首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Utilizing a new microwave-assisted method, CuCoFe2O4@Chitosan (Ch) was synthesized as a very strong, magnetically separable nano-adsorbent. The magnetic nanohybrid adsorbent was characterized by FESEM (Field emission scanning electron microscopy), EDS (energy dispersive X-ray), Mapping & Linescan, BET (Brunauer-Emmett-Teller), FTIR (Fourier-transform infrared spectroscopy), XRD (X-ray diffraction analysis), TGA (Thermogravimetric analysis), and VSM (Vibrating Sample Magnetometer) techniques. Then, the adsorption process of Tetracycline (TC) was investigated. The highest percentage of pollutant adsorption on the synthetic and real samples was recorded at an initial concentration of 5 mg/L, pH 3.5, contact time of 20 min, the dose of 0.4 g/L, and temperature of 25 °C, 93.07 %, and 67%, respectively. The TC adsorption process via the synthesized magnetic nanocomposite was consistent with the Freundlich isotherm model (R2 = 0.992) and pseudo-second-order kinetic (K2 = 0.267). The outcomes of thermodynamic analyses, which included entropy changes (ΔS = 10.122 J/mol.k), enthalpy changes (ΔH = ?1.975 kJ/mol), and the Gibbs negative free energy (ΔG = ?4.992 kJ/mol), revealed that the adsorption process was spontaneous, favorable, and exothermic. The good magnetic properties allow easy separation after the adsorption operation. Finally, the efficiency of the nano-adsorbent in the removal process was 82.16% after four adsorption–desorption cycles. Some advantages of this research are a fast and green method for synthesis of adsorbent, fast kinetic, and magnetic properties to easy separation.  相似文献   

2.
Eleven mixed-ligand organotellurium(IV) compounds of composition R2Te(dtc)(dtp) have been prepared employing two different dithiocarbamate (dtc) and dithiophosphate (dtp) ligands: 1, R2 = C4H8, dtc = S2CNEt2, dtp = S2P(OCH2)2CEt2; 2, R2 = C8H8, dtc = S2CNEt2, dtp = S2P(OCH2)2CEt2; 3, R2 = C4H8O, dtc = S2CNEt2, dtp = S2P(OCH2)2CEt2; 4, R2 = C5H10, dtc = S2CNEt2, dtp = S2P(OCH2)2CEt2; 5, R2 = C4H8, dtc = S2CN(CH2)4, dtp = S2P(OCH2)2CEt2; 6, R2 = C8H8, dtc = S2CN(CH2)4, dtp = S2P(OCH2)2CEt2; 7, R2 = C4H8O, dtc = S2CN(CH2)4, dtp = S2P(OCH2)2CEt2; 8, R2 = C5H10, dtc = S2CN(CH2)4, dtp = S2P(OCH2)2CEt2; 9, R2 = C4H8, dtc = S2CN(CH2)4, dtp = S2P(OCH2)2CMenPr; 10, R2 = C8H8, dtc = S2CN(CH2)4, dtp = S2P(OCH2)2CMenPr; 11, R2 = C4H8O, dtc = S2CN(CH2)4, dtp = S2P(OCH2)2CMenPr. 1-11 were characterized by mass spectrometry, IR spectroscopy and multinuclear NMR (1H, 13C, 31P, 125Te) spectroscopy. The molecular structures of 2, 4 and 6, of which 2 crystallized in form of two different polymorphs (2a and 2b), were analyzed by single-crystal X-ray diffraction analysis. This analysis showed that the coordination mode of both ligand types is anisobidentate. When considering only covalent Te-C and Te-S bonds, the coordination geometry of the tellurium atoms is distorted Ψ-trigonal-bipyramidal, since the lone pair is stereochemically active and occupies an equatorial position together with the carbon atoms of the tellurocycles. If secondary Te?S interactions are considered also, the coordination sphere around tellurium is best described as bicapped Ψ-trigonal-bipyramidal for the complexes with two intramolecular Te?S secondary bonds and monomeric molecular structures, and pentagonal-bipyramidal for the complexes in which neighboring molecules in the crystal lattice are linked through additional weak intermolecular Te?S secondary bonds to form dimeric supramolecular aggregates.  相似文献   

