首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Ribosylation of 3-amino-5H-[1,2,4]triazolo[4,3-b][1,2,4]triazole ( 1 ) with l-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose and stannic chloride resulted in the following protected nucleoside analogs: 3-amino-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)[1,2,4]triazolo[4,3-β][1,2,4]triazole ( 4 ), 3-amino-1-(2,3,5-tri-O-benzoyl-α-D-ribofuranosyl)[1,2,4]triazolo[4,3-β][1,2,4]triazole ( 5 ), 3-amino-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)[1,2,4]triazolo[4,3-β][1,2,4]triazole ( 5 ), and 3-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl) amino-5H-[1,2,4]triazolo[4,3-b]-[1,2,4]triazole ( 7 ). Compounds 4–6 were deprotected to 3-amino-1-β-D-ribofuranosyl[1,2,4]triazolo[4,3-b][1,2,4]-triazole ( 3 ), 3-amino-1-α-D-ribofuranosyl[1,2,4]triazolo[4,5-b][1,2,4]triazole ( 8 ), and 3-imino-2H-2-β-D-ribo-furanosyl[1,2,4]triazolo[4,3-b][1,2,4]triazole ( 9 ), while 7 could not be deprotected without decomposition. Compounds 1, 4, 6, 7 , and 9 were screened and found to have no antiviral activity.  相似文献   

2.
2-Amino-9-β-D-ribofuranosylpurine-2-sulfonamide (2-sulfamoyladenosine, 4 ), a congener of sulfonosine ( 3 ), was synthesized by four different routes. Acid catalyzed fusion of 6-chloropurine-2-sulfonyl fluoride ( 5 ) with 1,2,3,5-tetra-O-acetyl-β-D-ribofuranose ( 8 ) gave a good yield of 6-chloro-9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)purine-2-sulfonyl fluoride ( 9 ). Ammonolysis of 9 furnished 4 . Lewis acid catalyzed glycosylation of the trimethylsilyl derivative of either 6-chloropurine-2-sulfonamide ( 6 ) or 6-aminopurine-2-sulfonamide ( 7 ) with 8 gave the corresponding N9-glycosylated products, 10 and 11 , respectively, which on ammonolysis gave 4 . Amination of 2-thioadenosine ( 12 ) with chloramine solution gave the sulfenamide derivative 13 , which on subsequent oxidation with m-chloroperoxybenzoic acid furnished an alternate route to 4 . The structure of 4 was established by single-crystal X-ray diffraction studies. 2-Sulfamoyladenosine ( 4 ) is devoid of significant inhibitory activity against L1210 leukemia in mice.  相似文献   

3.
A model iodophenyl imidazole ribonucleoside has been synthesized to study biodistribution properties in laboratory animals. The key intermediate 5-amino-1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)imidazole-4-[N-(p-iodophenyl)carboxamide] ( 5 ) was synthesized by coupling N-succinimidyl-5-amino-1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)imidazole-4-carboxylate ( 4 ) and p-iodoaniline. Deacetylation of the intermediate compound gave 5-amino-1-β-D-ribofuranosylimidazole-4-[N-(p-iodophenyl)]carboxamide ( 6 ). Ring annulation via diazotization of 5 gave 7-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)imidazo[4,5-d]-v-triazin-[3-N-(p-iodophenyl)]-4-one ( 7 ). Subsequent deacetylation of 7 afforded 7-β-D-ribofuranosylimidazo[4,5-d]-v-triazin-[3-N-(p-iodophenyl)]-4-one ( 8 ). The radiolabeled compounds, [125I] 5 and [125I] 6 were prepared in a manner similar to the corresponding unlabeled compounds except that p-[125I]iodoaniline was used for coupling with 4 . Biodistribution studies of iodine-125-labeled 5 and 6 were performed in female Fischer rats and tumor bearing nude mice. Compound 6 showed uptake in the brain and proliferating tissues such as tumor and bone-marrow.  相似文献   

