首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polyaniline (PANI)/zinc oxide (ZnO) nanocomposite was synthesized by in-situ polymerization. X-ray diffraction patterns, UV?Cvisible spectroscopy, SEM, and TEM were used to characterize the composition and structure of the nanocomposite. Nanostructured PANI/ZnO composite was used as photocatalyst in the photodegradation of methylene blue dye molecules in aqueous solution. The photocatalytic activity of PANI/ZnO nanocomposite under UV and visible light irradiation was evaluated and was compared with that of ZnO nanoparticles. ZnO/PANI core?Cshell nanocomposite had greater photocatalytic activity than ZnO nanoparticles and pristine PANI under visible light irradiation. According to these results, application of PANI as a shell on the surface of ZnO nanoparticles causes the enhanced photocatalytic activity of the PANI/ZnO nanocomposite. Also UV?Cvisible spectroscopy studies showed that the absorption peak for PANI/ZnO nanocomposite has a red shift toward visible wavelengths compared with the ZnO nanoparticles and pristine PANI. The effect of different operating conditions on the photocatalytic performance of PANI/ZnO nanocomposite in the photodegradation of methylene blue dye molecules was investigated in a bath experimental setup.  相似文献   

2.
Novel ZnO/N‐doped helical carbon nanotubes (ZnO/N‐HCNTs) composites were successfully synthesized via a facile chemical precipitation approach at room temperature. The sample was well characterized by X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDS), transmission electron microscopy (TEM) and ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS). The photocatalytic activity was evaluated in the degradation of methylene blue (MB) aqueous solution under UV light irradiation. It is found that ZnO nanoparticles were highly and uniformly anchored on the surface and inner tubes of the N‐HCNTs with size of about 5 nm, and significantly enhanced the photocatalytic activity compared to pure ZnO. The enhanced photocatalytic activity of ZnO/N‐HCNTs composites can be ascribed to the integrative synergistic effect of effective interfacial hybridization between N‐HCNTs and ZnO nanoparticles and the prolonged lifetime of photogenerated electron–hole pairs. Moreover, the ZnO/N‐HCNTs could be easily recycled without any obvious decrease in photocatalytic activity and could be promote their application in the area of environmental remediation.  相似文献   

3.
采用浸渍法制备了表面AgX(X=I,Br)等离子基元修饰的ZnO纳米柱状阵列,研究了浸渍浓度和时间以及紫外光光照预处理对ZnO纳米柱状阵列可见光光催化活性的影响.采用场发射扫描电子显微镜、X射线衍射仪、紫外可见漫反射吸收光谱以及X射线光电子能谱仪等手段对ZnO纳米柱状阵列的形貌、相组成、禁带宽度及其表面特性进行了表征.结果显示,AgBr颗粒分布于ZnO纳米柱状阵列的顶端及顶端侧面,同时AgBr颗粒之间相互接触而形成网状结构.通过紫外光光照预处理,AgBr表面出现细小颗粒,形成Ag/AgBr/ZnO纳米复合结构.可见光光催化降解甲基橙结果表明,在相同工艺条件下所制AgBr/ZnO的可见光光催化活性明显优于AgI/ZnO,且与浸渍浓度及时间有关.由于ZnO纳米柱状阵列的比表面积大,AgBr的可见光响应特性以及Ag/AgBr纳米结构的表面等离子效应,经过紫外光光照预处理形成的Ag/AgBr/ZnO纳米复合结构表现出最好的可见光光催化活性.  相似文献   

4.
In this study, the photocatalytic degradation of Reactive Blue 81 (RB81) using synthesized NiO-doped ZnO–ZrO2 nanoparticles under UV irradiation was investigated. Then, the products were characterized by Scanning electron microscope (SEM), X-ray diffraction (XRD), and diffuse reflectance spectroscopy (DRS). The removal rate of RB81 using ZnO–ZrO2 after 180?min of irradiation was 96.7%. Nickel oxide (NiO) was used as an additive to ZnO–ZrO2 for improvement of RB81 degradation via photocatalysis process. Photodegradation of RB81 was achieved to 100% using ZnO–ZrO2–NiO nanoparticles with ratio of 1:2:0.3 after 180?min of irradiation. There was a red shift in absorption bands (from 410?nm to 435?nm) observed in increasing of NiO to ZnO–ZrO2 nanoparticle, that it might lead to a higher photocatalytic activity under visible light. Response surface methodology (RSM) was used for optimization of experimental and these results were obtained: solution pH = 3, ZnO–ZrO2–NiO dosage = 15?mg/L, and the initial RB81 concentration = 5?mg/L. The photodegredation of RB81 followed pseudo-first order kinetic according to the Langmuir–Hinshelwood model.  相似文献   

