首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
Let X be a Banach space, C a bounded closed subset of X, A a convex closed subset of X, E a complete metric space formed by all α-nonexpansive mappings fCA and M a complete metric space formed by α-nonexpansive differentiable mappings fCX. The following assertions are proved in this paper: (1) Properness of I ? f is a generic property in E (2)the subset of E formed by all α-contractive mappings is of Baire first category in E; and (3) for every y?X, the functional equation x ? f(x) = y has generically a finite number of solutions for f in M. Some applications to the fixed point theory and calculation of the topological degree are given.  相似文献   

2.
Let B be a strongly equicontinuous Boolean algebra of projections on the quasi-complete locally convex space X and assume that the space L(X) of continuous linear operators on X is sequentially complete for the strong operator topology. Methods of integration with respect to spectral measures are used to show that the closed algebra generated by B in L(X) consists precisely of those continuous linear operators on X which leave invariant each closed B-invariant subspace of X.  相似文献   

3.
We characterize those topological spaces Y for which the Isbell and finest splitting topologies on the set C(X,Y) of all continuous functions from X into Y coincide for all topological spaces X. We also consider the same question for the coincidence of the restriction of the finest splitting topology on the upper semicontinuous set-valued functions to C(X,Y) and the finest splitting topology on C(X,Y). In the first case, the spaces in question are, after identifying points that are in each others closures, subsets of the two point Sierpiński space, which gives a converse and generalization of a result of S. Dolecki, G.H. Greco, and A. Lechicki. In the second case, the spaces in question are, after identifying points that are in each others closures, order bases for bounded complete continuous DCPOs with the Scott topology.  相似文献   

4.
Let A be a lattice-ordered algebra endowed with a topology compatible with the structure of algebra. We provide internal conditions for A to be isomorphic as lattice-ordered algebras and homeomorphic to Ck(X), the lattice-ordered algebra C(X) of real continuous functions on a completely regular and Hausdorff topological space X, endowed with the topology of uniform convergence on compact sets. As a previous step, we determine this topology among the locally m-convex topologies on C(X) with the property that each order closed interval is bounded.  相似文献   

5.
A complete characterization of those compact Hausdorff spaces is given such that for every n, each normal element in the algebra C(X)?Mn of continuous functions from X to Mn can be continuously diagonalized. The conditions are that X be a sub-Stonean space with dim X ? 2 and carries no nontrivial G-bundles over any closed subset, for G a symmetric group or the circle group. In particular, diagonalization is assured on every totally disconnected sub-Stonean space, but also on connected spaces of the form β(Y)/Y, where Y is a simply-connected (noncompact) graph.  相似文献   

6.
The present paper considers the existence of continuous roots of algebraic equations with coefficients being continuous functions defined on compact Hausdorff spaces. For a compact Hausdorff space X, C(X) denotes the Banach algebra of all continuous complex-valued functions on X with the sup norm ∥⋅. The algebra C(X) is said to be algebraically closed if each monic algebraic equation with C(X) coefficients has a root in C(X). First we study a topological characterization of a first-countable compact (connected) Hausdorff space X such that C(X) is algebraically closed. The result has been obtained by Countryman Jr, Hatori-Miura and Miura-Niijima and we provide a simple proof for metrizable spaces.Also we consider continuous approximate roots of the equation znf=0 with respect to z, where fC(X), and provide a topological characterization of compact Hausdorff space X with dimX?1 such that the above equation has an approximate root in C(X) for each fC(X), in terms of the first ?ech cohomology of X.  相似文献   

7.
Let T be a closed densely-defined operator on a Banach space X and let E(·) be a spectral measure whose range E is a complete Boolean algebra of projections in X. Then T is of the form ∝f(λ) dE(λ) if and only if T commutes with E and leaves invariant every invariant subspace of E.  相似文献   