4.
Synthesis of the pyrazolo[3,4-d]pyrimidin-3-one congeners of guanosine, adenosine and inosine is described. Glycosylation of 3-methoxy-6-methylthio-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one ( 13 ) with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose ( 16 ) in the presence of boron trifluoride etherate gave 3-methoxy-6-methylthio-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)pyrazolo[3,4-d]pyrimidin-4(5H)-one ( 17 ) which, after successive treatments with 3-chloroperoxybenzoic acid and methanolic ammonia, afforded 6-amino-3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)one ( 18 ). The guanosine analog, 6-amino-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidine-3,4(2H,5H)-dione ( 21 ), was made by sodium iodide-chlorotrimethylsilane treatment of 6-amino-3-methoxy-1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)pyrazolo[3,4-d]pyrimidin-4(5H)one ( 19 ), followed by sugar deprotection. Treatment of the adenine analog, 4-amino-1H-pyrazolo[3,4-d]pyrimidin-3(2H)-one ( 11 ), according to the high temperature glycosylation procedure yielded a mixture of N-1 and N-2 ribosyl-attached isomers. Deprotection of the individual isomers afforded 4-amino-3-hydroxy-1-βribofuranosylpyrazolo-[3,4-d]pyrimidine ( 26 ) and 4-amino-2-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-3(7H)-one ( 27 ). The structures of 26 and 27 were established by single crystal X-ray diffraction analysis. The inosine analog, 1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidine-3,4(2H,5H)-dione ( 28 ), was synthesized enzymatically by direct ribosylation of 1H-pyrazolo[3,4-d]pyrimidine-3,4(2H,5H)-dione ( 8 ) with ribose-1-phosphate in the presence of purine nucleoside phosphorylase, and also by deamination of 26 with adenosine deaminase.  相似文献   

5.
The syntheses of 3-amino-4-methyl-1-(β-D-ribofuranosyl)-1,2,4-triazolin-5-one ( 8a ) and its 2′-deoxy analog 8b as well as 5-amino-2-methyl-1-(β-D-ribofuranosyl)-1,2,4-triazolin-3-one ( 12 ) have been accomplished. Compounds 8a and 8b were synthesized via glycosylation of 3-bromo-5-nitro-1,2,4-triazole which was followed by replacement in three steps of the 3-bromo function to yield 3-nitro-1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)-1,2,4-triazolin-5-one ( 4a ) and its 2′-deoxy analog 4b . Compounds 4a and 4b were methylated at N2, hydrogenated and deblocked to give 3-amino-4-methyl-1-(β-D-ribofuranosyl)-1,2,4-triazolin-5-one ( 8a ) and the 2′-deoxy analog 8b . Compound 12 was synthesized by glycosylation of 3-amino-1-methyl-1,2,4-triazolin-5(2H)-one ( 10 ). The structures of 8b and 12 were confirmed by single crystal X-ray diffraction analysis.  相似文献   

6.
A number of pyrazole ribonucleosides, structurally related to AICA riboside and ribavirin have been prepared and evaluated for their biological activity in vitro. Deisopropylidenation of 5-amino-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)pyrazole-4-carbonitrile ( 6 ) with aqueous trifluoroacetic acid gave 5-amino-1-(β-D-ribofuranosyl)pyrazole-4-carbonitrile ( 7 ). Conventional transformation of the carbonitrile function of 7 gave the AICA riboside congener ( 2 ) and related 5-amino-1-(β-D-ribofuranosyl)-pyrazoles ( 8–10 ). Acetylation of 7 at low temperature gave the versatile intermediate 5-amino-1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)pyrazole-4-carbonitrile ( 15 ). Non-aqueous diazotization of 15 with isoamylnitrite in dibromomethane or diiodomethane gave the corresponding C5-bromo 13 and C5-iodo 16 derivatives. Compounds 13 and 16 were subsequently transformed into 5-bromo-1-(β-D-ribofuranosyl)pyrazole-4-carboxamide ( 11 ) and the 5-iodo analog 25 . However, a similar nonaqueous diazotization of 15 in dichloromethane afforded the deaminated product 1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)pyrazole-4-carbonitrile ( 22 ). Treatment of 22 with ammonium hydroxide/hydrogen peroxide gave the ribavirin congener 1-(β-D-ribofuranosyl)pyrazole-4-carboxamide ( 18 ). Similar treatment of 22 with hydrogen sulfide in pyridine or hydroxylamine in ethanol gave the 4-thiocarboxamide 19 and 4-carboxamidoxime 20 derivatives, respectively. Catalytic hydrogenation of 20 afforded 1[β-D-ribofuranosyl)pyrazole-4-carboxamidine ( 21 ). These pyrazole nucleosides are devoid of any significant antiviral or antitumor activity in vitro.  相似文献   