5.
Bare TiO2 and Cu-doped TiO2 nanoparticles with different nominal doping amounts of Cu ranging from of 0.5 to 5.0 mol% were synthesized using the modified sol–gel method. The samples were physically characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller-specific surface area, UV–Vis diffuse reflectance spectroscopy, zeta potential, X-ray photoelectron spectroscopy, inductively coupled plasma, and photoluminescence techniques. The Cu-doped TiO2 exhibited good photocatalytic activity in mineralization of oxalic acid and formic acid under visible light irradiation. Photomineralization of oxalic and formic acids under visible light irradiation revealed greatly enhanced photoactivity exhibited by the 2.0 mol% Cu-doped TiO2 photocatalyst compared to bare TiO2 . The enhanced photocatalytic performance arises from copper ion doping in the TiO2 structure, leading to an extended photoresponsive range, enhanced photogenerated charge separation, and transportation efficiency.  相似文献   

6.
In this study, the photocatalytic efficiency of anatase‐type TiO2 nanoparticles synthesized using the sol–gel low‐temperature method, were enhanced by a combined process of copper reduction and surface hydroxyl groups enhancement. UV–light‐assisted photo and NaBH4‐assisted chemical reduction methods were used for deposition of copper onto TiO2. The surface hydroxyl groups of TiO2 were enhanced with the assistance of NaOH modification. The prepared catalysts were immobilized on glass plates and used as the fixed‐bed systems for the removal of phenazopyridine as a model drug contaminant under visible light irradiation. NaOH‐modified Cu/TiO2 nanoparticles demonstrated higher photocatalytic efficiency than that of pure TiO2 due to the extending of the charge carriers lifetime and enhancement of the adsorption capacity of TiO2 toward phenazopyridine. The relationship of structure and performance of prepared nanoparticles has been established by using various techniques, such as XRD, XPS, TEM, EDX, XRF, TGA, DRS and PL. The effects of preparation variables, including copper content, reducing agents rate (NaBH4 concentration and UV light intensity) and NaOH concentration were investigated on the photocatalytic efficiency of NaOH‐modified Cu/TiO2 nanoparticles.  相似文献   

7.
In this work, we report the synthesis of CdS-incorporated porous WS2 by a simple hydrothermal method. The structural, morphological, and optical properties of the samples were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), high resolution X-ray photoelectron spectroscopy (XPS) and UV–visible spectrometry. The photocatalytic activities were established for degradation of crystal violet (CV) under UV and visible light irradiation. The CdS-incorporated porous WS2 hybrid demonstrated high photocatalytic activity for degradation of CV pollutant compared to pure CdS nanoparticles and porous WS2 sheets. This result implies that the CdS-incorporated porous WS2 promoted more electron-hole pair transformation under UV and visible light irradiation. This significant enhancement of photocatalytic efficiency of CdS-incorporated porous WS2 photocatalyst under visible light can be ascribed to the presence of CdS nanospheres on the meshed-like WS2 sheets which potentially improves absorption in the visible range enabled by surface plasmon resonance effect of CdS nanospheres. The photostability and reusability of the CdS-porous WS2 were examined through recycling experiments.  相似文献   

8.
In present study, ZnO/SnO2/ZnO/SnO2/ZnO multi–layer, ZnO/SnO2/ZnO triple layer and ZnO single layer films have been deposited on glass substrate by sol–gel dip–coating technique. The structural and optical properties of thin films have been investigated by X-ray diffractometer, UV–visible, photoluminescence spectroscopies and scanning electron microscopy. The structural analysis reveals structural inhomogeneities and different crystallite growth processes as function of number of deposited layers. A comparison between photocatalytic activity of zinc oxide samples toward photodegradation of phenol, 4-aminophenol and 4-nitrophenol has been performed under UV light irradiation. Experiments were conducted to study the effects of operational parameters on the degradation rate. Pseudo-first-order photodegradation kinetics was observed on all films and the reaction constants were determined. The results showed that the photocatalytic activity of ZnO multi–layer film was superior to that of the ZnO single- and triple-layer films. Differences in film efficiencies can be attributed to differences in crystallinity, surface morphology, defect concentration of oxygen vacancy and to presence of SnO2 sublayer that may act as trap for electrons generated in the ZnO layer thus preventing electron–hole recombination. The results reveal that SnO2 hetrojunction layers improve crystalline quality, optical and photocatalytic properties of ZnO multilayered films.  相似文献   

