首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metal complex formation of the two cyclic triamines 6-methyl-1,4-diazepan-6-amine (MeL(a)) and all-cis-2,4,6-trimethylcyclohexane-1,3,5-triamine (Me(3)tach) was studied. The structure of the free ligands (H(x)MeL(a))(x+) and H(x)Me(3)tach(x+) (0 ≤ x ≤ 3) was investigated by pH-dependent NMR spectroscopy and X-ray diffraction experiments. The crystal structure of (H(2)Me(3)tach)(p-O(3)S-C(6)H(4)-CH(3))(2) showed a chair conformation with axial nitrogen atoms for the doubly protonated species. In contrast to a previous report, Me(3)tach was found to be a stronger base than the parent cis-cyclohexane-1,3,5-triamine (tach); pK(a)-values of H(3)Me(3)tach(3+) (25 °C, 0.1 M KCl): 5.2, 7.4, 11.2. The crystal structures of (H(3)MeL(a))(BiCl(6))·2H(2)O and (H(3)MeL(a))(ClO(4))Cl(2) exhibited two distinct twisted chair conformations of the seven membered diazepane ring. [Co(MeL(a))(2)](3+) (cis: 1(3+), trans: 2(3+)), trans-[Fe(MeL(a))(2)](3+) (3(3+)), [(MeL(a))ClCd(μ(2)-Cl)](2) (4), trans-[Cu(MeL(a))(2)](2+) (5(2+)), and [Cu(HMeL(a))Br(3)] (6) were characterized by single crystal X-ray analysis of 1(ClO(4))(3)·H(2)O, 2Br(3)·H(2)O, 3(ClO(4))(3)·0.8MeCN·0.2MeOH, 4, 5Br(2)·0.5MeOH, and 6·H(2)O. Formation constants and redox potentials of MeL(a) complexes were determined by potentiometric, spectrophotometric, and cyclovoltammetric measurements. The stability of [M(II)(MeL(a))](2+)-complexes is low. In comparison to the parent 1,4-diazepan-6-amine (L(a)), it is only slightly enhanced. In analogy to L(a), MeL(a) exhibited a pronounced tendency for forming protonated species such as [M(II)(HMeL(a))](3+) or [M(II)(MeL(a))(HMeL(a))](3+) (see 6 as an example). In contrast to MeL(a), Me(3)tach forms [M(II)L](2+) complexes (M = Cu, Zn) of very high stability, and the coordination behavior corresponds mainly to an "all-or-nothing" process. Molecular mechanics calculations showed that the low stability of L(a) and MeL(a) complexes is mainly due to a large amount of torsional strain within the pure chair conformation of the diazepane ring, required for tridentate coordination. This behavior is quite contrary to Me(3)tach and tacn (tacn =1,4,7-triazacyclononane), where the main portion of strain is already preformed in the free ligand, and the amount, generated upon complex formation, is comparably low.  相似文献   

2.
The adsorption and dissociation of NH(3) on the clean and hydroxylated TiO(2) rutile (110) surfaces have been investigated by the first-principles calculations. The monodentate adsorbates such as H(3)N-Ti(a), H(2)N-Ti(a), N-Ti(a), H(2)N-O(a), HN-O(a), N-O(a) and H-O(a), as well as the bidentate adsorbate, Ti-N-Ti(a) can be formed on the clean surface. It is found that the hydroxyl group enhances the adsorption of certain adsorbates on the five-fold-coordinated Ti atoms (5c-Ti), namely H(2)N-Ti(a), HN-Ti(a), N-Ti(a) and Ti-N-Ti(a). In addition, the adsorption energy increases as the number of hydroxyl groups increases. On the contrary, the opposite effect is found for those on the two-fold-coordinated O atoms (2c-O). The enhanced adsorption of NH(x) (x = 1-2) on the 5c-Ti is due to the large electronegativity of the OH group, increasing the acidity of the Ti center. This also contributes to diminish the adsorption of NH(x) (x = 1-2) on the two-fold-coordinated O atoms (2c-O) decreasing its basicity. According to potential energy profile, the NH(3) dissociation on the TiO(2) surface is endothermic and the hydroxyl group is found to lower the energetics of H(2)N-Ti(a)+H-O(a) and HN-Ti(a)+2{H-O(a)}, but slightly raise the energetic of Ti-N-Ti(a)+3{H-O(a)} compare to those on the clean surface. However, the dissociation of NH(3) is found to occur on the hydroxylated surface with an overall endothermic by 31.8 kcal/mol and requires a barrier of 37.5 kcal/mol. A comparison of NH(3) on anatase surface has been discussed. The detailed electronic analysis is also carried out to gain insights into the interaction nature between adsorbate and surface.  相似文献   

3.
The reaction of monomeric and dimeric rhodium(I) amido complexes with unactivated olefins to generate imines is reported. Transamination of {(PEt(3))(2)RhN(SiMePh(2))(2)} (1a) or its -N(SiMe(3))(2) analogue 1b with p-toluidine gave the dimeric [(PEt(3))(2)Rh(mu-NHAr)](2) (Ar = p-tolyl) (2a) in 80% isolated yield. Reaction of 2a with PEt(3) generated the monomeric (PEt(3))(3)Rh(NHAr) (Ar = p-tolyl) (3a). PEt(3)-ligated arylamides 2a and 3a reacted with styrene to transfer the amido group to the olefin and to form the ketimine Ph(Me)C=N(p-tol) (4a) in 48-95% yields. The dinuclear amido hydride (PEt(3))(4)Rh(2)(mu-NHAr)(mu-H) (Ar = p-tolyl) (5a) was formed from reaction of 2a in 95% yield, and a mixture of this dimeric species and the (PEt(3))(n)RhH complexes with n = 3 and 4 was formed from reaction of 3a in a combined 75% yield. Propene reacted with 2a to give Me(2)C=N(p-tol) (4b) and 5a in 90 and 57% yields. Propene also reacted with 3a to give 4b and 5a in 65 and 94% yields. Analogues of 2a and 3a with varied electronic properties also reacted with styrene to form the corresponding imines, and moderately faster rates were observed for reactions of electron-rich arylamides. Kinetic studies of the reaction of 3a with styrene were most consistent with formation of the imine by migratory insertion of olefin into the rhodium-amide bond to generate an aminoalkyl intermediate that undergoes beta-hydrogen elimination to generate a rhodium hydride and an enamine that tautomerizes to the imine.  相似文献   