7.
The synthesis of 2-chloro-1-(β-D-ribofuranosyl)benzimidazole (4b) has been accomplished by a condensation of 2-chloro-1-trimethylsilylbenzimidazole (1) with 2,3,5-tri-O-acetyl-D-ribofuranosyl bromide (2) followed by subsequent deacetylation. Nucleophilic displacement of the 2-chloro group has furnished several interesting 2-substituted-1-(β-D-ribofuranosyl)benzimidazoles. 1-(β-D-Ribofuranosyl)benzimidazole (5) and 1-(β-D-ribofuranosyl)benzimidazole-2-thione (6) were prepared from 4b and 6 was also prepared by condensation of 2 with silylated benzimidazole- 2-thione (3). Alkylation of 6 furnished certain 2-alkylthio-1-(β-D-ribofuranosyl)benzimidazoles and oxidation of 6 with alkaline hydrogen peroxide produced 1-(β-D-ribofuranosyl)benzimidazole-2-one (9). The assignment of anomeric configuration for all nucleosides reported is discussed.  相似文献   

8.
By condensation of ethyl indolin-3-acetate ( 4 ) and 2,3,5-tri-O-benzoylribofuranosyl-1-acetate ( 5 ), ethyl 1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)indolin-3-acetate ( 6 ) was obtained in good yield. The indoline nucleoside 6 was aromatized to ethyl 1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)indol-3-acetate ( 7 ) with DDQ. The treatment of the indole nucleoside with barium hydroxide and methanol gave the methyl ester 8 , which was further treated in water to give the desired 1-(β-D-ribofuranosyl)indol-3-acetic acid ( 9 ).  相似文献   

9.
6-Amino-1-(2-deoxy-β-D-erthro-pentofuranosyl)pyrazolo[4,3-c]pyridin-4(5H)-one ( 5 ), as well as 2-(β-D-ribofuranosyl)- and 2-(2-deoxy-β-D-ribofuranosyl)- derivatives of 6-aminopyrazolo[4,3-c]pyridin-4(5H)-one ( 18 and 22 , respectively) have been synthesized by a base-catalyzed ring closure of pyrazole nucleoside precursors. Glycosylation of the sodium salt of methyl 3(5)-cyanomethylpyrazole-4-carboxylate ( 6 ) with 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 8 ) provided the corresponding N-1 and N-2 glycosyl derivatives ( 9 and 10 , respectively). Debenzoylation of 9 and 10 with sodium methoxide gave deprotected nucleosides 14 and 16 , respectively. Further ammonolysis of 14 and 16 afforded 5(or 3)-cyanomethyl-1-(2-deoxy-β-D-erythro-pentofuranosyl)pyrazole-4-carboxamide ( 15 and 17 , respectively). Ring closure of 15 and 17 in the presence of sodium carbonate gave 5 and 22 , respectively. By contrast, glycosylation of the sodium salt of 6 with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide ( 11 ) or the persilylated 6 with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose gave mainly the N-2 glycosylated derivative 13 , which on ammonolysis and ring closure furnished 18 . Phosphorylation of 18 gave 6-amino-2-β-D-ribofuranosylpyrazolo[4,3-c]pyridin-4(5H)-one 5′-phosphate ( 19 ). The site of glycosylation and the anomeric configuration of these nucleosides have been assigned on the basis of 1H nmr and uv spectral characteristics and by single-crystal X-ray analysis of 16 .  相似文献   

10.
Condensation of 3,4-dichloro-6-[(trimethylsilyl)oxy] pyridazine ( 3 ) with 1-O-acetyl-2,3,5-tri-O-benzoyl-β- D -ribofuranose ( 4 ), by the stannic chloride catalyzed procedure, has furnished 3,4-dichloro-1-(2,3,5-tri-O-benzoyl-β- D -ribofuranosyl) pyridazin-6-one ( 5 ). Nucleophilic displacement of the chloro groups and removal of the benzoyl blocking groups from 5 has furnished 3-chloro-4-methoxy-, 3,4-dimethoxy-, 4-amino-3-chloro-, 3-chloro-4-methylamino-, 3-chloro-4-hydroxy-, and 4-hydroxy-3-methoxy-1-β- D -ribofuranosylpyridazin-6-one. An unusual reaction of 5 with dimethylamine is reported. Condensation of 4,5-dichloro-3-nitro-6-[(trimethylsilyl)oxy]pyridazine with 4 yielded 4,5-dichloro-3-nitro-1-(2,3,5-tri-O-benzoyl-β- D -ribofuranosyl)pyridazin-6-one ( 24 ). Nucleophilic displacement of the aromatic nitro groups from 24 is discussed. Condensation of 3 with 3,5-di-O-p-toluoyl 2-deoxy- D -erythro-pentofuranosyl chloride ( 28 ) afforded an α, β mixture of 2-deoxy nucleosides. The synthesis of certain 3-substituted pyridazine 2′-deoxy necleosides are reported.  相似文献   