9.
Photocatalytic activity of TiO2 nanoparticles in the visible light region was enhanced. TiO2–CdSe and TiO2–CdSe/CdS nanohybrids were supported on the reduced graphene oxide. These nanohybrid materials were applied as photocatalyst toward oxidation of aromatic alcohols under a mild condition and the molecular oxygen as oxidant. A plausible mechanism for the photocatalytic oxidation was also proposed. Desired nanohybrids were obtained via in situ fixation of CdSe/CdS on the surface of nanosheets of reduced graphene oxide (rGO). Finally, it was modified by TiO2 sol nanoparticles through a hydrothermal method. The obtained nanomaterials, were characterized by SEM, TEM imaging, XRD, EDAX, DRS and XPS analyses. The size of nanohybrids materials were distributed mostly in a narrow range of 50–65 and 60–75 nm for TiO2–rGO–CdSe and TiO2–rGO–CdSe/CdS, respectively. These photocatalysts showed high catalytic activity under visible light irradiation in a short reaction time and even higher selectivity rather than UV irradiation. The yield of catalytic oxidation increased at least 25–30% for TiO2–CdSe/CdS on rGO, which could be related to its higher light sensitivity and lower energy band gap. The photocatalysts were recycled and reused 8 times without significant loss of their activities due to their stability under visible light.  相似文献   

10.
SnO nanoparticles have been successfully synthesized in the presence of Triton-X 100 (TX-100) surfactant via hydrothermal method for the first time, and the photocatalytic activity under UV and visible light irradiation for the degradation of Methylene Blue (MB) and Rhodamine B (RdB) organic textile dyes was investigated. The structural, morphological and chemical characterizations were investigated by using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), UV–vis. diffuse reflectance spectroscopy (UV–vis DRS) and photoluminescence (PL) analysis. The results reveal that the addition of surfactant, TX-100, in the precursor solutions leads to reduction in crystallite size with significant changes in morphological structure of SnO nanoparticles. The synthesized SnO nanoparticles show excellent photocatalytic activity under UV or visible light irradiation. MB and RdB dyes degraded completely under UV irradiation after 90 and 150 min, respectively. Also, MB and RdB dyes degraded only 150 min later under visible light illumination with a little amount of photocatalyst (0.8 g/L). Hence, this work explores the facile route to synthesizing efficient SnO nanoparticles for degrading organic compound under both UV and visible light irradiations.  相似文献   

11.
ZnTiO3–TiO2/organic pillared montmorillonite (pMt) composite catalyst was successfully prepared in this paper by immobilizing ZnTiO3–TiO2 onto pMt. The composition and texture of the prepared composite catalyst were characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, energy dispersive spectrometry, ultraviolet–visible light (UV–Vis) diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The photocatalytic activity was tested via photocatalytic degradation of methyl blue (MB) under both visible irradiation and UV light. The results indicated that the ZnTiO3–TiO2/pMt composite catalyst had an apparent absorption at the area of visible irradiation, and exhibited a higher efficiency of photocatalytic degredation of MB under visible irradiation. This was due to the heterostructure of ZnTiO3–TiO2, and the mesoporous structure and specific surface area of the ZnTiO3–TiO2/pMt composite. In addition, the results of the radical scavenging experiments showed that the holes and superoxide radicals are responsible for the degradation of MB under visible irradiation.  相似文献   

12.
N-doped TiO2 (N-TiO2) nanoparticles were synthesized via a one-step low temperature (180℃) solvothermal route, which adopted NH4NO3 as the nitrogen source. The structure, composition, BET specific surface area, and optical properties of the as-synthesized product were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N2 adsorption- desorption isotherms, and UV-vis diffuse reflectance spectroscopy. In addition, its photocatalytic properties were tested by the reduction of aqueous Cr(VI) under UV and visible light (x 〉 420 rim) irradiation. It was observed that for the reduction of aqueous Cr(VI), the as-synthesized N-TiO2 nanoparticles not only exhibited much higher photocatalytic activity than P25 TiO2 under UV light, but also exhibited remarkably high photocatalytic activity under visible light (λ 〉 420 nm).  相似文献   

