首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Sluggish oxygen evolution kinetics and serious charge recombination restrict the development of photoelectrochemical (PEC) water splitting. The advancement of novel metal–organic frameworks (MOFs) catalysts bears practical significance for improving PEC water splitting performance. Herein, a MOF glass catalyst through melting glass-forming cobalt-based zeolitic imidazolate framework (Co-agZIF-62) was introduced on various metal oxide (MO: Fe2O3, WO3 and BiVO4) semiconductor substrates coupled with NiO hole transport layer, constructing the integrated Co-agZIF-62/NiO/MO photoanodes. Owing to the excellent conductivity, stability and open active sites of MOF glass, Co-agZIF-62/NiO/MO photoanodes exhibit a significantly enhanced photoelectrochemical water oxidation activity and stability in comparison to pristine MO photoanodes. From experimental analyses and density functional theory calculations, Co-agZIF-62 can effectively promote charge transfer and separation, improve carrier mobility, accelerate the kinetics of oxygen evolution reaction (OER), and thus improve PEC performance. This MOF glass not only serves as an excellent OER cocatalyst on tunable photoelectrodes, but also enables promising opportunities for PEC devices for solar energy conversion.  相似文献   

2.
Metal oxides are an important family of semiconductors for effective photoelectrodes in solar‐to‐chemical energy conversion. Defect engineering, such as modification of oxygen vacancy density, has been extensively applied in tailoring the optoelectric properties of photoelectrodes. Very limited attention has been paid to the influence of metal vacancies. Herein, we study metal vacancies in a typical CuO photocathode for photoelectrochemical (PEC) water splitting. The Cu vacancies can improve the charge carrier concentration, and facilitate the charge separation and transfer in the CuO photocathode. By changing the O2 partial pressure, the density of Cu vacancies can be tuned, which leads to improved PEC performance. The CuO photocathode prepared in pure O2 exhibits a 100 % photocurrent increase compared to that prepared in air. The promotion effect of Cu vacancies on the PEC is also observed in other Cu based photocathodes, showing the generic role of metal vacancies in efficient photocathodes.  相似文献   

3.
Hematite (α-Fe(2)O(3)) was grown on vertically aligned Si nanowires (NWs) using atomic layer deposition to form a dual-absorber system. Si NWs absorb photons that are transparent to hematite (600 nm < λ < 1100 nm) and convert the energy into additional photovoltage to assist photoelectrochemical (PEC) water splitting by hematite. Compared with hematite-only photoelectrodes, those with Si NWs exhibited a photocurrent turn-on potential as low as 0.6 V vs RHE. This result represents one of the lowest turn-on potentials observed for hematite-based PEC water splitting systems. It addresses a critical challenge of using hematite for PEC water splitting, namely, the fact that the band-edge positions are too positive for high-efficiency water splitting.  相似文献   

4.
Photoelectrochemical (PEC) water splitting is a promising strategy to convert solar energy into hydrogen fuel. However, the poor bulk charge‐separation ability and slow surface oxygen evolution reaction (OER) dynamics of photoelectrodes impede the performance. We construct In‐ and Zn/In‐doped SnS2 nanosheet arrays through a hydrothermal method. The doping induces the simultaneous formation of an amorphous layer, S vacancies, and a gradient energy band. This leads to elevated carrier concentrations, an increased number of surface‐reaction sites, accelerated surface‐OER kinetics, and an enhanced bulk‐carrier separation efficiency with a decreased recombination rate. This efficient doping strategy allows to manipulate the morphology, crystallinity, and band structure of photoelectrodes for an improved PEC performance.  相似文献   

5.
Photoelectrochemical (PEC) water splitting is a promising strategy to convert solar energy into hydrogen fuel. However, the poor bulk charge‐separation ability and slow surface oxygen evolution reaction (OER) dynamics of photoelectrodes impede the performance. We construct In‐ and Zn/In‐doped SnS2 nanosheet arrays through a hydrothermal method. The doping induces the simultaneous formation of an amorphous layer, S vacancies, and a gradient energy band. This leads to elevated carrier concentrations, an increased number of surface‐reaction sites, accelerated surface‐OER kinetics, and an enhanced bulk‐carrier separation efficiency with a decreased recombination rate. This efficient doping strategy allows to manipulate the morphology, crystallinity, and band structure of photoelectrodes for an improved PEC performance.  相似文献   

