首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The surface-sensitive technique of sum frequency generation (SFG) vibrational spectroscopy has been applied to study the buried interfaces between different polymers including deuterated polystyrene (d-PS) and deuterated poly(methyl methacrylate) (d-PMMA) and a two-component silane adhesion-promoting mixture (SAPM) composed of (3-glycidoxypropyl)trimethoxysilane (gamma-GPS) and a methylvinylsiloxanol (MVS). Because of the dissolution of d-PS, no SFG CH stretching signals could be collected from the d-PS/gamma-GPS interface, and SFG signals collected from the d-PS/SAPM interface gradually disappeared over time. SFG results also showed that gamma-GPS can diffuse through the d-PMMA film. The diffusion of gamma-GPS through the d-PMMA film was confirmed by SFG studies on the interface between gamma-GPS and a d-PMMA/PS two-polymer layer system. Initially the SFG signal from the PS layer was detected. However, after gamma-GPS diffused through the d-PMMA film, the PS film was dissolved by the silane, and thus the SFG signal from PS was lost. Similar experiments have been carried out at the interface between the SAPM and the d-PMMA/PS two-polymer layer system and it was found that the diffusion time of the gamma-GPS in the SAPM through the d-PMMA film was significantly longer. These results were much different to those from previous SFG studies on the analogous PET interfaces and appear consistent with differences in solubility parameters calculated for these systems.  相似文献   

2.
To better understand the effects of interfacial molecular orientation on adhesion to plastics, the interfaces between poly(ethylene terephthalate) (PET) and different silane coupling agents were probed using sum frequency generation (SFG) vibrational spectroscopy. The polymer/air interface was dominated by the ester carbonyl, methylene, and phenyl groups. Upon contacting the PET film with the amino-functional silane 3-aminopropyltrimethoxysilane (ATMS), the ester carbonyl stretch shifted to a lower energy indicating the formation of hydrogen bonds between the polymer surface and the silane molecules. This shift was not observed when silanes that contained no hydrogen bond donors, such as (3-glycidoxypropyl)-trimethoxysilane and n-butyltrimethoxysilane, were placed into contact with the PET surface. Further evidence of silane ordering at the interface was observed as vibrational peaks attributed to the C-H stretching of the silane methoxy headgroups dominated the PET/silane spectra. It was determined that the conformation of the ATMS molecules at the interface was such that the amino endgroups were oriented toward the interface while the methoxy headgroups were directed toward the silane bulk.  相似文献   

3.
The composition and structure of a binary mixed self-assembled monolayer (SAM) of 3-aminopropyltriethoxysilane (APS, NH(2)(CH(2))(3)Si(OCH(2)CH(3))(3)) and octadecyltrimethoxysilane (ODS, CH(3)(CH(2))(17)Si(OCH(3))(3)) on a silicon oxide surface have been characterized by water contact-angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and sum frequency generation (SFG) vibrational spectroscopy. XPS demonstrated that APS in the mixed SAM is significantly enriched in comparison to that in solution, indicating the preferential adsorption of APS during the SAM formation. AFM observations showed that the mixed SAM becomes rougher. SFG revealed that the coadsorption of APS induced a conformation disordering in the ODS molecules present in the mixed SAM. The surface enrichment of APS has been explained in terms of differences in the surface adsorption rates of the two components as well as in the self-congregation states of APS molecules in the bulk solution. Furthermore, the structure of the water molecules on the mixed SAM surface in contact with the aqueous solutions at different pH's has also been studied. The results indicate that the mixed-SAM modified surface is positively charged at pH < 5 and negatively charged at pH > 7.  相似文献   

4.
Sum frequency generation (SFG) vibrational spectroscopy was used to probe the interface between poly(ethylene terephthalate) with deuterated ethylene glycol subunits (d4-PET) and a silane adhesion-promoting mixture (SAPM) comprised of (3-glycidoxypropyl)trimethoxysilane (gamma-GPS) and a methylvinylsiloxanol (MVS). Such a mixture has been found to improve the adhesion of an addition-curing silicone elastomer to a range of plastic and metal substrates. Our results demonstrated that at the interface between d4-PET and a SAPM with a gamma-GPS/MVS ratio of 1:1 (w/w), the silane molecules not only segregated to the interface but also the methoxy headgroups likely adopted a greater net orientational order along the surface normal than at the d4-PET/gamma-GPS interface. The effects of varying the silane/siloxane ratio and using different siloxane oligomers on interfacial structures were also examined. This study provides unique molecular-level insights into the prerequisite conditions for adhesion of curable silicone adhesives.  相似文献   