11.
Condensation of 2,4-bis(trimethylsilyloxy)pyridine ( 1 ) with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide ( 2 ) gave 4-hydroxy-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-2-pyridone ( 3 ). Deblocking of 3 gave 4-hydroxy-1-β-D-ribofuranosyl-2-pyridone (3′-deazauridine) ( 4 ). Treatment of 4 with acetone and acid gave 2′,3′-O-isopropylidene-3-deazauridine ( 6 ). Reaction of 4 with diphenylcarbonate gave 2-hydroxy-1-β-D-arabinofuranosyl-4-pyridone-O2←2′-cyclonucleoside ( 7 ) which established the point of gylcosidation and configuration of 4 . Base-catalyzed hydrolysis of 7 gave 4-hydroxy-1-β-D-arabinofuranosyl-2-pyridone (3-deazauracil arabinoside) ( 12 ). Fusion of 1 with 3,5-di-O-p-toluyl-2-deoxy-D-erythro-pentofuranosyl chloride ( 5 ) gave the blocked anomeric deoxynucleosides 8 and 10 which were saponified to give 4-hydroxy-1-(2-deoxy-β-D-erythro-pentofuranosyl)-2-pyridone (2′-deoxy-3-deazauridine) ( 11 ) and its α anomer ( 9 ). Condensation of 4-acetamido-2-methoxypridine ( 13 ) with 2 gave 4-acetamido-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-2-pyridone ( 14 ) which was treated with alcoholic ammonia to yield 4-acetamido-1-β-D-ribofuranosyl-2-pyridone ( 15 ) or with methanolic sodium methoxide to yield 4-amino-1-β-D-ribofuranosyl-2-pyridone (3-deazacytidine) ( 16 ). Condensation of 13 and 2,3,5-tri-O-benzyl-D-arabinofuranosyl chloride ( 17 ) gave the blocked nucleoside 22 which was treated with base and then hydrogenolyzed to give 4-amino-1-β-D-arabinofuranosyl-2-pyridone (3-deazacytosine arabinoside) ( 23 ). Fusion of 13 with 5 gave the blocked anomeric deoxynucleosides 18 and 20 which were deblocked with methanolic sodium methoxide to yield 4-amino-1-(2-deoxy-β-D-erythro-pentofuranosyl)-2-pyridone (2′-deoxy-3-deazacytidine) ( 21 ) and its a anomer 19 . The 2′-deoxy-erythro-pentofuranosides of both 3-deazauracil and 3-deazacytosine failed to obey Hudson's isorotation rule but did follow the “quartet”-“triplet” anomeric proton splitting pattern in the 1H nmr spectra.  相似文献   

12.
A series of 6,8-disubstituted-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphates were prepared employing preformed 9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphate precursors. Three synthetic approaches were utilized to accomplish the syntheses. The first approach involved a study of the order of nucleophilic substitution, 6 vs 8, of the intermediate 6,8-dichloro-9-β-D-ribofuranosyipurine 3′,5′-cyclic phosphates ( 2 ) with various nucleophilic agents to yield 8-amino-6-chloro-, 8-chloro-6-(diethylamino)-, 6-chloro-8-(diethylamino)-, 6,8-bis-(diethylamino)- and 8-(benzylthio)-6-chloro-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphate (4, 9, 10, 11, 13) respectively and 6-chloro-9-β-D-ribofuranosylpurin-8-one 3′,5′-cyclic phosphate ( 5 ) and 8-amino-9-β-D-ribofuranosylpurine-6-thione 3′,5′-cyclic phosphate ( 6 ). The order of substitution was compared to similar substitutions on 6,8-dichloropurines and 6,8-dichloropurine nucleosides. The second scheme utilized nucleophilic substitution of 6-chloro-8-substituted-9-β-D-ribofuranosylpurine 3′,5′-cyclic, phosphates obtained from the corresponding 8-subslituted inosine 3′,5′-cyclic phosphates by phosphoryl chloride, 6,8-bis-(benzylthio)-, 6-(diethylamino)-8-(benzylthio),8-(p-chlorophenylthio(-6-(diethylamino)- and 6,8-bis-(methyl-thio)-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphates ( 14, 12, 20 , and 21 ) respectively, were prepared in this manner. The final scheme involved N1-alkylation of an 8-substituted adenosine 3′,5′-cyclic phosphate followed by a Dimroth rearrangement to give 6-(benzylamino)-8-(methylthio)- and 6-(benzylamino)-8-bromo-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphate ( 24 and 25 ).  相似文献   