13.
The toxic dye pigments, even in small quantities, can damage ecosystems. Removing organic, inorganic, and microbiological contaminants from wastewater via heterogeneous photocatalysis is a promising method. Herein, we report the band structure tuning of ZnO/CuO nanocomposites to enhance photocatalytic activity. The nanocomposites were synthesized by a chemical approach using step-wise implantation of p-type semiconductor CuO to n-type semiconductor ZnO. Various characterization techniques such as X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDX) and UV spectroscopy were used to investigate the crystal structure, surface morphology, elemental composition and optical properties of the synthesized samples. As the CuO content increased from 10% to 50% in ZnO/CuO nanocomposites, the optical bandgap decreased from 3.36 to 2.14 eV. The photocatalytic activity of the samples was evaluated against the degradation of methylene blue (MB) under visible irradiation. Our study demonstrates a novel p–n junction oxide photocatalyst based on wt. 10% CuO/ZnO with superior photocatalytic activity. Effectively 66.6% increase in degradation rate was achieved for wt. 10% CuO/ZnO nanocomposite compared to pure ZnO nanoparticles.  相似文献   

14.
ABSTRACT

We reported a green and simple method for biosynthesizing zinc oxide nanoparticles (ZnO NPs) using Corymbia citriodora leaf extract as reducing and stabilizing agent. SEM, EDX, XRD, UV–VIS spectroscopy, Raman spectroscopy and TGA have been used for characterizing the biosynthesized ZnO NPs. The results indicating the ZnO NPs synthesized by C. citriodora leaf extract have high purity and the average size is 64?nm. The photocatalytic activity of the ZnO NPs has been investigated by degradation methylene blue under visible light irradiation. Due to the smaller size, the biosynthesized ZnO NPs showed an excellent photocatalytic performance.  相似文献   

15.
TiO2和ZnO表面CO光催化氧化活性研究   总被引:1,自引:1,他引:0  
在TiO2和ZnO表面CO光催化氧化研究中发现,365 nm紫外光照下TiO2表面无活性,而ZnO表面却有明显的CO光催化氧化活性.研究表明,主要是由于紫外光照下,ZnO光分解而TiO2没有光分解,从而在表面产生不同吸附形态的氧所致.而且,ZnO表面CO光催化氧化反应活性可在27 h内保持稳定,暗示气相光催化反应中,ZnO不会因为光腐蚀而使其催化活性降低.  相似文献   

16.
High aspect ratio cobalt doped ZnO nanowires showing strong photocatalytic activity and moderate ferromagnetic behaviour were successfully synthesized using a solvothermal method and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), vibrating sample magnetometry (VSM) and UV–visible absorption spectroscopy. The photocatalytic activities evaluated for visible light driven degradation of an aqueous methylene orange (MO) solution were higher than for Co doped ZnO nanoparticles at the same doping level and synthesized by the same synthesis route. The rate constant for MO visible light photocatalytic degradation was 1.9·10−3 min−1 in case of nanoparticles and 4.2·10−3 min−1 in case of nanowires. We observe strongly enhanced visible light photocatalytic activity for moderate Co doping levels, with an optimum at a composition of Zn0.95Co0.05O. The enhanced photocatalytic activities of Co doped ZnO nanowires were attributed to the combined effects of enhanced visible light absorption at the Co sites in ZnO nanowires, and improved separation efficiency of photogenerated charge carriers at optimal Co doping.  相似文献   