8.
Let P be a closed-hereditary topological property preserved by products. Call a space P-regular if it is homeomorphic to a subspace of a product of spaces with P. Suppose that each P-regular space possesses a P-regular compactification. It is well-known that each P-regular space X is densely embedded in a unique space γscPX with P such that if f: XY is continuous and Y has P, then f extends continuously to γscPX. Call P-pseudocompact if γscPX is compact.Associated with P is another topological property P#, possessing all the properties hypothesized for P above, defined as follows: a P-regular space X has P# if each P-pseudocompact closed subspace of X is compact. It is known that the P-pseudocompact spaces coincide with the P#-pseudocompact spaces, and that P# is the largest closed-hereditary, productive property for which this is the case. In this paper we prove that if P is not the property of being compact and P-regular, then P# is not simply generated; in other words, there does not exist a space E such that the spaces with P# are precisely those spaces homeomorphic to closed subspaces of powers of E.  相似文献   

9.
Following Pareek a topological space X is called D-paracompact if for every open cover A of X there exists a continuous mapping f from X onto a developable T1-space Y and an open cover B of Y such that { f-1[B]|BB } refines A. It is shown that a space is D-paracompact if and only if it is subparacompact and D-expandable. Moreover, it is proved that D-paracompactness coincides with a covering property, called dissectability, which was introduced by the author in order to obtain a base characterization of developable spaces.  相似文献   

10.
Conditions on a topological space X under which the space C(X,R) of continuous real-valued maps with the Isbell topology κ is a topological group (topological vector space) are investigated. It is proved that the addition is jointly continuous at the zero function in Cκ(X,R) if and only if X is infraconsonant. This property is (formally) weaker than consonance, which implies that the Isbell and the compact-open topologies coincide. It is shown the translations are continuous in Cκ(X,R) if and only if the Isbell topology coincides with the fine Isbell topology. It is proved that these topologies coincide if X is prime (that is, with at most one non-isolated point), but do not even for some sums of two consonant prime spaces.  相似文献   

11.
The following result, and a closely related one, is proved: If u:XY is an open, perfect surjection, with X metrizable and with dim X = 0 or dim Y = 0, then there exists a perfect surjection h: Y×S→X such that u ° h = πY (where S in the Cantor set and π : Y×S→ Y is the projection). If moreover, u-1(y) is homeomorphic to S for all y?Y, then h can be chosen to be a homeomorphism.  相似文献   

12.
Given a metric space X and a Banach space (E,‖⋅‖) we study distances from the set of selectors Sel(F) of a set-valued map to the space B1(X,E) of Baire one functions from X into E. For this we introduce the d-τ-semioscillation of a set-valued map with values in a topological space (Y,τ) also endowed with a metric d. Being more precise we obtain that
  相似文献   

13.
We propose a generalization of Heath's theorem that semi-metric spaces with point-countable bases are developable: A semi-metrizable space X is developabale if (and only if) there is on it a σ-discrete family C=?m?NCm of closed sets, interior-preserving over each member C of which is a countable family {Dn(C): n ∈ N} of collections of open sets such that if U is a neighbourhood of ξ∈X, then there are such a Γ∈C and such a v∈ N that ξ ? Γ and ξ∈ int ∩ (D: ξ: DDv(Γ))?U.  相似文献   

14.
For a Tychonoff space X, we denote by Cλ(X) the space of all real-valued continuous functions on X with set-open topology. In this paper, we study the topological-algebraic properties of Cλ(X). Our main results state that (1) Cλ(X) is a topological vector space (a topological group) iff λ is a family of C-compact sets and Cλ(X)=Cλ(X), where λ consists of all C-compact subsets of every set of λ. In particular, if Cλ(X) is a topological group, then the set-open topology coincides with the topology of uniform convergence on a family λ; (2) a topological group Cλ(X) is ω-narrow iff λ is a family of metrizable compact subsets of X.  相似文献   

15.
The main purpose of this paper is to settle the following problem concerning a product formula for the Tychonoff functor τ, by introducing the notion of w-compact spaces: Characterize a topological space X such that τ(X×Y)=τ(Xτ(Y) for any topological space Y. We also study the properties of w-compact spaces, and it is proved that, for any family {Xα} of w-compact spaces, the product ΠXα is also w-compact and τ(ΠXα)=Πτ(Xα).  相似文献   