5.
Sum frequency generation (SFG) vibrational spectroscopy was used to study the effect of silane headgroups on the molecular interactions that occur between poly(ethylene terephthalate) (PET) and various epoxy silanes at the PET/silane and PET/silicone interfaces. Three different silanes were investigated: (3-glycidoxypropyl) trimethoxysilane (γ-GPS), (3-glycidoxypropyl) methyl-dimethoxysilane (γ-GPMS), and (3-glycidoxypropyl) dimethyl-methoxysilane (γ-GPDMS). These silanes share the same backbone and epoxy end group but have different headgroups. SFG was used to examine the interfaces between PET and each of these silanes, as well as silanes mixed with methylvinylsiloxanol (MVS). We also examined the interfaces between PET and uncured or cured silicone with silanes or silane-MVS mixtures. Silanes with different headgroups were found to exhibit a variety of methoxy group interfacial segregation and ordering behaviors at various interfaces. The effect of MVS was also dependent upon silane headgroup choice, and the interfacial molecular structures of silane methoxy headgroups were found to differ at PET/silane and PET/silicone interfaces. Epoxy silanes have been widely used as adhesion promoters for polymer adhesives; therefore, the molecular structures probed using SFG were correlated to adhesion testing results to understand the molecular mechanisms of silicone-polymer adhesion. Our results demonstrated that silane methoxy headgroups play important roles in adhesion at the PET/silicone interfaces. The presence of MVS can change interfacial methoxy segregation and ordering, leading to different adhesion strengths.  相似文献   

6.
The polar orientation and degree of conformational order of sodium dodecyl sulfate (SDS) adsorbed at the hydrophobic octadecanethiol/aqueous solution interface in the presence of poly(ethylene glycol) (PEG) has been investigated as a function of the surfactant concentration and the molecular weight of the polymer. Sum frequency generation (SFG) vibrational spectroscopy was employed to obtain spectra of interfacial surfactant; weak SFG signals from interfacial polymer were also detected for polymer molecular weights of 900 and above. The phase of the SFG spectra indicated that both the surfactant and polymer had a net orientation of their CH2 and/or CH3 groups toward the hydrophobic surface. Spectra of SDS in the presence of mixed polymer/surfactant solutions showed increasing conformational order as the surfactant concentration was raised. At the lowest surfactant concentrations, the spectra of SDS were weaker in the presence of the polymer than in its absence. All PEG molecular weights investigated, with the exception of PEG 400, gave rise to significant inhibition of ordered surfactant adsorption below the critical micelle concentration. The greatest inhibitory effect was noted for PEG 900. Probing interfacial PEG specifically through the use of perdeuterated SDS revealed that the polymer spectral intensity decreased monotonically as the surfactant concentration was increased for all polymer molecular weights where a PEG spectrum was apparent. These findings are interpreted in terms of the displacement of preadsorbed polymer as the surfactant concentration increases. This result is compatible with observations of adsorption from SDS/PEG solutions at solid/solution and solution/air interfaces made using other techniques.  相似文献   

7.
To unravel molecular motion within confined liquids, we have combined a surface forces apparatus (SFA) with a highly sensitive fluorescence microscope. Details of our setup including important modifactions to enable the tracking of single dye molecules within nanometer thin confined liquid films are presented. The mechanical and optical performance of our setup is discussed in detail. For a load of 20 mN we observed a circular-shaped contact region (d approximately 300 microm), which results in a confining pressure of about 280 kPa. First experiments on liquid films of tetrakis(2-ethylhexoxy)silane (TEHOS) doped with rhodamine B demonstrated the ability to track single dye molecules within the confining gap of a SFA. The mean diffusion constant was independent of the liquid film thickness of approximately 3x10(-8) cm2/s and thus 10 times smaller than the diffusion constant of rhodamine B in bulk TEHOS. This points to the existence of a thin interface layer with slower molecular dynamics and an attractive potential parallel to the solid surface trapping molecules in this interface region.  相似文献   