3.
The abundance of gasification char residues which contributed to solid waste management problem is one of the major concerns in biomass gasification industry. This study focuses on synthesizing gasified Glyricidia sepium woodchip based activated carbon (GGSWAC) for the removal of basic green 4 (BG4) dye, evaluating the GGSWAC physicochemical properties and assessing the BG4 adsorption performance in batch and fixed-bed column systems. The optimal conditions of GGSWAC synthesis were at radiation power, time, and impregnation ratio (IR) of 616 W, 1 min and 1.93 g/g, respectively. The surface area (SBET) and total pore volume (TPV) of GGSWAC were 633.30 m2/g and 0.34 cm3/g, respectively. The Fritz–Schlünder best fitted to the experimental data at all temperatures in the isothermal studies, indicating a monolayer adsorption. The kinetic study showed that BG4 adsorption followed Avrami kinetic model. Based on thermodynamic parameters, the adsorption of BG4 dye onto GGSWAC was an endothermic and spontaneous process. In continuous operation, the Thomas and Yoon–Nelson models successfully predicted BG4 adsorption onto GGSWAC. The low production cost of 0.54 USD/kg showed that GGSWAC is economically feasible for commercialization.  相似文献   

4.
This research presents aqueous colloidal method to synthesize CdZnS/ZnS surface modified core/shell quantum dots (QDs) with capping agents 2-mercaptoacetic acid and 3-mercaptopropanoic acid. The QDs were characterized by the different analytical techniques. Using Plackett–Burman and Central composite designs, optimum conditions for the removal of Pb(II) from aqueous medium were developed: QDs (0.013 g) at pH 6.9, time of adsorption and desorption (20 min), temperature (61.1 °C) and dilution on 100 ppb standard solutions. Moreover, Freundlich models suggested that Pb(II) adsorption was favorable on the heterogeneous surface of QDs. The values of ΔG° and ΔH° (?59.26 KJ/mol.K) suggested the process was spontaneous and exothermic. The negative ΔS° (?0.16 KJ/mol.K) indicates that the Pb(II) chemisorb on QDs. While, system follows the pseudo-second order rate equation which indicates that rate limiting step involves chemical reaction and could be influenced by the intraparticle/pore diffusion of Pb(II) ions with QDs. By using atomic absorption spectrophotometer, developed method was tested for Pb(II) removal from tap and ground water samples taken from the different districts of Karachi City. The % recovery for Pb(II) was found to be 96.4 % (tap water) and 94.8 % (ground water) with LOD = 0.1 ng mL?1 and LOQ = 0.90 ng mL?1.  相似文献   

5.
Methylcellulose (MC) is the most common commercial cellulose ether and the most attractive biopolymer due to its cheap cost of biodegradability, biocompatibility, hydrophilicity, and lack of toxicity. In this study, CoFe2O4@MC/activated carbon (AC) was synthesized as a unique magnetic nano-adsorbent in the presence of MC biopolymer for Reactive Red 198 (RR198) dye removal. The nano-magnetic adsorbent was characterized by FESEM (Field emission scanning electron microscopy), EDS (Energy-dispersive X-ray spectroscopy), Mapping, Linescan, BET (Brunauer–Emmett–Teller), FTIR (Fourier Transform Infrared Spectroscopy), XRD (X-Ray Diffraction), and VSM (Vibrating-Sample magnetometer). For simple separation by external magnetic fields, the Ms value was 57.91 emu/g. According to XRD analysis, the nano-adsorbent maintains its crystal structure, with an average crystal size of 11 nm. The maximum removal efficiencies of RR198 for synthetic and real wastewater samples under optimal conditions (an initial concentration of 10 mg/L, pH 3, contact time of 10 min, nanocomposite dose of 1.5 g/L, and a temperature of 25 °C) were 92.2% and 78%, respectively. The adsorption experiments were fitted well with the Freundlich isotherm (R2 = 0.989) and pseudo-second-order kinetic (R2 = 0.995). The values of entropy changes (ΔS = 35.087 kJ/mol.k), enthalpy changes (ΔH = -9.862 kJ/mol), and negative Gibbs free energy changes (ΔG) showed that the adsorption process was exothermic. Finally, the reusability findings showed that after six recovery cycles, the efficiency decreased slightly (90.1%). In the end, it can be concluded that the prepared CoFe2O4@Methylcellulose/AC can be used as an efficient adsorbent for the removal of RR198 from an aqueous solution.  相似文献   