13.
Nucleosides of pyrrolo[2,3-d]pyridazin-4(5H)-ones were prepared by the single-phase sodium salt glycosylation of appropriately functionalized pyrrole precursors. The glycosylation of the sodium salt of ethyl 4,5-dichloro-2-formyl-1H-pyrrole-3-carboxylate ( 4 ), or its azomethino derivative 7 , with 1-bromo-2,3,5-tri-O-benzoyl-D-ribofuranose in acetonitrile afforded the corresponding substituted pyrrole nucleosides ethyl 4,5-dichloro-2-formyl-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-1H-pyrrole-3-carboxylate ( 5 ) and ethyl 4,5-dichloro-2-phenylazomethino-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-1H-pyrrole-3-carboxylate ( 8 ), respectively. The latter, upon treatment with hydrazine, afforded the annulated product 2,3-dichloro-1-β-D-ribofuranosyl-1H-pyrrolo[2,3-d]pyridazin-4(5H)-one ( 6 ), in good yield. The unsubstituted analog 1-β-D-ribofuranosyl-1H-pyrrolo[2,3-d]pyridazin-4(5H)-one ( 9 ), was obtained upon catalytic dehalogenation of 6 . This report represents the first example of the synthesis of nucleosides of pyrrolopyridazines.  相似文献   

14.
The synthesis of the first [1,3,5]triazine carbon linked nucleosides are reported. 4-Amino-6-(β-D-ribofuranosyl)[1,3,5]triazin-2(1H)-one ( 8 ), an analog of 5-azacytidine and pseudoisocytidine was prepared. 2,5-Anhydro-D-allonamidine hydrochloride ( 3 ) was condensed with dimethyl cyanoiminodithiocarbonate ( 4 ) to give 4-methylthio-6-(β-D-ribofuranosyl)[1,3,5]triazin-2-amine ( 5 ). Compound 5 was reacted with m-chloroperbenzoic acid to give 4-methylsulfinyl-6-(β-D-ribofuranosyl)[1,3,5]triazin-2-amine ( 6 ). Displacement of the methyl sulfinyl with the appropriate nucleophile gave 6-(β-D-ribofuranosyl)[1,3,5]triazine-2,4-diamine ( 7 ), 4-amino-6-(β-D-ribofuranosyl)[1,3,5]triazin-2(1H)-one ( 8 ), and 4-amino-6-(β-D-ribofuranosyl)[1,3,5]triazine-2(1H)-thione ( 9 ). Dethiation of compound 5 with Raney nickel gave 4-(β-D-ribofuranosyl)[1,3,5]triazin-2-amine ( 10 ). The crystal structure of 7 was determined by single crystal X-ray.  相似文献   

15.
The synthesis of 6-methyl-7-(β-D-ribofuranosyl)imidazo[4,5-d]-v-triazin-4-one (8-methyl-2-azainosine ( 2) ) and 6-methyl-7-(β-D-glucopyranosyl)imidazo[4,5-d]-v-triazin-4-one ( 5 ) by diazotization of 5-amino-1-(β-D-ribofuranosyl)-2-methylimidazole-4-carboxamide ( 1 ) and diazotization of 5-amino-1-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-2-methylimidazole-4-carboxamide ( 3 ), followed by deacetylation of the resulting compound 4 , is described. The preparation of 6-methyl-5-(β-D-ribofuranosyl)imidazo[4,5-d]-v-triazin-4-one ( 10 ) and 6-methyl-5-(β-D-glucopyranosyl)imidazo[4,5-d]-v-triazin-4-one ( 11 ) by glycosylation of 6-methylimidazo[4,5-d]-v-triazin-4-one (8-methyl-2-azahypoxanthine, ( 7) ) is also described. Structural assignments were made on basis of analytical and 1H-nmr and uv spectral data.  相似文献   