8.
The segregation behavior of binary polymer blends at hydrophilic solid sapphire and air interfaces was investigated by infrared-visible sum frequency generation (SFG) vibrational spectroscopy. SFG spectra were collected from a bulk miscible blend consisting of identical molecular weight (approximately 54,000) and similar surface free energy (29-35 dyn/cm) components of atactic polypropylene (aPP) and aspecific poly(ethylene-co-propylene) rubber (aEPR). Characteristic CH resonances of the blend were contrasted with those of the individual components at both buried (sapphire/polymer) and free (air/polymer) interfaces. Preferential segregation of the aPP component was observed after annealing at both air/polymer and sapphire/polymer interfaces. SFG spectra revealed ordering of the polymer backbone segments with the methylene (CH2) groups perpendicular to the surface at the sapphire interface and the methyl (CH3) groups upright at the air interface. The SFG results indicate that the surface composition can be determined from the peak intensities that are characteristic of each component and that conformational entropy played a likely role in surface segregation. aPP occupied a smaller free volume at the surface because of a statistically smaller segment length (aPP is more flexible and has a shorter length). In addition, the high density of the ordered CH3 side branches enhanced the surface activity by allowing the long-chain backbone segments of aPP to order at the surface.  相似文献   

9.
The composite film of nanometer AgO2/silane coupling reagent aminopropyltriethoxy-silane (CH3O)3Si(CH2)3NH2was prepared on single-crystal silicon by the self-assembly of silane on the hydroxylated substrate followed with the deposition of nanometer AgO2 on the silane SAMs from an aqueous Ag2O gel. The resultant composite film was characterized by means of X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The contact angles of distilled water on the silane SAMs and the composite film were measured to compare the surface states. The experiment shows that the nanometer Ag2O can be easily incorporated in the silane SAMs and lead to changed surface state of the composite film. Nanometer Ag2O crystallites in a size of about 20 nm distribute quite uniformly in the composite film. It was anticipated that the composite film might find application to the protection of single-crystal Si substrate in MEMS devices and also propose a novel single electron device structure based on nanoscale Ag2O colloidal particles.  相似文献   

10.
Adsorption of methyl chloride and coadsorption of CH3Cl and D2O on Pd(111) surfaces at T=100 K have been studied under ultrahigh-vacuum conditions using femtosecond sum frequency generation (SFG) spectroscopy in the spectral regions of CH and OD bands. On the bare Pd(111) substrate, the CH3Cl coverage dependence of the resonant SFG signal is consistent with a progressive molecular rearrangement starting at half saturation followed by the growth of two ordered monolayers in which the molecular axes are perpendicular to the surface. When CH3Cl is adsorbed on top of predeposited D2O on Pd(111), the SFG signals as a function of the CH3Cl exposure indicate that methyl chloride is adsorbed onto D2O through hydrogen bonding. On the contrary when the adsorption order is reversed the strong decrease of the CH3 signal as a function of the D2O exposure is explained by assuming that water molecules penetrate inside the CH3Cl layers, leading to the formation of disordered CH3Cl clusters. In all cases a nonresonant contribution due to molecular adsorption is observed and it shows a dependence upon surface structure and coverage significantly different from that of the resonant vibrational bands.  相似文献   

11.
Thermal rearrangement reactions of (aminomethyl)silane H(3)SiCH(2)NH(2) were studied by ab initio calculations at the G3 level. The results show that two dyotropic reactions could happen when H(3)SiCH(2)NH(2) is heated. In one reaction, the silyl group migrates from the carbon to the nitrogen atom while a hydrogen atom shifts from the nitrogen to the carbon atom, forming (methylamino)silane CH(3)NHSiH(3) (reaction A). This reaction can proceed via three paths: a path involving two consecutive steps with two transition states and one intermediate metastable carbene species (A-1); and two concerted paths (A-2 and A-3). In the other reaction, the amino group migrates from the carbon to the silicon atom while a hydrogen atom shifts from the silicon to the carbon atom, via a double three-membered ring transition state, forming aminomethylsilane CH(3)SiH(2)NH(2) (reaction B). Reaction rate constants, changes (DeltaS(#), DeltaH, and DeltaG) in thermodynamic functions and equilibrium constants of the reactions were calculated with the MP2(full)/6-311G(d,p) optimized geometries, harmonic vibrational frequencies and G3 energies of reactants, transition states, intermediates and products with statistical mechanical methods and the conventional transition-state theory (TST) with Wigner tunneling approximation over a temperature range 400-1800 K.  相似文献   