6.
The hydridic reactivity of the complex W(CO)(H)(NO)(PMe3)3 (1) was investigated applying a variety of protic donors. Formation of organyloxide complexes W(CO)(NO)(PMe3)3(OR) (R = C6H5 (2), 3,4,5-Me3C6H2 (3), CF3CH2 (4), C6H5CH2 (5), Me (6) and iPr (7)) and H2 evolution was observed. The reactions of 1 accelerated with increasing acidity of the protic donor: Me2CHOH (pKa = 17) < MeOH (pKa = 15.5) < C6H5CH2OH (pKa = 15) < CF3CH2OH (pKa = 12.4) < C6H2Me3OH (pKa = 10.6) < C6H5OH (pKa = 10).Regioselective hydrogen bonding of 1 was probed with two of the protic donors furnishing equilibrium formation of the dihydrogen bonded complexes ROH···HW(CO)(NO)(PMe3)3 (R = 3,4,5-Me3C6H2,3a and iPr, 7a) and the ONO hydrogen bonded species ROH···ONW(CO)(H)(PMe3)3 (R = C6H2Me3,3b and iPr, 7b) which were studied in hexane and d8-toluene solutions using variable temperature IR and NMR spectroscopy. Quantitative IR experiments at low temperatures using 3,4,5-trimethylphenol (TMP) confirmed the two types of competitive equilibria: dihydrogen bonding to give 3aH1 = −5.8 ± 0.4 kcal/mol and ΔS1 = −15.3 ± 1.4 e.u.) and hydrogen bonding to give 3b (ΔH2 = −2.8 ± 0.1 kcal/mol and ΔS2 = −5.8 ± 0.3 e.u.). Additional data for the hydrogen bonded complexes 3a,b and 7a,b were determined via NMR titrations in d8-toluene from the equilibrium constants Kδ) and KR1) measuring either changes in the chemical shifts of HW(Δδ) or the excess relaxation rates of HWR1) (3a,b: ΔHδ) = −0.8 ± 0.1 kcal/mol; ΔSδ) = −1.4 ± 0.3 e.u. and ΔHR1) = −5.8 ± 0.4 kcal/mol; ΔSR1) = −22.9 ± 1.9 e.u) (7a,b: ΔHδ) = −2.3 ± 0.2 kcal/mol; ΔSδ) = −11.7 ± 0.9 e.u. and ΔHR1) = −2.9 ± 0.2 kcal/mol; ΔSR1) = −14.6 ± 1.0 e.u). Dihydrogen bonding distances of 1.9 Å and 2.1 Å were derived for 3a and 7a from the NMR excess relaxation rate measurements of HW in d8-toluene. An X-ray diffraction study was carried out on compound 2.  相似文献   