6.
The particulate semiconductor La5Ti2CuS5O7 (LTC) with a band gap energy of 1.9 eV functioned as either a photocathode or a photoanode when embedded onto Au or Ti metal layers, respectively. By applying an LTC/Au photocathode and LTC/Ti photoanode to, respectively, photoelectrochemical (PEC) water reduction and oxidation concurrently, zero-bias overall water splitting was accomplished under visible light irradiation. The band structures of LTC/Au and LTC/Ti calculated using a semiconductor device simulator (AFORS-HET) confirmed the critical role of the solid/solid junction of the metal back contact in the charge separation and PEC properties of LTC photoelectrodes. The prominently long lifetime of photoexcited charge carriers in LTC, confirmed by transient absorption spectroscopy, allowed the utilization of both photoexcited electrons and holes depending on the band structure at the solid/solid junction.  相似文献   

7.
Energy production and environmental pollution are the two major problems the world is facing today. The depletion of fossil fuels and the emission of harmful gases into the atmosphere leads to the research on clean and renewable energy sources. In this context, hydrogen is considered an ideal fuel to meet global energy needs. Presently, hydrogen is produced from fossil fuels. However, the most desirable way is from clean and renewable energy sources, like water and sunlight. Sunlight is an abundant energy source for energy harvesting and utilization. Recent studies reveal that photoelectrochemical (PEC) water splitting has promise for solar to hydrogen (STH) conversion over the widely tested photocatalytic approach since hydrogen and oxygen gases can be quantified easily in PEC. For designing light-absorbing materials, semiconductors are the primary choice that undergoes excitation upon solar light irradiation to produce excitons (electron-hole pairs) to drive the electrolysis. Visible light active semiconductors are attractive to achieve high solar to chemical fuel conversion. However, pure semiconductor materials are far from practical applications because of charge carrier recombination, poor light-harvesting, and electrode degradation. Various heteronanostructures by the integration of metal plasmons overcome these issues. The incorporation of metal plasmons gained significance for improving the PEC water splitting performance. This review summarizes the possible main mechanisms such as plasmon-induced resonance energy transfer (PIRET), hot electron injection (HEI), and light scatting/trapping. It also deliberates the rational design of plasmonic structures for PEC water splitting. Furthermore, this review highlights the advantages of plasmonic metal-supported photoelectrodes for PEC water splitting.  相似文献   

8.
In the present study, pristine BiVO4, TiO2 and BiVO4/TiO2 core-shell heterostructured nanoparticles are prepared by hydrothermal methods and studied for structural, morphological, optical, photoelectrochemical water splitting and photocatalytic degradation of methylene blue as an organic pollutant. Both pristine BiVO4 and TiO2 exhibit poor PEC and PC performance under visible light illumination. However, an enhanced PEC and PC activity in BiVO4/TiO2 core-shell heterostructure is observed due to high solar energy absorption and superior charge separation properties in core-shell nanoparticles. The photoelectrode prepared using BiVO4/TiO2 core-shell nanoparticles exhibit a photocathode behavior and produced cathodic photocurrent, however, the pristine BiVO4 and TiO2 photoelectrodes act as photoanode and produced anodic photocurrent. This behavior of change in current direction is also observe in the Mott-Schottky analysis where the BiVO4/TiO2 core-shell nanoparticles photoelectrode exhibits the positive slow showing p-type semiconducting behavior. The change in cathodic photoresponse in core-shell nanoparticles in comparison to anodic photoresponse of BiVO4 and TiO2 nanoparticles is explained in terms of the variations in the work function values. These results highlight the advantages of core-shell nanoparticle of suitable materials for photocatalytic and photoelectrochemical applications.  相似文献   

