首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melt crystallization behaviors of poly(ethylene terephthalate) (PET) and poly(ethylene terephthalate‐co‐isophthalate) (PETI) containing 2 and 12 mol % of noncrystallizable isophthalate components were investigated. Differential scanning calorimetry (DSC) isothermal results revealed that the introduction of 2 mol % isophthalate into PET caused a change of the crystal growth process from a two‐dimensional to a three‐dimensional spherulitic growth. The addition of more isophthalate up to 12 mol % into the PET structure induced a change in the crystal growth from a three‐dimensional to a two‐dimensional crystal growth. DSC heating scans after completion of isothermal crystallization at various Tc's showed three melting endotherms for PET and four melting endotherms for PETI‐2 and PETI‐12. The presence of an additional melting endotherm is attributed to the melting of copolyester crystallite composed of ethylene glycol, tere‐phthalate, and isophthalate (IPA) or the melting of molecular chains near IPA formed by melting the secondary crystallite Tm (I) and then recrystallizing during heating. Analyses of both Avrami and Lauritzen‐Hoffman equations revealed that PETI containing 2 mol % of isophthalate had the highest Avrami exponent n, growth rate constant Go, and product of lateral and end surface free energies σσe. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2515–2524, 2000  相似文献   

2.
The microstructure and crystallization behavior of a set of poly(ethylene terephthalate‐co‐5‐nitroisophthalate) copolymers (PETNI) containing 5‐nitroisophthalic units in the 10–50 mol % range were examined and compared to those of poly(ethylene terephthalate) (PET) and poly(ethylene terephthalate‐co‐isophthalate) (PETI) copolymers. A 13C NMR analysis of PETNI copolymers in a trifluoroacetic acid solution indicates that they are random copolymers with average sequence lengths in accordance with ideal polycondensation statistics. Differential scanning calorimetry (DSC) studies show that PETNI containing 5‐nitroisophthalic units up to 20 mol % are able to crystallize and that crystallization takes place in these copolymers at much slower rates than in PET. Wide‐angle X‐ray diffraction from powder and fibers reveals that crystallizable PETNI adopts the same triclinic crystal structure as PET, with the nitroisophthalate units being excluded from crystallites. Fourier transform infrared in combination with cross‐polarization/magic‐angle spinning 13C NMR spectroscopy demonstrates the occurrence of a gauche–trans conversion encompassing the crystallization process. A correlation between DSC and spectroscopic data leads us to conclude that the content of trans conformer in the noncrystallized phase of PETNI is higher than in both PET and PETI copolymers and suggests that secondary crystallization in the homopolymer must proceed by a mechanism different than that in copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1553–1564, 2001  相似文献   

3.
The thermal behavior of poly(ethylene‐co‐2,2‐bis[4‐(ethylenoxy)‐1,4‐phenylene]propane terephthalate) (PET/BHEEBT) copolymers was investigated by thermogravimetric analysis and differential scanning calorimetry. A good thermal stability was found for all the samples. The thermal analysis carried out using DSC technique showed that the Tm of the copolymers decreased with increasing BHEEBT unit content, differently from Tg, which on the contrary increased. Wide‐angle X‐ray diffraction measurements permitted identifying the kind of crystalline structure of PET in all the semicrystalline samples. The multiple endotherms similar to PET were also evidenced in the PET/BHEEBT samples, due to melting and recrystallization processes. By applying the Hoffman–Weeks' method, the Tm° of PET and its copolymers was derived. The isothermal crystallization kinetics was analyzed according to Avrami's treatment and values of the exponent n close to 3 were obtained, independently of Tc and composition. Moreover, the introduction of BHEEBT units was found to decrease PET crystallization rate. Lastly, the presence of a crystal‐amorphous interphase was evidenced. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1441–1454, 2005  相似文献   

4.
A library of random poly(ethylene terephthalate) (PET), poly(trimethylene terephthalate) (PTT), and seven PET–PTT copolymers has been prepared in a high throughput manner by entropically‐driven ring‐opening polymerizations of the corresponding macrocyclic oligomers. The products have been investigated by differential scanning calorimetry and wide angle X‐ray diffraction. They show that the 50:50 copolymer displays a crystalline phase. The same phase can be formed by in situ transesterification when a 50:50 mixture of PET and PTT is melt blended. Poly(butylene terephthalate) (PBT)–PET and PTT–PBT 50:50 copolymers also show crystal phases. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
A series of aliphatic–aromatic multiblock copolyesters consisting of poly(ethylene‐co‐1,6‐hexene terephthalate) (PEHT) and poly(L ‐lactic acid) (PLLA) were synthesized successfully by chain‐extension reaction of dihydroxyl terminated PEHT‐OH prepolymer and dihydroxyl terminated PLLA‐OH prepolymer using toluene‐2,4‐diisoyanate as a chain extender. PEHT‐OH prepolymers were prepared by two step reactions using dimethyl terephthalate, ethylene glycol, and 1,6‐hexanediol as raw materials. PLLA‐OH prepolymers were prepared by direct polycondensation of L ‐lactic acid in the presence of 1,4‐butanediol. The chemical structures, the molecular weights and the thermal properties of PEHT‐OH, PLLA‐OH prepolymers, and PEHT‐PLLA copolymers were characterized by FTIR, 1H NMR, GPC, TG, and DSC. This synthetic method has been proved to be very efficient for the synthesis of high‐molecular‐weight copolyesters (say, higher than Mw = 3 × 105 g/mol). Only one glass transition temperature was found in the DSC curves of PEHT‐PLLA copolymers, indicating that the PLLA and PEHT segments had good miscibility. TG curves showed that all the copolyesters had good thermal stabilities. The resulting novel aromatic–aliphatic copolyesters are expected to find a potential application in the area of biodegradable polymer materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5898–5907, 2009  相似文献   