4.
Taylor PD 《Talanta》1995,42(6):845-850
The three overlapping pK(a) values of N,N',N'-tris[2-(3-hydroxy-2-oxo-1,2-dihydropyridin-1-yl)acetamido]ethylamine, a tripodal hexadentate chelator formed from three 3-hydroxy-2(1H)-pyridinone moieties amide linked to tris-(2-aminoethyl)amine, were determined by simultaneous spectrophotometric and potentiometric titration. The data was analysed by non-linear regression with constraints to deal with (a) the highly correlated absorptivities and (b) the highly correlated pK(a) values. The three pK(a) values were optimized first from the spectrophotometric data (absorbance vs. pH) by non-linear regression to a model in which the molar absorptivity of the ith species ((i)) was constrained by the correlation equation (i) = epsilon (0) + (epsilon (3) - epsilon (0))i 3 with i = 0, 1, 2, 3, where (3) and (0) represent the molar absorptivities of the most protonated and least protonated species, respectively. The molar absorbitivity of the four species defined by three pK(a) values is, therefore, linearly related to proton stoichiometry. The pK(a) values were then optimized from the potentiometric data (pH vs. titrant volume) by non-linear regression to a model in which the three pK(a) values were constrained by the correlation equation pK(a(i)) = pK(a(int)) + b(i - 1) + (i - 2)log(3) where i = 1, 2 or 3. This expresses the three pK(a) values in terms of only two optimizable parameters, the intrinsic site pK(a) (pK(a(int))) and the interaction energy between sites (b). The fixed term (i - 2)log(3) accounts for the statistical effect on the pK(a) values of three equivalent ionizable sites. The modified analytical derivatives required for optimization of these parameters by the Gauss-Newton-Marquardt algorithm and the merits of optimizing pK(a) values with these two correlation equations are discussed. The optimized pK(a) values were 9.31 +/- 0.01, 8.75 +/- 0.01 and 8.19 +/- 0.01. The separation between pK(a) values is 0.58 comprising 0.477 for the statistical effect and 0.081 for the interaction energy while the intrinsic site pK(a) is 8.672 +/- 0.005. The tertiary amine at the centre of the tripodal backbone has a pK(a) of 5.88 +/- 0.03.  相似文献   

5.
The redox chemistry of tellurium-chalcogenide systems is examined via reactions of tellurium(IV) tetrachloride with Li[(t)()BuN(E)P(mu-N(t)Bu)(2)P(E)N(H)(t)Bu] (3a, E = S; 3b, E = Se). Reaction of TeCl(4) with 2 equiv of 3a in THF generates the tellurium(IV) species TeCl(3)[HcddS(2)][H(2)cddS(2)] 4a [cddS(2) = (t)BuN(S)P(mu-N(t)Bu)(2)P(S)N(t)Bu] at short reaction times, while reduction to the tellurium(II) complex TeCl(2)[H(2)cddS(2)](2) 5a is observed at longer reaction times. The analogous reaction of TeCl(4) and 3b yields only the tellurium(II) complex TeCl(2)[H(2)cddSe(2)](2) 5b. The use of 4 equiv of 3a or 3b produces Te[HcddE(2)](2) (6a (E = S) or 6b (E = Se)). NMR and EPR studies of the 5:1 reaction of 3a and TeCl(4) in THF or C(6)D(6) indicate that the formation of the Te(II) complex 6a via decomposition of a Te(IV) precursor occurs via a radical process to generate H(2)cddS(2). Abstraction of hydrogen from THF solvent is proposed to account for the formation of 2a. These results are discussed in the context of known tellurium-sulfur and tellurium-nitrogen redox systems. The X-ray crystal structures of 4a.[C(7)H(8)](0.5), 5a, 5b, 6a.[C(6)H(14)](0.5), and 6b.[C(6)H(14)](0.5) have been determined. The cyclodiphosph(V)azane dichalcogenide ligand chelates the tellurium center in an E,N (E = S, Se) manner in 4a.[C(7)H(8)](0.5), 6a.[C(6)H(14)](0.5), and 6b.[C(6)H(14)](0.5) with long Te-N bond distances in each case. Further, a neutral H(2)cddS(2) ligand weakly coordinates the tellurium center in 4a small middle dot[C(7)H(8)](0.5) via a single chalcogen atom. A similar monodentate interaction of two neutral ligands with a TeCl(2) unit is observed in the case of 5a and 5b, giving a trans square planar arrangement at tellurium.  相似文献   