7.
Monitoring the dynamic fluctuations of plant immune signaling molecules is particularly meaningful and challenging in crop protection. Herein, four rhodamine-functionalized probes (F1-F4) were designed and synthesized to attempt to selectively detect a plant hormone salicylic acid (SA). Screening results revealed that probe F1 bearing a 4,5-dimethoxy-2-nitrobenzyl carbamate moiety was extremely sensitive and selective towards SA along with a conspicuous fluorescence “turn-on” manner. The Job’s plot experiment disclosed a 1:1 binding mode together with a binding constant of 1.34 × 104 M?1, indicating that an appreciable hydrogen bonding interaction happened between probe F1 and SA, thereby leading to the spirolactam ring breakage and the succeeding fluorescence generation. Concentration-dependent titration assays offered an available linear relationship for quantifying SA (15–70 μM) and the detection limit of probe F1 to SA was 1 μM. Density functional theory (DFT) calculations displayed that a smaller energy gap (ΔEF1-Ⅱ = 498.89 kJ/mol) was obtained between its lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO), manifesting that probe F1 was more reactive and sensitive than those of probes F2-F4 (ΔE = 567.07 ~ 601.74 kJ/mol) after adsorption with salicylic acid. Meanwhile, the possible monitoring mechanism was elucidated by 1H NMR titration experiments, probe-SA DFT calculations, and HRMS. Finally, in vivo confocal imaging results found that probe F1 could delicately and selectively monitor SA on the roots of cucumber. This study can motivate the intensive exploration of multitudinous fluorescent probes for direct SA monitoring in vivo.  相似文献   

8.
A novel cation exchanger (TFS-CE) having carboxylate functionality was prepared through graft copolymerization of hydroxyethylmethacrylate onto tamarind fruit shell (TFS) in the presence of N,N′-methylenebisacrylamide as a cross-linking agent using K2S2O8/Na2S2O3 initiator system, followed by functionalisation. The TFS-CE was used for the removal of Cu(II) from aqueous solutions. At fixed solid/solution ratio the various factors affecting adsorption such as pH, initial concentration, contact time, and temperature were investigated. Kinetic experiments showed that the amount of Cu(II) adsorbed increased with increase in Cu(II) concentration and equilibrium was attained at 1 h. The kinetics of adsorption follows pseudo-second-order model and the rate constant increases with increase in temperature indicating endothermic nature of adsorption. The Arrhenius and Eyring equations were used to obtain the kinetic parameters such as activation energy (Ea) and enthalpy (ΔH#), entropy (ΔS#) and free energy (ΔG#) of activation for the adsorption process. The value of Ea for adsorption was found to be 10.84 kJ · mol?1 and the adsorption involves diffusion controlled process. The equilibrium data were well fitted to the Langmuir isotherm. The maximum adsorption capacity for Cu(II) was 64 · 10 mg · g?1 at T = 303 K. The thermodynamic parameters such as changes in free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were derived to predict the nature of adsorption process. The isosteric heat of adsorption increases with increase in surface loading indicating some lateral interactions between the adsorbed metal ions.  相似文献   

9.
A series of rigid and chiral C2-symmetric 18-crown-6 type macrocycles (S,S)-4, (S,S)-5, (S,S)-6 and (R,R)-2 bearing diamide–ester groups were synthesized. The binding properties of these macrocycles were examined for α-(1-naphthyl)ethylammonium perchlorates salts by an 1H NMR titration method. Taking into account the host employed, important differences were observed in the Ka values of (R)- and (S)-enantiomers of guests for macrocycles (S,S)-4 and (S,S)-6, KS/KR = 3.6, and KS/KR = 0.1 (KR/KS = 10.3) ΔΔG = 3.19 and ΔΔG = ?5.77 kJ mol?1, respectively. The results indicated excellent enantioselectivity of macrocyclic (S,S)-6 towards the enantiomers of α-(1-naphthyl)ethylammonium perchlorate salts.  相似文献   

10.
The adsorption behavior of 197Hg and 183–185Hg on red amorphous selenium (red a-Se) and trigonal selenium (t-Se) was investigated experimentally by off-line and on-line gas chromatographic methods, in preparation of a sensitive chemical separation and characterization of the transactinides copernicium (Cn, Z = 112) and flerovium (Fl, Z = 114). Monte-Carlo simulations of a diffusion controlled deposition were in good agreement with the experimental results, assuming as interaction limits ?ΔH ads red a-Se (Hg) > 85 kJ/mol, and ?ΔH ads t-Se (Hg) < 60 kJ/mol. Both Se allotropes can be used as stationary surfaces in comparative gas-chromatographic chemical investigations of Cn and Fl.  相似文献   