16.
1-β-D-Ribofuranosyl- 21 , 1-(2-deoxy-β-D-erytftro-pento fur anosyl)- 27 and 1-β-D-arabinofuranosyl- 29 derivatives of 1,2,4-triazole-3-sulfonamide ( 19 ) have been prepared. Glycosylation of the silylated 19 with 1,2,3,5-tetra-0-acetyl-β-D-ribofuranose ( 5 ) in the presence of trimethylsilyl triflate gave the corresponding blocked nucleoside ( 20 ), which on ammonolysis afforded 1-β-D-ribofuranosyl-1,2,4-triazole-3-sulfonamide ( 21 ). Stereospecific glycosylation of the sodium salt of 19 with either 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 22 ) or 1-chloro-2,3,5-tri-0-benzyl-α-D-arabinofuranose ( 23 ) provided the corresponding protected nucleosides 26 and 28. Deprotection of 26 and 28 furnished 1-(2-deoxy-β-D-erythro-pentofuranosyl)-1,2,4-triazole-3-sulfonamide ( 27 ) and 1-β-D-arabinofuranosyl-1,2,4-triazole-3-sulfonamide ( 29 ), respectively. 2-0-D-Ribofuranosyl-1,2,4-triazole-3(4H)-thione ( 7 ) and 4-β-D-ribofuranosyl-1,2,4-triazole-3(2H)-thione ( 9 ) were also prepared utilizing either an acid catalyzed fusion of 1,2,4-triazole-3(1H,2H)-thione ( 4 ) with 5 , the reaction of 5 with silylated 4 in the presence of trimethylsilyl triflate, or by ring closure of 4-(2,3,5-tri-0-benzoyl-β-D-ribofuranosyl)thiosemicarbazide ( 10 ) with mixed anhydride and subsequent deacylation. The synthesis of 1-β-D-ribofuranosyl-3-benzylthio-1,2,4-triazole ( 15 ) has also been accomplished by the silylation procedure employing 3-benzylthio-1,2,4-triazole ( 13 ) and 5 to give 1-(2,3,5-tri-0-acetyl-β-D-ribofuranosyl)-3-benzylthio-1,2,4-triazole ( 14 ). Deacetylation of 14 furnished 15 . The structural assignments of 7, 14 and 21 were made by single-crystal X-ray diffraction analysis and their hydrogen bonding characteristics have been studied. The sulfonamido-1,2,4-triazole nucleosides are devoid of any significant antiviral or antitumor activity in cell culture.  相似文献   

17.
2-(1-Isopropylidene)azino-3-β-D-ribofuranosyl-5- methoxycarbonylmethylenethiazolidin-4-one (IV) and 2-(1-methylbenzilidene)azino-3-β-D-ribofuranosyl-5-carboxymethylenethiazolidin-4-one were prepared by independent synthesis utilizing either acid catalyzed fusion of 2-(1-isopropylidene)azino-5-methoxycarbonylmethylenethiazolidin-3(H)-4-one (II) with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose, silylation procedure with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide or by cyclization of new isopropylidene and/or methylbenzilidene derivatives (VII) of 4-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)thiosemicarbazide (VI) with maleic anhydride and subsequent methylation. The synthetic approach has unambigously established the glycosilation site as well as anomeric configuration, which was additionally derived from pmr spectral data.  相似文献   

18.
A new process suitable for large scale synthesis of the antitumor-antiviral agent, 2-β-D-ribofuranosyl-4-selenazolecarboxamide (selenazofurin, 1 ), has been developed. Thus, 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose ( 3 ) was converted with cyanotrimethylsilane and stannic chloride to the crystalline 2,5-anhydro-3,4,6-tri-O-benzoyl-β-D-allononitrile ( 4 ) without chromatography. Cyanosugar 4 in ethanol was treated with hydrogen selenide gas to afford stereospecifically the unstable 2,5-anhydro-3,4,6-tri-O-benzoyl-β-D-allonoselenoamide ( 5 ) which was converted in situ by ethyl bromopyruvate to the stable ethyl 2-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-4-selenazolecarboxylate ( 6). Selenazole ethyl ester 6 was deprotected with sodium methoxide affording methyl 2-β-D-ribofuranosyl-4-selenazolecarboxylate ( 7 ) which was aminated with ammonia to provide selenazofurin ( 1 ) or with other amines to provide N-substituted selenazofurin amides.  相似文献   