6.
Using the dinucleating phenol-based ligand 2,6-bis[3-(pyridin-2-yl)pyrazol-1-ylmethyl]-4-methylphenol] (HL(2)), in its deprotonated form, the six new dinuclear complexes [M(II)(2)(L(2))(μ-O(2)CMe)(2)(MeCN)(2)][PF(6)] (M = Mn (2a), Co (3a), Zn (4a)) and [M(II)(2)(L(2))(μ-O(2)CMe)(2)(MeCN)(2)][BPh(4)] (M = Mn (2b), Co (3b), Zn (4b)) have been synthesized. Crystallographic analyses on 2b·2MeCN, 3b·2MeCN, and 4b·2MeCN reveal that these complexes have closely similar μ-phenoxo bis(μ-carboxylato) structures. The physicochemical properties (absorption and ESI-MS spectral data, 2a,b, 3a,b, and 4a,b; (1)H NMR, 4a,b) of the cations of 2a-4a are identical with those of 2b-4b. Each metal ion is terminally coordinated by a pyrazole nitrogen and a pyridyl nitrogen from a 3-(pyridin-2-yl)pyrazole unit and a solvent molecule (MeCN). Thus, each metal center assumes distorted-octahedral M(II)N(3)O(3) coordination. Temperature-dependent magnetic studies on Mn(II) and Co(II) dimers reveal the presence of intramolecular antiferromagnetic (J = -8.5 cm(-1)) for 2b and ferromagnetic exchange coupling (J = +2.51 cm(-1)) for 3b, on the basis of the Hamiltonian H = -JS(1)·S(2). The exchange mechanism is discussed on the basis of magneto-structural parameters (M···M distance). Spectroscopic properties of the complexes have also been investigated. The pH titration and kinetics of phosphatase (transesterification) activity on 2-hydroxypropyl-p-nirophenylphosphate (HPNP) were studied in MeOH/H(2)O (33%, v/v) with 2a-4a, due to solubility reasons. This comparative kinetic study revealed the effect of the metal ion on the rate of hydrolysis of HPNP, which has been compared with what we recently reported for [Ni(II)(2)(L(2))(μ-O(2)CMe)(2)(MeOH)(H(2)O)][ClO(4)] (1a). The efficacy in the order of conversion of substrate to product (p-nitrophenolate ion) follows the order 4a > 3a > 2a > 1a, under identical experimental conditions. Notably, this trend follows the decrease of pK(a) values of M(II)-coordinated water (7.95 ± 0.04 and 8.78 ± 0.03 for 1a, 7.67 ± 0.08 and 8.69 ± 0.06 for 2a, 7.09 ± 0.05 and 8.05 ± 0.06 for 3a, and 6.20 ± 0.04 and 6.80 ± 0.03 for 4a). In this work we demonstrate that the stronger the Lewis acidity (Z(eff)/r) of the metal ion, the more acidic is the M(II)-coordinated water and the greater is the propensity of the metal ion to catalyze hydrolysis of the activated phosphate ester HPNP. Notably, the observed k(2) values (M(-1) s(-1)) for Mn(II) (2a, 0.152), Co(II) (3a, 0.208), and Zn(II) (4a, 0.230) complexes (1a, 0.058; already reported) linearly correlate with Z(eff)/r values of the metal ion. In each case a pseudo-first-order kinetic treatment has been done. Kinetic data analysis of complexes 2a-4a were also done following Michaelis-Menten treatment (catalytic efficiency k(cat)/K(M) values 0.170 M(-1) s(-1) for 2a, 0.194 M(-1) s(-1) for 3a and 0.161 M(-1) s(-1) for 4a; for 1a the value is 0.089 M(-1) s(-1)). Temperature-dependent measurements were done to evaluate kinetic/thermodynamic parameters for the hydrolysis/transesterification of HPNP and yielded comparable activation parameters (E(a) (kJ mol(-1)): 71.00 ± 4.60 (1a; reported), 67.95 ± 5.71 (2a), 62.60 ± 4.46 (3a), 67.80 ± 3.25 (4a)) and enthalpy/entropy of activation values (ΔH(?) (kJ mol(-1)) = 68.00 ± 4.65 (1a; reported), 65.40 ± 5.72 (2a), 60.00 ± 4.47 (3a), 65.29 ± 3.26 (4a); ΔS(?) (J mol(-1) K(-1)) = -109.00 ± 13 (1a; reported), -107.30 ± 16 (2a), -122.54 ± 14 (3a), -104.67 ± 10 (4a)). The E(a) values for all the complexes are comparable, suggesting a closely similar reaction barrier, meaning thereby similar course of reaction. The ΔS(?) values are consistent with an associative process. Positive ΔH(?) values correspond to bond breaking of the activated complex as a result of nucleophilic attack at the phosphorus atom, releasing cyclic phosphate and p-nitrophenolate ion. These data have helped us to propose a common mechanistic pathway: deprotonation of a metal-bound species to form the effective nucleophile, binding of the substrate to the metal center(s), intramolecular nucleophilic attack on the electrophilic phosphorus atom with the release of the leaving group, and possibly regeneration of the catalyst.  相似文献   