9.
Photoelectrochemical water splitting is regarded as a promising approach to the production of hydrogen, and the development of efficient photoelectrodes is one aspect of realizing practical systems. In this work, transparent Ta3N5 photoanodes were fabricated on n‐type GaN/sapphire substrates to promote O2 evolution in tandem with a photocathode, to realize overall water splitting. Following the incorporation of an underlying GaN layer, a photocurrent of 6.3 mA cm?2 was achieved at 1.23 V vs. a reversible hydrogen electrode. The transparency of Ta3N5 to wavelengths longer than 600 nm allowed incoming solar light to be transmitted to a CuInSe2 (CIS), which absorbs up to 1100 nm. A stand‐alone tandem cell with a serially‐connected dual‐CIS unit terminated with a Pt/Ni electrode was thus constructed for H2 evolution. This tandem cell exhibited a solar‐to‐hydrogen energy conversion efficiency greater than 7 % at the initial stage of the reaction.  相似文献   

10.
The development of well-organized and low-priced photoelectrocatalysts for the clean and efficient water splitting reaction is crucial. In this context, novel nitrogen-doped graphene quantum dots (N-GQDs) with high photoluminescence and upconversion emission have been synthesized as excellent light harvester. Subsequently, ordered hierarchical TiO? nanowires were decorated with upconversion N-GQDs as a photoanode by a simple preparation method to improve the photocatalytic performance in the visible and near-infrared (NIR) regions of solar light, not otherwise absorbable by bare TiO? nanostructures. Moreover, the enhancement of charge transfer efficiency and electron–hole separation according to the energy states of N-GQDs and TiO? are considered for the improved photocatalytic performance of water splitting. N-GQDs/TiO2 shows superior photoelectrocatalytic (PEC) performance, achieving a photocurrent density of 3.0 mA.cm?2 in 1.0 M KOH solution, which is eight times that of unmodified TiO? at an applied voltage of 1.23 V vs. RHE. The high stability and photoelectrocatalytic activity of oxygen evolution reaction in the presence of newly synthesized N-GQDs are confirmed by chronoamperometry, open-circuit potential measurement, and electrochemical impedance spectroscopy. The as-fabricated photoanode provides an increased solar light harvesting from UV–Vis to NIR due to the application of newly synthesized upconversion GQDs, which increase energy conversion with an appealing perspective.  相似文献   

11.
Photoelectrochemical (PEC) water splitting is a promising method for the conversion of solar energy into chemical energy stored in the form of hydrogen. Nanostructured hematite (α-Fe2O3) is one of the most attractive materials for a highly efficient charge carrier generation and collection due to its large specific surface area and the short minority carrier diffusion length. In the present work, the PEC water splitting performance of nanostructured α-Fe2O3 is investigated which was prepared by anodization followed by annealing in a low oxygen ambient (0.03 % O2 in Ar). It was found that low oxygen annealing can activate a significant PEC response of α-Fe2O3 even at a low temperature of 400 °C and provide an excellent PEC performance compared with classic air annealing. The photocurrent of the α-Fe2O3 annealed in the low oxygen at 1.5 V vs. RHE results as 0.5 mA cm−2, being 20 times higher than that of annealing in air. The obtained results show that the α-Fe2O3 annealed in low oxygen contains beneficial defects and promotes the transport of holes; it can be attributed to the improvement of conductivity due to the introduction of suitable oxygen vacancies in the α-Fe2O3. Additionally, we demonstrate the photocurrent of α-Fe2O3 annealed in low oxygen ambient can be further enhanced by Zn-Co LDH, which is a co-catalyst of oxygen evolution reaction. This indicates low oxygen annealing generates a promising method to obtain an excellent PEC water splitting performance from α-Fe2O3 photoanodes.  相似文献   

12.
Natural photosynthesis (NP) generates oxygen and carbohydrates from water and CO2 utilizing solar energy to nourish lives and balance CO2 levels. Following nature, artificial photosynthesis (AP), typically, overall water or CO2 splitting, produces fuels and chemicals from renewable energy. However, hydrogen evolution or CO2 reduction is inherently coupled with kinetically sluggish water oxidation, lowering efficiencies and raising safety concerns. Decoupled systems have thus emerged. In this review, we elaborate how decoupled artificial photosynthesis (DAP) evolves from NP and AP and unveil their distinct photoelectrochemical mechanisms in energy capture, transduction and conversion. Advances of AP and DAP are summarized in terms of photochemical (PC), photoelectrochemical (PEC), and photovoltaic-electrochemical (PV-EC) catalysis based on material and device design. The energy transduction process of DAP is emphasized. Challenges and perspectives on future researches are also presented.  相似文献   