11.
N-Thioamide thiosemicarbazone derived of 2-chloro-4-hydroxy-benzaldehyde (R = H, HL1; R = Me, HL2 and R = Ph, HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in chloroform gave the adducts [ReX(CO)3(HL)] (1a X = Cl, R = H; 1a′ X = Br, R = H; 1b X = Cl, R = CH3; 1b′ X = Br, R = CH3; 1c X = Cl, R = Ph; 1c′ X = Br, R = Ph) in good yield. Complexes 1a′ and 1b’ were also obtained by the reaction of HL1 and HL3 with [ReBr(CO)5] in toluene.All the compounds have been characterized by elemental analysis, mass spectrometry (FAB), IR and 1H NMR spectroscopic methods. Moreover, the structures of HL2, HL3 and 1a·H2O were also established by X-ray diffraction. In 1a, the rhenium atom is coordinated by the sulphur and the azomethine nitrogen atoms, forming a five-membered chelate ring, as well as three carbonyl carbon and chloride atoms. The resulting coordination polyhedron can be described as a distorted octahedron.The study of the crystals obtained by slow evaporation of methanol and DMSO solutions of the adducts 1a′ and 1b, respectively, showed the formation of dimer structures based on rhenium(I) thiosemicarbazonates [Re2(L1)2(CO)6]·3H2O (2a)·3H2O and [Re2(L2)2(CO)6]·(CH3)2SO (2b)·2(CH3)2SO. Amounts of these thiosemicarbazonate complexes [Re2(L)2(CO)6] (2) were obtained by reaction of the corresponding free ligands with [ReCl(CO)5] in dry toluene.In 2a·3H2O and 2b·2(CH3)2SO the dimer structures are established by Re–S–Re bridges, where S is the thiolate sulphur from a N,S-bidentate thiosemicarbazonate ligand. In both structures the rhenium coordination sphere is similar; the dimers are in the same diamond Re2S2 face.  相似文献   

12.
《Tetrahedron: Asymmetry》1998,9(4):563-574
Homochiral crown ether (S,S)-1 containing 1-naphthyl groups as chiral barriers together with the phenol moiety was prepared by using (S)-3 as a chiral subunit which was resolved in enantiomerically pure form by lipase-catalyzed enantioselective acylation of (±)-3. Homochiral phenolic crown ether (S,S)-2, containing phenyl groups as chiral barriers, was also prepared from (S)-5 which was derived from (S)-mandelic acid. The association constants for their complexes with chiral amines in CHCl3 were determined at various temperatures by the UV–visible spectroscopic method demonstrating that the crown ethers (S,S)-1 and (S,S)-2 displayed the large ΔRSΔG values of 6.2 and 6.4 kJ mol−1, respectively, towards the amine 21 at 15°C. Thermodynamic parameters for complex formation were also determined and a linear correlation between TΔRSΔS and ΔRSΔH values was observed.  相似文献   