7.
The reactions between cis-Fe(dmpe)2H2 (dmpe = Me2PCH2CH2PMe2) (1) or cis-Fe(PP3)H2 (PP3 = P(CH2CH2PMe2)3) (2) and carbon dioxide (CO2), carbon disulfide (CS2), and carbonyl sulfide (COS) are investigated. At 300 K, additions of CO2 (1 atm), CS2 (2 equiv), and COS (1 atm) to 1 result in the formation of a stable transformato hydride, trans-Fe(dmpe)2(OCHO)H (3a), a trans-dithioformato hydride, trans-Fe(dmpe)2(SCHS)H (4a), and a trans-thioformato hydride, trans-Fe(dmpe)2(SCHO)H (5a), respectively. When CS2 and COS are added to cis-Fe(dmpe)2H2 at 195 K, a cis-dithioformato hydride, 4b, and a cis-thioformato hydride, 5b, respectively, are observed as the initially formed products, but there is no evidence of the corresponding cis-formato hydride upon addition of CO2 to cis-Fe(dmpe)2H2. Additions of excess CO2, CS2, and COS to 1 at lower temperatures (195-240 K) result in the formation of a trans-bis(formate), trans-Fe(dmpe)2(OCHO)2 (3b), a trans-bis(dithioformate), trans-Fe(dmpe)2(SCHS)2 (4c), and a cis-bis(thioformate), cis-Fe(dmpe)2(SCHO)2 (5c), respectively. trans-Fe(dmpe)2(SCHO)2 (5d) is prepared by the addition of excess COS at 300 K. Additions of CO2 (1 atm), CS2 (0.75 equiv), and COS (1 atm) to 2 at 300 K result in the formation of a thermally stable, geometrically constrained cis-formato hydride, cis-Fe(PP3)(OCHO)H (6a), a cis-dithioformato hydride, cis-Fe(PP3)(SCHS)H (7a), and a cis-thioformato hydride, cis-Fe(PP3)(SCHO)H (8a), respectively. Additions of excess CO2 and COS to 2 yield a cis-bis(formate), cis-Fe(PP3)(OCHO)2 (6b), and a thermally stable cis-bis(thioformate), cis-Fe(PP3)(SCHO)2 (8b), respectively. All complexes are characterized by multinuclear NMR spectroscopy, with IR spectroscopy and elemental analyses confirming structures of thermally stable complexes where possible. Complexes 3b and 5a are also characterized by X-ray crystallography.  相似文献   

8.
Imidazolidine-2-thione (7a) and the corresponding 2-selone (7b), hexahydropyrimidine-2-thione (7c) and 2-selone (7d), and hexahydro-1H-1,3-diazepine-2-thione (7e) and 2-selone (7f) reacted with 2,4-dinitrobenzyl chloride to give the 2-(2,4-dinitrobenzylthio) and 2-(2,4-dinitrobenzylseleno) derivatives (8a)-(8f) of 4,5-dihydroimidazolium chloride, 1,4,5,6-tetrahydropyr-imidinium chloride, and 4,5,6,7-tetrahydro-1H-1,3-diazepinium chloride. Deprotonation of the chlorides (8a)-(8f) gave, respectively, 2-(2,4-dinitrobenzylthio)-and 2-(2,4-dinitrobenzylseleno)-4,5-dihydroimidazole (9a) and (9b), 2-(2,4-dinitrobenzylthio)- and 2-(2,4-dinitrobenzylseleno)-1,4,5,6-tetrahydropyrimidine (9c) and (9d), and 2-(2,4-dinitrobenzylthio)- and 2-(2,4-dinitrobenzylseleno)-4,5,6,7-tetrahydro-1H-1,3-diazepine (9e) and (9f). The bases (9a)-(9f) reacted with isoselenocyanates with elimination of 2,4-dinitrotoluene and concomitant addition of two molecules of the isoselenocyanate to give 1,6,6aλ4-triheterapentalenes of two structural types, depending on the size of the heteroring in the bases (9a)-(9f). The imidazoles (9a) and (9b) gave 6aλ4-thia-1,6-diselena-3,4-diazapentalenes (10a)-(10j) and 1,6,6aλ4-triselena-3,4-diazapentalenes (11a)-(11h), respectively. The sulfur-containing bases (9c) and (9e) gave 6aλ4-thia-1,3,4,6-tetraazapentalenes (12a)-(12j) and (14a)-(14d), respectively, and the selenium-containing bases (9d) and (9f) gave 6aλ4-selena-1,3,4,6-tetraazapentalenes (13a)-(13j) and (15a)-(15d). Heteroatom-heteroatom covalent bond energies have been estimated for representative members of the series (10)-(14) by using the Huggins equation and experimentally determined bond lengths. © 1997 John Wiley & Sons, Inc.  相似文献   

9.
The guest- or solvent-induced assembly of a tetracarboxyl-cavitand 1 and a tetra(3-pyridyl)-cavitand 2 into a heterodimeric capsule 1.2 in a rim-to-rim fashion via four intermolecular CO(2)H.N hydrogen bonds has been investigated both in solution and in the solid state. In the (1)H NMR study, a 1:1 mixture of1a and 2a (R = (CH(2))(6)CH(3)) in CDCl(3) gave a mixture of various complicated aggregates, whereas this mixture in CDCl(2)CDCl(2) or p-xylene-d(10) exclusively produced the heterodimeric capsule 1a.2a. It was found that an appropriate 1,4-disubstituted-benzene is a suitable guest for inducing the exclusive formation of 1a.2a in CDCl(3). The ability of a guest to induce the formation of guest-encapsulating heterodimeric capsule, guest@(1a.2a), increased in the order p-ethyltoluene < 1-ethyl-4-methoxybenzene < or = 1-ethyl-4-iodobenzene < or = 1,4-dibromobenzene < 1-iodo-4-methoxybenzene < or= 1,4-dimethoxybenzene < or = 1,4-diiodobenzene. The (1)H NMR study revealed that a CH-halogen interaction between the inner protons of the methylene-bridge rims (-O-H(out)CH(in)-O-) of the 1a and 2a units and the halogen atoms of 1,4-dihalobenzenes and a CH-pi interaction between the methoxy protons of 1,4-dimethoxybenzene and the aromatic cavities of the 1a and 2a units play important roles in the formation of 1,4-dihalobenzene@(1a.2a) and 1,4-dimethoxybenzene@(1a.2a), respectively. A preliminary single-crystal X-ray diffraction analysis of guest@(1b.2b) (R = (CH(2))(2)Ph; guest = 1-iodo-4-methoxybenzene or p-xylene) confirmed that the guest encapsulated in 1b.2b is oriented with the long axis of the guest along the long axis of 1b.2b and that the iodo and the methoxy groups of the encapsulated 1-iodo-4-methoxybenzene are specifically oriented with respect to the cavities of the 2b and 1b units, respectively.  相似文献   