16.
Let π:XY be a surjective continuous map between Tychonoff spaces. The map π induces, by composition, an injective morphism C(Y)→C(X) between the corresponding rings of real-valued continuous functions, and this morphism allows us to consider C(Y) as a subring of C(X). This paper deals with finiteness properties of the ring extension C(Y)⊆C(X) in relation to topological properties of the map π:XY. The main result says that, for X a compact subset of Rn, the extension C(Y)⊆C(X) is integral if and only if X decomposes into a finite union of closed subsets such that π is injective on each one of them.  相似文献   

17.
Following the definition of domination of a topological space X by a metric space M introduced by Cascales, Orihuela and Tkachuk (2011) in [3], we define a topological cardinal invariant called the metric domination index of a topological space X   as minimum of the set {w(M):M is a metric space that dominates X}{w(M):M is a metric space that dominates X}. This invariant quantifies or measures the concept of M-domination of Cascales et al. (2011) [3]. We prove (in ZFC) that if K   is a compact space such that Cp(K)Cp(K) is strongly dominated by a second countable space then K is countable. This answers a question by the authors of Cascales et al. (2011) [3].  相似文献   

18.
An essentially binormal operator on Hilbert space is an operator which is unitarily equivalent to a 2 × 2 matrix of essentially commuting, essentially normal operators. A natural invariant of essentially binormal operators up to unitary equivalence in the Calkin Algebra is the reducing essential 2 × 2 matricial spectrum. A nonempty compact subset X of the set of 2 × 2 matrices is called hypoconvex, if it is the reducing essential 2 × 2 matricial spectrum of an operator on Hilbert space. The set EN2(X) is then defined to be the set of all equivalence classes (up to unitary equivalence in the Calkin algebra) of essentially binormal operators whose reducing essential 2 × 2 matricial spectrum coincides with X. The aim of this paper is to prove a result that enables one to compute EN2(X) in terms of the topological structure of the space X? of unitary orbits of X. Indeed, it is shown that for every hypoconvex subset X of the set of 2 × 2 matrices, there exists a natural homomorphism from Ext(X?) onto EN2(X). Also, a six term cyclic exact sequence is obtained, which produces a characterization of the kernel of the above-mentioned homomorphism.  相似文献   

19.
Let X be a Tychonoff space, H(X) the group of all self-homeomorphisms of X and the evaluation function. Call an admissible group topology on H(X) any topological group topology on H(X) that makes the evaluation function a group action. Denote by LH(X) the upper-semilattice of all admissible group topologies on H(X) ordered by the usual inclusion. We show that if X is a product of zero-dimensional spaces each satisfying the property: any two non-empty clopen subspaces are homeomorphic, then LH(X) is a complete lattice. Its minimum coincides with the clopen-open topology and with the topology of uniform convergence determined by a T2-compactification of X to which every self-homeomorphism of X continuously extends. Besides, since the left, the right and the two-sided uniformities are non-Archimedean, the minimum is also zero-dimensional. As a corollary, if X is a zero-dimensional metrizable space of diversity one, such as for instance the rationals, the irrationals, the Baire spaces, then LH(X) admits as minimum the closed-open topology induced by the Stone-?ech-compactification of X which, in the case, agrees with the Freudenthal compactification of X.  相似文献   

20.
Let Cα(X,Y) be the set of all continuous functions from X to Y endowed with the set-open topology where α is a hereditarily closed, compact network on X which is closed under finite unions. We proved that the density of the space Cα(X,Y) is at most iw(X)⋅d(Y) where iw(X) denotes the i-weight of the Tychonoff space X, and d(Y) denotes the density of the space Y when Y is an equiconnected space with equiconnecting function Ψ, and Y has a base consists of Ψ-convex subsets of Y. We also prove that the equiconnectedness of the space Y cannot be replaced with pathwise connectedness of Y. In fact, it is shown that for each infinite cardinal κ, there is a pathwise connected space Y such that π-weight of Y is κ, but Souslin number of the space Ck([0,1],Y) is κ2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号