13.
The reaction of an S-bridged CoIIIPdIICoIII trinuclear complex containing two non-bridging thiolato groups, [Pd{Co(aet)3}2]2+ (aet = 2-aminoethanethiolate), with o-dibromoxylene (o-xylBr2) in water produced a cyclic CoIII4PdII2 hexanuclear complex, [{Co2Pd(aet)4}2(o-L)2]8+ ([1]8+; o-L = o-bis(2-aminoethylthiomethyl)benzene), in which two CoIIIPdIICoIII trinuclear units are linked by two o-xyl2+ moieties through C–S bonds. A similar cyclic CoIII4PdII2 complex, [{Co2Pd(aet)4}2(m-L)2]8+ ([2]8+; m-L = m-bis(2-aminoethylthiomethyl)benzene), bearing a relatively large cavity that accommodates water molecule(s), was synthesized by the reaction of [Pd{Co(aet)3}2]2+ with m-dibromoxylene (m-xylBr2) in water. While [1]8+ afforded only the racemic44) isomer, both the racemic ([2a]8+; Δ44) and the meso ([2b]8+; Δ2Λ2) isomers were formed for [2]8+. In addition, the meso [2b]8+ was found to exist as a mixture of two diastereomers, (ΔS)2R)2 and (ΔSΔR)(ΛRΛS), which arise from the difference in chiral configurations (R and S) of asymmetric sulfide S atoms, while the racemic [1]8+ and [2a]8+ existed as a pair of enantiomers, (ΔS)4 and(ΛR)4, which were optically resolved. The complexes obtained were characterized on the basis of electronic absorption, CD, and NMR spectroscopies, along with single crystal X-ray analyses.  相似文献   

14.
《Tetrahedron: Asymmetry》2005,16(9):1595-1602
The spontaneous resolution reaction of racemic trans-2,3-dihydro-2,3-dipyridyl-benzo[e]indole 1 with Cd(ClO4)2·6H2O in the presence of 2-butanol under solvothermal reaction conditions favors the formation of crystal 2 [P-Cd(R,R,-1)2(ClO4)2], while a similar reaction in the presence of ethanol only favors the formation of crystal 3 [M-Cd(S,S,-1)2(ClO4)2]. The crystal structural determination shows that both 2 and 3 crystallize in chiral enantiomorphous space groups (P6122 and P6522) and their structures are 1D infinite chain, and are just enantiomorphous pairs most like. The spontaneous resolution process displays estimated ee values of ca. +0.6 for 2-butanol and ca. −0.4 for ethanol. Enantiomerically pure (S,S)-trans-2,3-dihydro-2,3-dipyridyl-benzo[e]indole (S,S,-1) can be obtained through the decomposition of mechanically separated 3. Additionally (S,S,-1) also crystallizes in a chiral space group (P21). The CD (circular dichroism) spectra of both 2 and 3 in the solid state are also approximately enantiomorphous pairs. However, their fluorescent spectra in the solid state display a moderate difference in maximum emission peaks (Δλ = 19 nm). Crystal data for 2: C44H34Cl2N6O8Cd, M = 958.07, hexagonal, P6122, a = 10.5488(5), c = 68.256(4) Å, α = γ = 90°, β = 120°, V = 6577.8(6) Å3, Z = 6, Dc = 1.451 mg m−3, R1 = 0.0498, wR2 = 0.1124, μ = 0.679 mm−1, S = 0.623, Flack χ = −0.02(6). For space group P6522, R1 = 0.0670, wR2 = 0.1602, S = 0.725 with a Flack value of 1.03(7); Crystal data for 3, C44H34Cl2N6O8Cd, M = 958.07, hexagonal, P6522, a = 10.5446(3), c = 68.265(3) Å, V = 6573.3(4) Å3, Z = 6, Dc = 1.452 mg m−3, R1 = 0.0444,wR2 = 0.1002, μ = 0.679 mm−1, S = 0.558, Flack χ = 0.01(5). For space group P6122, R1 = 0.0501, wR2 = 0.1178, S = 0.599 with a Flack value of 1.00(5). The low Flack parameter indicates that the absolute configurations of 2 and 3 are stated; Crystal data for (S,S)-1, C22H17N2, M = 323.39, orthorhombic, P212121, a = 9.2598(7), b = 9.4617(8), c = 19.1452(16) Å, V = 1677.4(2) Å3, Z = 4, Dc = 1.281 mg m−3, R1 = 0.0417, wR2 = 0.1191, T = 293 K, μ = 0.077 mm−1, S = 0.862.  相似文献   