10.
FTIR spectral changes of bovine cytochrome c oxidase (CcO) upon ligand dissociation from heme a(3)() and redox change of the Cu(A)-heme a moiety (Cu(A)Fe(a)()) were investigated. In a photosteady state under CW laser illumination at 590 nm to carbonmonoxy CcO (CcO-CO), the C-O stretching bands due to Fe(a3)()(2+)CO and Cu(B)(1+)CO were identified at 1963 and 2063 cm(-)(1), respectively, for the fully reduced (FR) state [(Cu(A)Fe(a)())(3+)Fe(a3)()(2+)Cu(B)(1+)] and at 1965 and 2061 cm(-)(1) for the mixed valence (MV) state [(Cu(A)Fe(a)())(5+)Fe(a3)()(2+)Cu(B)(1+)] in H(2)O as well as in D(2)O. For the MV state, however, another band due to Cu(B)(1+)CO was found at 2040 cm(-)(1), which was distinct from the alpha/beta conformers in the spectral behaviors, and therefore was assigned to the (Cu(A)Fe(a)())(4+)Fe(a3)()(3+)Cu(B)(1+)CO generated by back electron transfer. The FR-minus-oxidized difference spectrum in the carboxyl stretching region provided two negative bands at 1749 and 1737 cm(-)(1) in H(2)O, which were apparently merged into a single band with a band center at 1741 cm(-)(1) in D(2)O. Comparison of these spectra with those of bacterial enzymes suggests that the 1749 and 1737 cm(-)(1) bands are due to COOH groups of Glu242 and Asp51, respectively. A similar difference spectrum of the carboxyl stretching region was also obtained between (Cu(A)Fe(a)())(3+)Fe(a3)()(2+)Cu(B)(1+)CO and (Cu(A)Fe(a)())(5+)Fe(a3)()(2+)Cu(B)(1+)CO. The results indicate that an oxidation state of the (Cu(A)Fe(a)()) moiety determines the carboxyl stretching spectra. On the other hand, CO-dissociated minus CO-bound difference spectra in the FR state gave rise to a positive and a negative peaks at 1749 and 1741 cm(-)(1), respectively, in H(2)O, but mainly a negative peak at 1735 cm(-)(1) in D(2)O. It was confirmed that the absence of a positive peak is not caused by slow deuteration of protein. The corresponding difference spectrum in the MV state showed a significantly weaker positive peak at 1749 cm(-)(1) and an intense negative peak at 1741 cm(-)(1) (1737 cm(-)(1) in D(2)O). The spectral difference between the FR and MV states is explained satisfactorily by the spectral change induced by the electron back flow upon CO dissociation as described above. Thus, the changes of carboxyl stretching bands induced both by oxidation of (Cu(A)Fe(a)()) and dissociation of CO appear at similar frequencies ( approximately 1749 cm(-)(1)) but are ascribed to different carboxyl side chains.  相似文献   

11.
Complexes [MoCp(#)(PMe(3))(2)H(3)] (Cp(#)=1,2,4-C(5)H(2)tBu(3), 2 a; C(5)HiPr(4), 2 b) have been synthesized from the corresponding compounds [MoCp(#)Cl(4)] (1 a, 1 b) and fully characterized, including by X-ray crystallography and by a neutron diffraction study for 2 a. Protonation of 2 a led to complex [Mo(1,2,4-C(5)H(2)tBu(3))(PMe(3))(2)H(4)](+) (3 a) in THF and to [Mo(1,2,4-C(5)H(2)tBu(3))(PMe(3))(2)(MeCN)H(2)](+) (4 a) in MeCN. Complex 4 b analogously derives from protonation of 2 b in MeCN, whereas the tetrahydride complex 3 b is unstable. One-electron oxidation of 2 a and 2 b by [FeCp(2)]PF(6) produces the EPR-active 17-electron complexes 2 a(+) and 2 b(+). The former is thermally more stable than the latter and could be crystallographically characterized as the PF(6) (-) salt by X-ray diffraction, providing evidence for the presence of a stretched dihydrogen ligand (H...H=1.36(6) angstroms). Controlled thermal decomposition of 2 a(+) yielded the product of H(2) elimination, the 15-electron monohydride complex [Mo(1,2,4-C(5)H(2)tBu(3))(PMe(3))(2)H]PF(6) (5 a), which was characterized by X-ray crystallography and by EPR spectroscopy at liquid He temperature. The compound establishes an equilibrium with the solvent adduct in THF. An electrochemical study by cyclic voltammetry provides further evidence for a rapid H(2) elimination process from the 17-electron complexes. In contrast to the previously investigated [MoCp*(dppe)H(3)](+) system (dppe=1,2-bis(diphenylphosphino)ethane; Cp*=pentamethylcyclopentadienyl), the decomposition of 2 a(+) by H(2) substitution with a solvent molecule appears to follow a dissociative pathway in MeCN.  相似文献   