19.
Several disubstituted pyrazolo[3,4-d]pyrimidine, pyrazolo[1,5-a]pyrimidine and thiazolo[4,5-d]pyrimidine ribonucleosides have been prepared as congeners of uridine and cytidine. Glycosylation of the trimethylsilyl (TMS) derivative of pyrazolo[3,4-d]pyrimidine-4,6(1H,5H,7H)-dione ( 4 ) with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose ( 5 ) in the presence of TMS triflate afforded 7-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)pyrazolo-[3,4-d]pyrimidine-4,6(1H,5H)-dione ( 6 ). Debenzoylation of 6 gave the uridine analog 7-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidine-4,6(1H,5H)-dione ( 3 ), identical with 7-ribofuranosyloxoallopurinol reported earlier. Thiation of 6 gave 7 , which on debenzoylation afforded 7-β-D-ribofuranosyl-6-oxopyrazolo[3,4-d]pyrimidine-4(1H,5H)-thione ( 8 ). Ammonolysis of 7 at elevated temperature gave a low yield of the cytidine analog 4-amino-7-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-6(1H)-one ( 11 ). Chlorination of 6 , followed by ammonolysis, furnished an alternate route to 11 . A similar glycosylation of TMS-4 with 2,3,5-tri-O-benzyl-α-D-arabinofuranosyl chloride ( 12 ) gave mainly the N7-glycosylated product 13 , which on debenzylation provided 7-β-D-arabinofuranosylpyrazolo[3,4-d]pyrimidine-4,6(1H,5H)-dione ( 14 ). 4-Amino-7-β-D-arabinofuranosyl-pyrazolo[3,4-d]pyrimidin-6(1H)-one ( 19 ) was prepared from 13 via the C4-pyridinium chloride intermediate 17 . Condensation of the TMS derivatives of 7-hydroxy- ( 20 ) or 7-aminopyrazolo[1,5-a]pyrimidin-5(4H)-one ( 23 ) with 5 in the presence of TMS triflate gave the corresponding blocked nucleosides 21 and 24 , respectively, which on deprotection afforded 7-hydroxy- 22 and 7-amino-4-β-D-ribofuranosylpyrazolo[1,5-a]pyrimidin-5-one ( 25 ), respectively. Similarly, starting either from 2-chloro ( 26 ) or 2-aminothiazolo[4,5-d]pyrimidine-5,7-(4H,6H)-dione ( 29 ), 2-amino-4-β-D-ribofuranosylthiazolo[4,5-d]pyrimidine-5,7(6H)-dione ( 28 ) has been prepared. The structure of 25 was confirmed by single crystal X-ray diffraction studies.  相似文献   

20.
6-Amino-1-(β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]-1,3-oxazin-4-one ( 4 ), an isostere of the nucleoside antibiotic oxanosine has been synthesized from ethyl 5-amino-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)pyrazole-4-carboxylate ( 6 ). Treatment of 6 with ethoxycarbonyl isothiocyanate in acetone gave the 5-thioureido derivative 7 , which on methylation with methyl iodide afforded ethyl 1-(2,3-O-isopropylidene-β-D-ribofuranosyl)-5-[(N'-ethoxycarbonyl-S-methylisothiocarbamoyl)amino]pyrazole-4-carboxylate ( 8 ). Ring closure of 8 under alkaline media furnished 6-amino-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]-1,3-oxazin-4-one ( 10 ), which on deisopropylidenation afforded 4 in good yield. 6-Amino-1-(β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one ( 5 ) has also been synthesized from the AICA riboside congener 5-amino-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)pyrazole-4-carboxamide ( 12 ). Treatment of 12 with benzoyl isothiocyanate, and subsequent methylation of the reaction product with methyl iodide gave 1-(2,3-O-isopropylidene-β-D-ribofuranosyl)-5-[(N'-benzoyl-S-methylisothiocarbamoyl)amino]pyrazole-4-carboxamide ( 15 ). Base mediated cyclization of 15 gave 6-amino-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one ( 14 ). Deisopropylidenation of 14 with aqueous trifluoroacetic acid afforded 5 in good yield. Compound 4 was devoid of any significant antiviral or antitumor activity in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号