15.
The anisyl boronic acids, 2-OMe-3-R2-5-R1-C6H2B(OH)2 (R1=R2=H (a); R1=H, R2=Ph (b); R1=Me, R2=H (c); R1=Cl, R2=H (d); R1=t-Bu, R2=H (e)), have been employed in Suzuki cross-coupling reactions with either 2-bromo-6-formylpyridine (I) or 2-bromo-6-acetylpyridine (II) generating, following a facile deprotection step, the 2-phenoxy-6-carbonylpyridines, 2-(2′-OH-3′-R2-5′-R1-C6H2)-6-(CHO)C5H3N (R1=R2=H (1a); R1=Me, R2=H (1c); R1=Cl, R2=H (1d); R1=t-Bu, R2=H (1e)) and 2-(2′-OH-3′-R2-5′-R1-C6H2)-6-(CMeO)C5H3N (R1=R2=H (2a); R1=H, R2=Ph (2b)). Condensation reactions of 1 and 2 with 2,6-diisopropylaniline proceed smoothly to give the 2-phenoxy-6-iminopyridines, 2-(2′-OH-3′-R2-5′-R1-C6H2)-6-{CHN(2,6-i-Pr2C6H3)}C5H3N (R1=R2=H (3a); R1=Me, R2=H (3c); R1=Cl, R2=H (3d); R1=t-Bu, R2=H (3e)) and 2-(2′-OH-3′-R2-5′-R2-C6H2)-6-{CMeN(2,6-i-Pr2C6H3)}C5H3N (R1=H, R2=Ph (4a), R1=H, R2=Ph (4b)). Reduction of the imino unit (and concomitant C-C bond formation) in 3 can be achieved by treatment with trimethylaluminium or methyllithium which, following hydrolysis, furnishes the racemic chiral 2-phenoxy-6-(methanamino)pyridines, 2-(2′-OH-3′-R2-5′-R1-C6H2)-6-{CHMe-NH(2,6-i-Pr2C6H3)}C5H3N (R1=R2=H (5a); R1=Me, R2=H (5c); R1=Cl, R2=H (5d); R1=t-Bu, R2=H (5e)). This work represents a straightforward and rapid synthetic route to libraries of sterically and electronically variable phenoxy-substituted imino- and methanamino-pyridines, which are expected to act as useful ligands or proligands for late and early transition metal-mediated alkene polymerisation catalysis.  相似文献   

16.
Detailed NMR studies of aqueous solutions (pH 7) of γ-cyclodextrin (γCD) and the azo dye Congo Red (CR) show distinct, concentration-independent 1H NMR signals for different species. A very stable 1:1 pseudorotaxane (K 11=38,000±1100?M-1) is formed. In addition, a second complex corresponding to a 2:2 adduct (K 22=13±3?M?-1) is produced by dimerisation of the 1:1 species. The structure of the 1:1 pseudorotaxane involves fast motion of the γCD ring along the CR backbone, leaving the outer naphthalene rings free. This entity undergoes structural reorganisation and dimerises to form the 2:2 adducts. Variable-temperature spectra did not lead to coalescence and allowed for the calculation of K 11 and K 22 at each temperature and also of the corresponding thermodynamic parameters. Therefore, formation of the 1:1 complex is favourable (ΔG=-26.1±0.1?kJ/mol) and exothermic (ΔH=-21.7±1.0?kJ/mol), whereas formation of the 2:2 entity is also favourable (ΔG=-6.36±0.58?kJ/mol) but endothermic (ΔH=+43.3±8.7?kJ/mol). The corresponding values for entropy change are both positive (ΔS 11=+14.5±0.7?J/mol, ΔS 22=+166±33?J/mol). Isothermal titration calorimetry studies confirm the NMR findings. For the 1:1 complexation, the dependence of K upon the concentration is indicative of the dimerisation to form the 2:2 complex. When CR is in excess, aggregation processes involving 2:2 complexes and CR molecules are observed by NMR and calorimetry.  相似文献   