12.
The new unsymmetrical, optically active ligands 1,2-C(2)H(4)(PPh(2))(2'R,5'R-2',5'-dimethylphospholanyl) (L(a)) and 1,3-C(3)H(6)(PPh(2))(2'R,5'R-2',5'-dimethylphospholanyl) (L(b)) form complexes of the type [Rh(L)(cyclooctadiene)][BF(4)] where L = L(a) (1a) or L(b) (1b), [PtCl(2)(L)] where L = L(a) (2a) or L(b) (2b) and [PdCl(2)(L)] where L = L(a) (3a) or Lb (3b). The crystal structures of 2a and 2b show the chelate ligand backbones adopt delta-twist and flattened chair conformations respectively. Asymmetric hydrogenation of enamides and dehydroaminoesters using 1a and 1b as catalysts show that the ethylene-backboned diphosphine L(a) gives a more efficient catalyst in terms of asymmetric induction than the propylene-backboned analogue L(b). The greatest enantioselectivities were obtained with 1a and enamide substrates with ees up to 91%. Substrate-induced conformational changes in the Rh-diphosphine chelates are proposed to explain some of the ees observed in the hydrogenation of enamides.  相似文献   

13.
The structures of 1,8-bis(phenylselanyl)anthraquinone (1a), 1,8-bis(phenylselanyl)-9-methoxyanthracene (2a), and 1,8-bis(phenylselanyl)anthracene (3a) are determined by X-ray crystallographic analysis, together with the derivatives. The Se-C(i) (Ph) bonds in 1a are placed on the anthraquinone plane (both type B) and the phenyl planes are perpendicular to the anthraquinone plane. The structure around the Se atoms in 2a is very close to that of 1a: the conformations of the PhSe groups are both type B. Consequently, the five C(i)-Se- - -O- - -Se-C(i) atoms in 1a and 2a align linearly. The nonbonded Se- - -O distances in 1a and 2a are 2.673-2.688 and 2.731-2.744 A, respectively, which are about 0.7 A shorter than the sum of van der Waals radii of the atoms. The extended hypervalent sigma*(C(i)-Se)- - -n(p)(O)- - -sigma*(Se-C(i)) 5c-6e interactions are strongly suggested for the origin of the linear alignment of the five atoms in 1a and 2a. The 5c-6e must be constructed by the connection of the two hypervalent n(p)(O)- - -sigma*(Se-C(i)) 3c-4e interactions through the central n(p)(O). The five C(i)-Se- - -H- - -Se-C(i) atoms never align linearly in 3a. To reveal the nature of 5c-6e in 1a and 2a, QC calculations are performed on H(a)H(b)(A)Se- - -O([double bond]CH(2))- - -(B)SeH(a')H(b') (model a) and H(a)H(b)(A)Se- - -OH(2)- - -(B)SeH(a')H(b') (model b) with the B3LYP/6-311++G(3df,2pd) method, where the nonbonded Se- - -O distances are fixed at 2.658 A. Four conformers, a (AA-cis), a (AA-trans), a (AB), and a (BB), are optimized to be stable for model a, where a (AA) shows both type A for the (A)Se-H(b) and (B)Se-H(b') bonds in model a. Three conformers, b (AA-cis), b (AB), and b (BB), are stable for model b. The bonding models in AA, AB, and BB correspond to 3c-6e, 4c-6e, and 5c-6e, respectively. The models become more stable by 42 +/- 5 kJ mol(-1), if the type A conformation of each Se-H bond changes to type B. No noticeable saturation is observed in the stabilization for each change. QC calculations are also performed on 1a-3a at the B3LYP level. Three conformers are evaluated to be stable for 1a and 2a. The relative energies of 1a (AA-trans), 1a (AB), and 1a (BB) are 0.0, -31.5, and -60.6 kJ mol(-1), respectively, and those of 2a (AA-cis), 2a (AB), and 2a (BB) are 0.0, -24.4, and -36.5 kJ mol(-1), respectively. These results demonstrate that the origin of the linear alignment of the five C-Se- - -O- - -Se-C atoms in 1a and 2a is the energy lowering effect by the extended hypervalent 5c-6e interactions of the sigma*(C-Se)<--n(p)(O)-->sigma*(Se-C) type. The pi-conjugation between pi(C[double bond]O) and n(pz)(Se) through the pi-framework of anthraquinone must also contribute to stabilize the BB structure of 1a, where z is the direction perpendicular to the anthraquinone plane.  相似文献   

14.
A novel zinc(II) hydroxide complex with a rare alkylthiolate donor in the coordination sphere is formed in aqueous solution from the dissolution of the zinc alkyl precursor complex (PATH)ZnCH(3) (PATH = 2-methyl-1-[methyl(2-pyridin-2-ylethyl)amino]propane-2-thiolate) in H(2)O and protonolysis of the Zn-C bond to give (PATH)ZnOH (1). The (PATH)ZnOH complex has been shown to promote the hydrolysis of 4-nitrophenyl acetate (4-NA) by a detailed kinetic study and is the first functional model for the zinc form of the enzyme peptide deformylase. From a fit of the sigmoidal pH-rate profile a kinetic pK(a) of 8.05(5) and a pH-independent second-order rate constant (k" max)) of 0.089(3) M(-1) s(-1) have been obtained. The kinetic pK(a) is similar to the pK(a) of 7.7(1) determined by a potentiometric study (25 degrees C, I = 0.1 (NaNO3)). Observation of both rate enhancement and turnover shows that 1 acts as a catalyst for the hydrolysis of 4-NA, although the turnovers are modest. Activation parameters have been obtained from a temperature-dependence study of the rate constants (E(a) = 54.8 kJ mol(-1), DeltaH++ = 52.4 kJ mol(-1), and DeltaS++ = -90.0 J mol(-1) K(-1)), and support a reaction mechanism which depends on nucleophilic attack of 1 in the rate-determining step. This is the first kinetic and thermodynamic study of a 4-coordinate zinc hydroxide complex containing a thiolate donor. In addition it is only the second time that a complete set of activation parameters have been obtained for the zinc-promoted hydrolysis of a carboxylic ester. This study puts the basicity and nucleophilicity of a (N(2)S)ZnOH complex in context with those of other L(n)()ZnOH complexes and enzymes.  相似文献   