13.
Photoelectrochemical (PEC) water splitting is an attractive strategy for the large‐scale production of renewable hydrogen from water. Developing cost‐effective, active and stable semiconducting photoelectrodes is extremely important for achieving PEC water splitting with high solar‐to‐hydrogen efficiency. Perovskite oxides as a large family of semiconducting metal oxides are extensively investigated as electrodes in PEC water splitting owing to their abundance, high (photo)electrochemical stability, compositional and structural flexibility allowing the achievement of high electrocatalytic activity, superior sunlight absorption capability and precise control and tuning of band gaps and band edges. In this review, the research progress in the design, development, and application of perovskite oxides in PEC water splitting is summarized, with a special emphasis placed on understanding the relationship between the composition/structure and (photo)electrochemical activity.  相似文献   

14.
Photoelectrochemical(PEC)water splitting is an effective strategy to convert solar energy into clean and renewable hydrogen energy.In order to carry out effective PEC conversion,researchers have conducted a lot of exploration and developed a variety of semiconductors suitable for PEC water splitting.Among them,metal oxides stand out due to their higher stability.Compared with traditional oxide semiconductors,ferrite-based photoelectrodes have the advantages of low cost,small band gap,and good stability.Interestingly,due to the unique characteristics of ferrite,most of them have various tunable features,which will be more conducive to the development of efficient PEC electrode.However,this complex metal oxide is also troubled by severe charge recombination and low carrier transport efficiency,resulting in lower conversion efficiency compared to theoretical value.Based on this,this article reviews the structure,preparation methods,characteristics and modification strategies of various common ferrites.In addition,we analyzed the future research direction of ferrite for PEC water splitting,and looked forward to the development of more efficient catalysts.  相似文献   

15.
Photocatalytic (PC) and photoelectrochemical (PEC) water splitting is a plethora of green technological process, which transforms copiously available photon energy into valuable chemical energy. With the augmentation of modern civilization, developmental process of novel semiconductor photocatalysts proceeded at a sweltering rate, but the overall energy conversion efficiency of semiconductor photocatalysts in PC/PEC is moderately poor owing to the instability ariseing from the photocorrosion and messy charge configuration. Particularly, layered double hydroxides (LDHs) as reassuring multifunctional photocatalysts, turned out to be intensively investigated owing to the lamellar structure and exceptional physico-chemical properties. However, major drawbacks of LDHs material are its low conductivity, sluggish mass transfer and structural instability in acidic media, which hinder their applicability and stability. To surmount these obstacles, the formation of LDH@graphene and analogus heterostructures could proficiently amalgamate multi-functionalities, compensate distinct shortcomings, and endow novel properties, which ensure effective charge separation to result in stability and superior catalytic activities. Herein, we aim to summarize the currently updated synthetic strategies used to design heterostructures of 2D LDHs with 2D/3D graphene and graphene analogus material as graphitic carbon nitride (g-C3N4), and MoS2 as mediator, or interlayer support, or co-catalyst or vice versa for superior PC/PEC water splitting activities along with long-term stabilities. Furthermore, latest characterization technique measuring the stability along with variant interface mode for imparting charge separation in LDH@graphene and graphene analogus heterostructure has been identified in this field of research with understanding the intrinsic structural features and activities.  相似文献   