12.
The present study explored photoinduced radical processes caused by interaction of CH(4) and NH(3) with a photoexcited surface of a complex metal oxide: magnesium-aluminum spinel (MgAl(2)O(4); MAS). UV irradiation of MAS in vacuo yielded V-type color centers as evidenced by the 360 nm band in difference diffuse reflectance spectra. Interaction of these H-bearing molecules with photogenerated surface-active hole states (O(S)(-)?) yielded radical species which on recombination produced more complex molecules (including heteroatomic species) relative to the initial molecules. For the MAS/CH(4) system, photoinduced dissociative adsorption of CH(4) on surface-active hole centers produced ?CH(3) radicals that recombined to yield CH(3)CH(3). For MAS/NH(3), a similar dissociative adsorption process led to formation of ?NH(2) radicals with formation of NH(2)NH(2) as an intermediate product; continued UV irradiation ultimately yielded N(2). For the mixed MAS/CH(4)/NH(3) system, however, interaction of adsorbed NH(3) and CH(4) on the UV-activated surface of MAS yielded ?NH(2) and ?CH(3) radicals, respectively, which produced CH(3)-NH(2) followed by loss of the remaining hydrogens to form a surface-adsorbed cyanide, CN(S), species. Recombination of photochemically produced radicals released sufficient energy to re-excite the solid spinel, generating new surface-active sites and a flash luminescence (emission decay time at 520 nm, τ ~ 6 s for the MAS/NH(3) case) referred to as the PhICL effect.  相似文献   

13.
Sum frequency generation (SFG) vibrational spectroscopy was used to study the structure of water at cross-linked PEO film interfaces in the presence of human serum albumin (HSA) protein. Although PEO is charge neutral, the PEO film/water interface exhibited an SFG signal of water similar to that of a highly charged water/silica interface, signifying the presence of ordered water. Ordered water molecules were observed not only at the water/PEO interface, but also within the PEO film. It indicates that the PEO and water form an ordered hydrogen-bonded network extending from the bulk PEO film into liquid water, which can provide an energy barrier for protein adsorption. Upon exposure to the protein solution, the SFG spectra of water at the water/PEO interface remained nearly unperturbed. For comparison, the SFG spectra of water/silica and water/polystyrene interfaces were also studied with and without HSA in the solution. The SFG spectra of the interfacial water were correlated with the amount of protein adsorbed on the surfaces using fluorescence microscopy, which showed that the amount of protein adsorbed on the PEO film was about 10 times less than that on a polystyrene film and 3 times less than that on silica.  相似文献   

14.
Semifluorinated self-assembled (FAS SA) films fabricated from trifunctional precursors are frequently used in myriad applications, yet an understanding of the effects of fabrication conditions, including deposition time, on adsorption mechanisms and molecular architectures is still being developed. In this work we prepared SA films based on the F(CF(2))(8)(CH(2))(2)SiCl(3) (FAS-17) precursor and characterized these films using a suite of surface analytical techniques. Contact angle, sum frequency generation (SFG) spectroscopy, X-ray photoelectron spectroscopy (XPS), and ellipsometry results are consistent with the formation of disordered sub-monolayer structures at short deposition times, well-ordered monolayers at intermediate deposition times, and inhomogeneous multilayers at long deposition times. Correlation of SFG and XPS results demonstrates a change in FAS-17 chain orientation as the deposition time increases from 2 s to 5 min. Group theory-based calculations, SFG studies, and Fourier-transform infrared (FTIR) results also afford additional evidence in support of the assignment of the SFG signals at ~1345 and ~1370 cm(-1) to the asymmetric stretching mode of the semifluorinated silane chain's terminal CF(3) group rather than to its axial CF(2) stretches. To our knowledge, this is the first report of SFG studies on semifluoroalkyl silane self-assembled films in the C-F stretching frequency region.  相似文献   