15.
Hung M  Stanbury DM 《Inorganic chemistry》2005,44(10):3541-3550
The oxidation of cysteine by [Mo(CN)(8)](3-) in deoxygenated aqueous solution at a moderate pH is strongly catalyzed by Cu(2+), to the degree that impurity levels of Cu(2+) are sufficient to dominate the reaction. Dipicolinic acid (dipic) is a very effective inhibitor of this catalysis, such that with 1 mM dipic, the direct oxidation can be studied. UV-vis spectra and electrochemistry show that [Mo(CN)(8)](4-) is the Mo-containing product. Cystine and cysteinesulfinate are the predominant cysteine oxidation products. The stoichiometric ratio (Deltan(Mo(V))/Deltan(cysteine)) of 1.4 at pH 10.8 is consistent with this product distribution. At pH 1.5, the reaction is quite slow and yields intractable kinetics. At pH 4.5, the rates are much faster and deviate only slightly from pseudo-first-order behavior. With 2 mM PBN (N-phenyl-tert-butyl nitrone) present at pH 4.5, the reaction rate is about 20% less and shows excellent pseudo-first-order behavior, but the stoichiometric ratio is not significantly changed. The rates also display a significant specific cation effect. In the presence of spin-trap PBN, the kinetics were studied over the pH range 3.48-12.28, with [Na(+)] maintained at 0.09-0.10 M. The rate law is -d[Mo(V)]/dt = k[cysteine](tot)[Mo(V)], with k = {2(k(b)K(a1)K(a2)[H(+)] + k(c)K(a1)K(a2)K(a3))}/([H(+)](3) + K(a1)[H(+)](2) + K(a1)K(a2)[H(+)] + K(a1)K(a2)K(a3)), where K(a1), K(a2), and K(a3) are the successive acid dissociation constants of HSCH(2)CH(NH(3)(+))CO(2)H. Least-squares fitting yields k(b) = (7.1 +/- 0.4) x 10(4) M(-1) s(-1) and k(c) = (2.3 +/-0.2) x 10(4) M(-1) s(-1) at mu = 0.1 M (NaCF(3)SO(3)) and 25 degrees C. A mechanism is inferred in which k(b) and k(c) correspond to electron transfer to Mo(V) from the thiolate forms of anionic and dianionic cysteine.  相似文献   

16.
The extensive search for the global minimum structure of Hf3 at the B3LYP/LANL2DZ level of theory revealed that D3h 3A2' (1a1'(2)1a2'(2)1e'(4)2a1'(2)1e'2) and D3h 1A1' (1a1'(2)2a1'(2)1e'(4)1a2'(2)3a1'2) are the lowest triplet and singlet states, respectively, with the triplet state being the lowest one. However, at the CASSCF(10,14)/Stuttgart+2f1g level of theory these two states are degenerate, indicating that at the higher level of theory the singlet state could be in fact the global minimum structure. The triplet D3h 3A2' (1a1'21a2'(2)1e'(4)2a1'(2)1e'2) structure is doubly (sigma- and pi-) aromatic and the singlet D3h 1A1' (1a1'(2)2a1'(2)1e'(4)1a2'(2)3a1'2) structure is the first reported triply (sigma-, pi-, and delta-) aromatic system.  相似文献   

17.
The cage phosphines 1,3,5,7-tetramethyl-6-phenyl-2,4,8-trioxa-6-phosphaadamantane (1a) and 1,3,5,7-tetraethyl-6-phenyl-2,4,8,trioxa-6-phosphaadamantane (1b) have been made by the acid catalysed addition of PhPH(2) to the appropriate beta-diketones; the acid used (HCl, H(3)PO(4) or H(2)SO(4)) and its concentration affect the rate and selectivity of these condensation reactions. Phosphines 1a and 1b react with [PdCl(2)(NCPh)(2)] to form complexes trans-[PdCl(2)(1a)(2)](2a) and trans-[PdCl(2)(1b)(2)](2b) as mixtures of rac and meso diastereoisomers. The platinum(II) chemistry is more complicated and when 1a or 1b is added to [PtCl(2)(cod)], equilibrium mixtures of trans-[PtCl(2)L(2)] and [Pt(2)Cl(4)L(2)](L = or ) are formed in CH(2)Cl(2) solution. Meso/rac mixtures of trans-[MCl(CO)(1a)(2)] M = Ir (6a) or Rh (7a) are formed upon treatment of MCl(3).nH(2)O with an excess of 1a and the anionic cobalt complex [NHEt(3)][CoCl(3)(1a)](9) was isolated from the product formed by CoCl(2).6H(2)O and 1a. The nu(CO) values from the IR spectra of 6a and 7a suggest that 1a resembles a phosphonite in its bonding to Rh and Ir. Crystal structures of meso-2a, meso-2b, rac-6a and 9 are reported and in each case a small intracage C-P-C angle of ca. 94 degrees is observed; this may partly explain the bonding characteristics of ligands 1a and 1b. The cone angles for 1a and 1b are similar and large (ca. 200 degrees). Rhodium complexes of ligands 1a and 1b are hydroformylation catalysts with similarly high activity to catalysts derived from phosphites. The catalysts derived from 1a and 1b gave unusually low linear selectivity in the hydroformylation of hexenes. This feature has been further exploited in quaternary-selective hydroformylations of unsaturated esters; catalysts derived from 1a give better yields and regioselectivities than any previously reported catalyst.  相似文献   