17.
Visible light active Ag doped SnO2 nanoparticles modified with curcumin (Cur–Ag–SnO2) have been prepared by a combined precipitation and chemical impregnation route. The optical properties, phase structures and morphologies of the as-prepared nanoparticles were characterized using UV–visible diffuse reflectance spectra (UV–vis-DRS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The surface area was measured by Brunauer. Emmett. Teller (B.E.T) analysis. Compared to bare SnO2, the surface modified photocatalysts (Ag–SnO2 and Cur–Ag–SnO2) showed a red shift in the visible region. The photocatalytic activity was monitored via the degradation of rose bengal (RB) dye and the results revealed that Cur–Ag–SnO2 shows better photocatalytic activity than that of Ag–SnO2 and SnO2. The superior photocatalytic activity of Cur–Ag–SnO2 could be attributed to the effective electron-hole separation by surface modification. The effect of photocatalyst concentration, initial dye concentration and electron scavenger on the photocatalytic activity was examined in detail. Furthermore, the antifungal activity of the photocatalysts and the reusability of Cur–Ag–SnO2 were tested.  相似文献   

18.
Using industrial titanyl sulfate as a raw material, Fe‐doped sulfated titania (FST) photocatalysts were prepared by using the one‐step thermal hydrolysis method and characterized using XRD, SEM, TGA–DSC, FTIR, UV–Vis DRS and N2 adsorption–desorption techniques. The effects of calcining temperature on the structure of the titania were investigated. The photocatalytic activity of the FST was evaluated using the photodegradation of methylene blue and photooxidation of phenol in aqueous solutions under UV and visible light irradiation, respectively. The results evinced that Ti4+ is substituted by Fe3+ in titania lattice and forms impurity level within the band gap of titania, which consequently induces the visible light absorption and visible‐light‐driven photocatalytic activity. The synergistic effects of Fe‐doping and sulfation are beneficial to the efficient separation of the photogenerated carriers and also improve the quantum efficiency of photocatalysis. In addition, Brönsted acidity arisen from the strong inductive effect of sulfate is also conducive to enhancing the photocatalytic performance of FST. However, when the calcining temperature is higher than 800°C, sulfur species and surface hydroxyl groups decompose and desorb from FST and the specific surface area decreases sharply. Moreover, severe sintering and rutile phase formation occur simultaneously. All these are detrimental to photocatalytic activity of FST.  相似文献   

19.
Low-cost and scalable preparation,high photocatalytic activity,and convenient recycle of Zn O nanopowders(NPs)would determine their practical application in purifying wastewater.In this contribution,ZnO NPs were scalably synthesized via the simple reaction of Zn powder with H_2O vapor in autoclave.The structural,morphological and optical properties of the samples were systematically characterized by X-ray diffraction,scanning electron microscopy,Fourier transform infrared spectra,transmission electron microscopy,Micro-Raman,photoluminescence,and ultraviolet-visible spectroscopy.The as-prepared Zn O NPs are composed of nanoparticles with 100–150 nm in diameter,and have a small Brunauer-Emmett-Teller surface area of 6.85 m~2/g.The formation of Zn O nanoparticles is relative to the peeling of H_2 release.Furthermore,the product has big strain-stress leading to the red-shift in the band gap of product,and shows a strong green emission centered at 515 nm revealing enough atomic defects in Zn O NPs.As a comparison with P25,the obtained dust gray Zn O NPs have a strong absorbance in the region of 200–700 nm,suggesting the wide wave-band utilization in sunlight.Based on the traits above,the Zn O NPs show excellent photocatalytic activity on the degradation of rhodamine B(Rh-B)under solar light irradiation,close to that under UV irradiation.Importantly,the Zn O NPs could be well recycled in water due to the quick sedimentation in themselves in solution.The low-cost and scalable preparation,high photocatalytic activity,and convenient recycle of Zn O NPs endow themselves with promising application in purifying wastewater.  相似文献   

20.
In this study, novel ternary Fe2O3/ZnO/ZnFe2O4 (ZFO) composites were successfully prepared through a simple hydrothermal reaction with subsequent thermal treatment. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis, Barrett-Joyner-Halenda (BJH) measurement, and UV–vis diffuse reflectance spectroscopy (UV–vis DRS). The photocatalytic degradation of rhodamine B (Rh B) under visible light irradiation indicated that the ZFO composites calcined at 500 °C has the best photocatalytic activity (the photocatalytic degradation efficiency can reach up to 95.7% within 60 min) and can maintain a stable photocatalytic degradation efficiency for at least three cycles. In addition, the photocatalytic activity of ZFO composites toward dye decomposition follows the order cationic Rh B > anionic methyl orange. Finally, using different scavengers, superoxide and hydroxyl radicals were identified as the primary active species during the degradation reaction of Rh B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号