15.
We present the first measurement of the buried surface electronic states of the conjugated polymer poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylenevinylene] (MEH-PPV) using two-dimensional (2D) IR-visible sum frequency generation (SFG). SFG electronic spectra were obtained by scanning the frequencies of both incident visible and IR beams and used to study the surface electronic transitions associated with the C-C stretching of benzene rings located at the backbone of MEH-PPV. Because of the surface confinement effects, the polymer conformation, and consequently the electronic states, at the film/solid interface are different from those of the bulk film. Theoretical analysis based on an oligomer model was employed to estimate the conjugation-length distributions of MEH-PPV at interfaces. Assuming a Gaussian conjugation-length distribution, it was found that the conjugation-length distribution at the MEH-PPV/solid interface was centered at 5.8 monomer units. Similar surface effects were also observed at the air/polymer interface, with a shorter average conjugation length of 5.1 monomer units.  相似文献   

16.
Detection of amide I signals of interfacial proteins in situ using SFG   总被引:2,自引:0,他引:2  
In this Communication, we demonstrate the novel observation that it is feasible to collect amide signals from polymer/protein solution interfaces in situ using sum frequency generation (SFG) vibrational spectroscopy. Such SFG amide signals allow for acquisition of more detailed molecular level information of entire interfacial protein structures. Proteins investigated include bovine serum albumin, mussel protein mefp-2, factor XIIa, and ubiquitin. Our studies indicate that different proteins generate different SFG amide signals at the polystyrene/protein solution interface, showing that they have different interfacial coverage, secondary structure, or orientation.  相似文献   

17.
Infrared/visible sum-frequency generation (SFG) spectroscopy is used to study the recognition of a protein (avidin) by a derived vitamin (biocytin) adsorbed on a calcium fluoride substrate. The specificity of the process is tested by replacing avidin with bovine serum albumin or presaturated avidin. The SFG spectroscopy shows drastic modifications in the CH and NH spectral ranges only upon exposure of the biocytin film to avidin. The comparison of the SFG data with Fourier transform infrared reflection absorption spectra (FT-IRRAS) in the same spectral ranges illustrates the advantages of nonlinear spectroscopy for studying and detecting recognition between biomolecules.  相似文献   

18.
Surface and interface properties are important in controlling the yield and efficiency of the photochemically initiated immobilization. Using a silane-functionalized perfluorophenyl azide (PFPA-silane) as the photoactive cross-linker, the immobilization of polymers was studied by adjusting the density of the surface azido groups. Dilution of the photolinker resulted in a gradual decrease in the density of surface azido groups as well as the thickness of the immobilized film. When a nonphotoactive silane was added to PFPA-silane, the film thickness decreased more rapidly, suggesting that the additive competed with PFPA-silane and effectively reduced the density of the surface azido groups. The effect of surface topography was studied by adding a nonphotoactive silane with either a shorter (n-propyltrimethoxysilane (PTMS)) or a longer spacer (n-octadecyltrimethoxysilane (ODTMS)). In most cases the long chain ODTMS shielded the surface azido groups, resulting in a more rapid decrease in film thickness as compared to PTMS treated under the same conditions. As the density of the surface azido groups decreased, the immobilized polymer changed from smooth films to patched structures and, eventually, single polymer molecules.  相似文献   

19.
For both water and heavy water adsorption and absorption on crystalline poly(vinylidene fluoride with trifluoroethylene (30%)), P(VDF-TrFE 70:30), two distinctly different adsorption sites have been identified by thermal desorption spectroscopy. One adsorbed water species resembles ice and there is also an absorbed water species that interacts more strongly with the polymer thin film, and in addition, there is a polymer surface (polymer to ice interface) water species. We find that there is H/D exchange between the water or heavy water molecules and the ferroelectric polymer (largely -(CH2-CF2)-), particularly at the polymer surface.  相似文献   

20.
A mathematical model of electrocatalytic processes taking place at conducting polymer modified electrodes has been developed. The model takes into account the diffusion of solution species into a polymer film, diffusion of charge carriers within the film, and a chemical redox reaction within the film. The space- and time-resolved profiles for reactant and charge carrier concentration within the film, as well as dependencies of electric current on the concentration of solute species, reaction rate constant and thickness of a polymer layer have been obtained and discussed. It has been shown that, even at a relatively fast diffusion of charge carriers within the conducting polymer film, exceeding the diffusion rate of reactant by two orders of magnitude, electrocatalysis of solute species at conducting polymer modified electrodes proceeds within the polymer film rather than at the outer polymer/solution interface, i.e., electrocatalytic conversion follows a redox-mechanism rather than metal-like one. Based on the results obtained, optimization of reaction system parameters could be made for any particular case to get an optimum efficiency or reactant to product conversion.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号