation model keeps track of the distances between the optimal overall efficiency and its approximations. As a result, it is able to determine whether a qualified approximation has been achieved or not, with the help of a branch and bound algorithm. Hence, our proposed approach can substantially reduce the computations involved.  相似文献   

16.
In this paper, we propose a novel algorithm for solving the classical P-median problem. The essential aim is to identify the optimal extended Lagrangian multipliers corresponding to the optimal solution of the underlying problem. For this, we first explore the structure of the data matrix in P-median problem to recast it as another equivalent global optimization problem over the space of the extended Lagrangian multipliers. Then we present a stochastic search algorithm to find the extended Lagrangian multipliers corresponding to the optimal solution of the original P-median problem. Numerical experiments illustrate that the proposed algorithm can effectively find a global optimal or very good suboptimal solution to the underlying P-median problem, especially for the computationally challenging subclass of P-median problems with a large gap between the optimal solution of the original problem and that of its Lagrangian relaxation.  相似文献   

17.
A new approach for the numerical solution of smooth, nonlinear semi-infinite programs whose feasible set contains a nonempty interior is presented. Interval analysis methods are used to construct finite nonlinear, or mixed-integer nonlinear, reformulations of the original semi-infinite program under relatively mild assumptions on the problem structure. In certain cases the finite reformulation is exact and can be solved directly for the global minimum of the semi-infinite program (SIP). In the general case, this reformulation is over-constrained relative to the SIP, such that solving it yields a guaranteed feasible upper bound to the SIP solution. This upper bound can then be refined using a subdivision procedure which is shown to converge to the true SIP solution with finite -optimality. In particular, the method is shown to converge for SIPs which do not satisfy regularity assumptions required by reduction-based methods, and for which certain points in the feasible set are subject to an infinite number of active constraints. Numerical results are presented for a number of problems in the SIP literature. The solutions obtained are compared to those identified by reduction-based methods, the relative performances of the nonlinear and mixed-integer nonlinear formulations are studied, and the use of different inclusion functions in the finite reformulation is investigated.  相似文献   

18.
The classical greedy algorithm for discrete optimization problems where the optimal solution is a maximal independent subset of a finite ground set of weighted elements, can be defined in two ways which are dual to each other. The Greedy-In where a solution is constructed from the empty set by adding the next best element, one at a time, until we reach infeasibility, and the Greedy-Out where starting from the ground set we delete the next worst element, one at a time, until feasibility is reached. It is known that while the former provides an approximation ratio for maximization problems, its worst case performance is not bounded for minimization problems, and vice-versa for the later. However the Greedy-Out algorithm requires an oracle for checking the existence of a maximal independent subset which for most discrete optimization problems is a difficult task. In this work we present a Greedy-Out algorithm for the quadratic assignment problem by providing a combinatorial characterization of its solutions.  相似文献   

19.
This paper deals with the theory of sample approximation techniques applied to stochastic programming problems with expected value constraints. We extend the results of Branda (Optimization 61(8):949–968, 2012c) and Wang and Ahmed (Oper Res Lett 36:515–519, 2008) on the rates of convergence to the problems with a mixed-integer bounded set of feasible solutions and several expected value constraints. Moreover, we enable non-iid sampling and consider Hölder-calmness of the constraints. We derive estimates on the sample size necessary to get a feasible solution or a lower bound on the optimal value of the original problem using the sample approximation. We present an application of the estimates to an investment problem with the Conditional Value at Risk constraints, integer allocations and transaction costs.  相似文献   

20.
In this paper, we present a global optimization method for solving nonconvex mixed integer nonlinear programming (MINLP) problems. A convex overestimation of the feasible region is obtained by replacing the nonconvex constraint functions with convex underestimators. For signomial functions single-variable power and exponential transformations are used to obtain the convex underestimators. For more general nonconvex functions two versions of the so-called αBB-underestimator, valid for twice-differentiable functions, are integrated in the actual reformulation framework. However, in contrast to what is done in branch-and-bound type algorithms, no direct branching is performed in the actual algorithm. Instead a piecewise convex reformulation is used to convexify the entire problem in an extended variable-space, and the reformulated problem is then solved by a convex MINLP solver. As the piecewise linear approximations are made finer, the solution to the convexified and overestimated problem will form a converging sequence towards a global optimal solution. The result is an easily-implementable algorithm for solving a very general class of optimization problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号