17.
The kinetics of pentoxyl (I) oxidation in aqueous media under the action of hypochlorite ions was studied at pH 8.8 and 273–298 K. The order of the reaction with respect to both participants was found to be one. The temperature dependence of the reaction rate obeyed the Arrhenius law. The reaction activation parameters were found to be E a=11.08 kJ/mol, ΔH =8.73 kJ/mol, ΔS =?200.70 J/(mol K), and ΔG =66.88 kJ/mol. Reaction stoichiometry was studied, the chemical characteristics of the process considered, and a mechanism of the oxidative transformation of I under the action of OCl? suggested.  相似文献   

18.
Metal cage complexes [(Me2N)3MO]4 (M = Nb, 3; Ta, 4) have been prepared from the reactions of M(NMe2)5 (M = Nb, 1; Ta, 2) with water. Single crystal X-ray diffraction studies of 3 and 4 reveal that they adopt cubane-like structures with M–O bridges. Variable-temperature NMR studies of –NMeAMeB rotations in 3 and 4 have been performed to give the following activation parameters for the exchanges: ΔH  = −1.4(1.1) kJ/mol, ΔS  = −209(8) J/mol K, \Updelta G 30 8  \textK 1 = 6 4( 2)  \textkJ/\textmol \Updelta G_{{_{{ 30 8\;{\text{K}}}} }}^{{^{ \ne } }} = 6 4\left( 2\right)\;{\text{kJ}}/{\text{mol}} for 3, and ΔH  = −0.9(1.2) kJ/mol, ΔS  = −2.1(0.2) × 102 J/mol K, \Updelta G 30 8  \textK 1 = 6 3( 6)  \textkJ/\textmol \Updelta G_{{ 30 8\;{\text{K}}}}^{{^{ \ne } }} = 6 3\left( 6\right)\;{\text{kJ}}/{\text{mol}} for 4.  相似文献   

19.
Solubilities of l -glutamic acid, 3-nitrobenzoic acid, p -toluic acid, calcium-l -lactate, calcium gluconate, magnesium- dl -aspartate, and magnesium- l -lactate in water were determined in the temperature range 278 K to 343 K. The apparent molar enthalpies of solution at T =  298.15 K as derived from these solubilities areΔsolHm (l -glutamic acid,msat =  0.0565 mol · kg  1)  =  30.2 kJ · mol  1,ΔsolHm (3-nitrobenzoic acid, m =  0.0188 mol · kg  1)  =  28.1 kJ · mol  1, ΔsolHm( p - toluic acid, m =  0.00267 mol · kg  1)  =  23.9 kJ · mol  1,ΔsolHm (calcium- l -lactate tetrahydrate,m =  0.2902 mol · kg  1)  =  25.8 kJ · mol  1,ΔsolHm (calcium gluconate, m =  0.0806 mol · kg  1)  =  22.1 kJ · mol  1, ΔsolHm(magnesium-dl -aspartate tetrahydrate, m =  0.1469 mol · kg  1)  =  11.5 kJ · mol  1, andΔsolHm (magnesium- l -lactate trihydrate,m =  0.3462 mol · kg  1)  =  3.81 kJ · mol  1.  相似文献   

20.
The series of bidentate N^N iron(II) and cobalt(II) complexes containing 8-(1-aryliminoethylidene) quinaldine derived ligands, 8-[2,6-(R1)2-4-R2-C6H2NC (Me)]-2-Me-C10H5N, were synthesized and characterized by elemental and spectroscopic techniques. The molecular structures of Co1 (R1 = Me, R2 = H), Co3 (R1 = iPr, R2 = H) and Co4 (R1 = R2 = Me) were confirmed as the distorted tetrahedral by single crystal X-ray diffraction. On treatment with modified methylaluminoxane (MMAO), these complexes exhibited good catalytic activities of up to 5.71 × 105 g mol−1(Fe) h−1 for the ethylene dimerization at 30 °C under 10 atm of ethylene, in which iron pre-catalysts produced butenes with a high selectivity for α-butene. The correlation between metal complexes, catalytic activities and the product formed were investigated under various reaction parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号