18.
Atmospheric pressure chemical ionisation liquid chromatography/mass spectrometry (APCI-LC/MS) has been used for identification of the epimers of hydroxy, methoxy and methoxylactone allomers of chlorophyll a (13(2)-HO-chl a, 13(2)-MeO-chl a and 15(1)-MeO-lact-chl a), the hydroxy allomer of bacteriochlorophyll a (13(2)-HO-bchl a) and the hydroxy and methoxylactone allomers of bacterioviridin a (13(2)-HO-bvir a and 15(1)-MeO-lact-bvir a). The APCI mass spectra show that facile fragmentations involve the methoxyl or hydroxyl groups at the C-13(2) or C-15(1) chiral centres. Losses involving the C-13(2) or C-15(1) hydroxyl or methoxyl groups occur more easily from the S-epimer than from the R-epimer due to the greater relief of the steric strain associated with interaction with the bulky C-17 substituent. The differences in mass spectrometric fragmentation can be used as a diagnostic tool for the assignment of the stereochemical configuration at the C-13(2) or C-15(1) chiral centres.  相似文献   

19.
Nucleophilic substitution reactions of N(3)P(3)Cl(4)[O(CH(2))(2)NCH(3)], (1) with the sodium salts of mono- and di-functional alcohols [methanol (2), phenol (3), tetraethyleneglycol (4) and 1,3-propanediol (5)] were carried out in order to investigate a possible directing effect of the spiro O-moiety on the formation of mono-substituted (2a, 3a), non-geminal di-substituted (2c, 3c) and ansa (4a, 5a) derivatives. Compounds isolated from the reactions were characterized by elemental analysis, mass spectrometry, (1)H and (31)P NMR spectroscopy and X-ray crystallographic analysis showed that the substituent OR in compounds (2a, 3a and 2c, 3c) and the ansa-ring in compounds (4a, 5a) formed cis to the P-O moiety of the exocyclic [O(CH(2))(2)NCH(3)] spiro ring. The formation of products (2a-d, 3a-d, 4a, 5a and 5b) was quantified from the (31)P NMR spectra of the reaction mixtures, which showed an overwhelming preference for derivatives (2a, 3a, 2c, 3c, 4a, 5a) with the substituent cis to the P-O moiety of the exocyclic spiro ring (2a, 3a, 2c, 3c, 4a, 5a), except for reaction with 1,3-propanediol where the six-membered ring spiro derivative (5b) was about three times more abundant than the eight-membered ring ansa-derivative (5a). Overwhelming formation of products with the substituent cis to the exocyclic P-O moiety is proof that the cation-assisted mechanism is responsible for the stereo-selectivity in the reactions with alkoxides.  相似文献   

20.
The first excited electronic state of molecular oxygen, O(2)(a(1)Δ(g)), is formed in the upper atmosphere by the photolysis of O(3). Its lifetime is over 70 min above 75 km, so that during the day its concentration is about 30 times greater than that of O(3). In order to explore its potential reactivity with atmospheric constituents produced by meteoric ablation, the reactions of Mg, Fe, and Ca with O(2)(a) were studied in a fast flow tube, where the metal atoms were produced either by thermal evaporation (Ca and Mg) or by pulsed laser ablation of a metal target (Fe), and detected by laser induced fluorescence spectroscopy. O(2)(a) was produced by bubbling a flow of Cl(2) through chilled alkaline H(2)O(2), and its absolute concentration determined from its optical emission at 1270 nm (O(2)(a(1)Δ(g) - X(3)Σ(g) (-)). The following results were obtained at 296 K: k(Mg + O(2)(a) + N(2) → MgO(2) + N(2)) = (1.8 ± 0.2) × 10(-30) cm(6) molecule(-2) s(-1); k(Fe + O(2)(a) → FeO + O) = (1.1 ± 0.1) × 10(-13) cm(3) molecule(-1) s(-1); k(Ca + O(2)(a) + N(2) → CaO(2) + N(2)) = (2.9 ± 0.2) × 10(-28) cm(6) molecule(-2) s(-1); and k(Ca + O(2)(a) → CaO + O) = (2.7 ± 1.0) × 10(-12) cm(3) molecule(-1) s(-1). The total uncertainty in these rate coefficients, which mostly arises from the systematic uncertainty in the O(2)(a) concentration, is estimated to be ±40%. Mg + O(2)(a) occurs exclusively by association on the singlet surface, producing MgO(2)((1)A(1)), with a pressure dependent rate coefficient. Fe + O(2)(a), on the other hand, shows pressure independent kinetics. FeO + O is produced with a probability of only ~0.1%. There is no evidence for an association complex, suggesting that this reaction proceeds mostly by near-resonant electronic energy transfer to Fe(a(5)F) + O(2)(X). The reaction of Ca + O(2)(a) occurs in an intermediate regime with two competing pressure dependent channels: (1) a recombination to produce CaO(2)((1)A(1)), and (2) a singlet∕triplet non-adiabatic hopping channel leading to CaO + O((3)P). In order to interpret the Ca + O(2)(a) results, we utilized density functional theory along with multireference and explicitly correlated CCSD(T)-F12 electronic structure calculations to examine the lowest lying singlet and triplet surfaces. In addition to mapping stationary points, we used a genetic algorithm to locate minimum energy crossing points between the two surfaces. Simulations of the Ca + O(2)(a) kinetics were then carried out using a combination of both standard and non-adiabatic Rice-Ramsperger-Kassel-Marcus (RRKM) theory implemented within a weak collision, multiwell master equation model. In terms of atmospheric significance, only in the case of Ca does reaction with O(2)(a) compete with O(3) during the daytime between 85 and 110 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号