16.
The efficient utilization of solar energy for photoelectrocatalytic (PEC) water splitting is a feasible solution for developing clean energy and alleviating environmental issues. However, as the core of PEC technology, the existing photoanode catalysts have disadvantages such as poor photoelectrocatalytic conversion efficiency, low conductivity of photogenerated carriers, and instability. Here, we report the ultrathin two-dimensional sandwich-like (SW) heterojunction of In2Se3/In2S3/In2Se3 (SW In2S3@In2Se3) for the first time for PEC water splitting. Our findings identify the efficient separation of electrons and holes by constructing SW In2S3@In2Se3 heterojunction. The in situ synthesis of ultrathin nanosheet arrays by using surface substitution of Se atom to epitaxially grow cell In2Se3 maximizes the contact area of heterogeneous interface and accelerates the transmission of charge carrier. Benefitting from the unique structure and composition characteristic, SW In2S3@In2Se3 displays excellent performance in PEC water splitting. The photocurrent density of SW In2S3@In2Se3 reaches 8.43 mA cm−2 at 1.23 VRHE. Compared with In2S3, the SW In2S3@In2Se3 photoanode has nearly 12 times higher PEC performance, which represents the best performance among the In2S3-based photoanode heterojunction reported so far. The evolution rate of O2 reaches 78.8 μmol cm−2 h−1, and the photocurrent has no apparent variety within 24 h.  相似文献   

17.
Hematite (α-Fe2O3) is found to be one of the most promising photoanode materials used for the application in photoelectrochemical (PEC) water splitting due to its narrow band gap energy of 2.1 eV, which is capable to harness approximately 40% of the incident solar light. This paper reviews the state-of-the-art progress of the electrochemically synthesized pristine hematite photoanodes for PEC water splitting. The fundamental principles and mechanisms of anodic electrodeposition, metal anodization, cathodic electrodeposition and potential cycling/pulsed electrodeposition are elucidated in detail. Besides, the influence of electrodeposition and annealing treatment conditions are systematically reviewed; for examples, electrolyte precursor composition, temperature and pH, electrode substrate, applied potential, deposition time as well as annealing temperature, duration and atmosphere. Furthermore, the surface and interfacial modifications of hematite-based nanostructured photoanodes, including elemental doping, surface treatment and heterojunctions are elaborated and appraised. This review paper is concluded with a summary and some future prospects on the challenges and research direction in this cutting-edge research hotspot. It is anticipated that the present review can act as a guiding blueprint and providing design principles to the scientists and engineers on the advancement of hematite photoanodes in PEC water splitting to resolve the current energy- and environmental-related concerns.  相似文献   

18.
Integrating natural and artificial photosynthetic platforms is an important approach to developing solar‐driven hybrid systems with exceptional function over the individual components. A natural–artificial photosynthetic hybrid platform is formed by wiring photosystem II (PSII) and a platinum‐decorated silicon photoelectrochemical (PEC) cell in a tandem manner based on a photocatalytic‐PEC Z‐scheme design. Although the individual components cannot achieve overall water splitting, the hybrid platform demonstrated the capability of unassisted solar‐driven overall water splitting. Moreover, H2 and O2 evolution can be separated in this system, which is ascribed to the functionality afforded by the unconventional Z‐scheme design. Furthermore, the tandem configuration and the spatial separation between PSII and artificial components provide more opportunities to develop efficient natural–artificial hybrid photosynthesis systems.  相似文献   

19.
Photoelectrochemical (PEC) water splitting is a promising approach for renewable solar light conversion. However, surface Fermi level pinning (FLP), caused by surface trap states, severely restricts the PEC activities. Theoretical calculations indicate subsurface oxygen vacancy (sub-Ov) could release the FLP and retain the active structure. A series of metal oxide semiconductors with sub-Ov were prepared through precisely regulated spin-coating and calcination. Etching X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and electron energy loss spectra (EELS) demonstrated Ov located at sub ∼2–5 nm region. Mott–Schottky and open circuit photovoltage results confirmed the surface trap states elimination and Fermi level de-pinning. Thus, superior PEC performances of 5.1, 3.4, and 2.1 mA cm−2 at 1.23 V vs. RHE were achieved on BiVO4, Bi2O3, TiO2 with outstanding stability for 72 h, outperforming most reported works under the identical conditions.  相似文献   

20.
苗昱聪  邵明飞 《催化学报》2022,43(3):595-610
化石燃料的过度消耗导致了能源短缺和环境破坏,因此可再生清洁能源的开发已成为当务之急.在众多可再生能源中,太阳能因其环境友好,储量巨大且分布广泛等特点而引起了研究者们的兴趣.光电催化(PEC)是一种能够将可再生太阳能转化为化学能的方法,而最受关注的是通过PEC水分解来获得高附加值的氢能源.欲使PEC系统实现水分解,理论上...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号