6.
Poly(ethylene terephthalate‐co‐isophthalate‐co‐5‐tert‐butylisophthalate) (PETItBI) terpolymers were investigated with reference to poly(ethylene terephthalate) (PET) homopolymer and poly(ethylene terephthalate‐co‐isophthalate) (PETI) copolymers. Three series of PETItBI terpolyesters, characterized by terephthalate contents of 90, 80, and 60 mol %, respectively, with different isophthalate/5‐tert‐butylisophthalate molar ratios, were prepared from ethylene glycol and mixtures of dimethyl terephthalate, dimethyl isophthalate, and 5‐tert‐butylisophthalic acid. The composition of the terpolymers and the composition of the feed agreed. All terpolymers had a random microstructure and number‐average molecular weights ranging from 10,000 to 20,000. The PETItBI terpolyesters displayed a higher glass‐transition temperature and a lower melting temperature than the PETI copolymers having the same content of terephthalic units. Thermal stability appeared essentially unchanged upon the incorporation of the 5‐tert‐butylisophthalic units. The PETItBIs were crystalline for terephthalate contents higher than 80 mol %, and they crystallized at lower rates than PETI. The crystal structure of the crystalline terpolymers was the same as that of PET with the 1,3‐phenylene units being excluded from the crystalline phase. Incorporation of isophthalate comonomers barely affected the tensile modulus and strength of PET, but the brittleness of the terpolymers decreased for higher contents in 5‐tert‐butylisophthalic units. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 124–134, 2003  相似文献   

7.
The effect of incorporating a nitro side group into the phenylene units of poly(ethylene terephthalate) (PET) on the conformation and crystallizability of this polyester was evaluated. Random poly(ethylene terephthalate‐co‐nitroterephthalate) (PETNT) copolymers containing 5, 10, and 15 mol % nitroterephthalic units were investigated with reference to PET. All the examined copolymers were semicrystalline and were found to adopt the triclinic crystal structure of PET, with the nitrated units being excluded from the crystallites. Both the crystallinity and crystallization rate of PETNT largely decreased with the content of nitrated units, and the O? CH2? CH2? O trans‐to‐gauche conformational ratio increased with crystallization, attaining comparable values for all the compositions. The conformation and crystallinity of isothermally crystallized PET and PETNT samples could be correlated with the size of the crystallites generated in each case. However, a different crystal perfecting mechanism seemed to operate for PET and for the PETNT copolymers when they were subjected to annealing. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2759–2771, 2002  相似文献   

8.
Poly(ethylene terephthalate)‐co‐poly(propylene glycol) (PET‐co‐PPG) copolymers with PPG ratio ranging from 0 to 0.90 mol% were synthesized by the melt copolycondensation. The intrinsic viscosity, structure, non‐isothermal crystallization behavior, nucleation and spherulitic growth of the copolymers were investigated by Ubbelohde viscometer, Proton Nuclear Magnetic Resonance (1H‐NMR), differential scanning calorimetry, and polarized optical microscopy, respectively. The non‐isothermal crystallization process of the copolymers was analyzed by Avrami, Ozawa, Mo's, Kissinger, and Dobreva methods, respectively. The results showed that the crystallizability of PET was apparently enhanced with incorporating a small amount of PPG, which first rose and then reduced with increasing amount of PPG in the copolymers at a given cooling rate. The crystallization mechanism was a three‐dimensional growth with both instantaneous and sporadic nucleation. Particularly, PET‐co‐PPG containing 0.60 mol% PPG exhibited the highest crystallizability among all the copolymers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Dimethyl 2,6‐anthracene dicarboxylate is used as a comonomer in the synthesis of functional copolymers that are subject to modification with Diels–Alder reactions. The formation of poly(ethylene terephthalate‐co‐2,6‐anthracenate), containing less than 20 mol % of the anthracene‐2,6‐dicarboxylate structural units, provides materials that are tractable and soluble. The anthracene units of the copolymers undergo Diels–Alder reactions with N‐substituted maleimides. The grafting of N‐alkylmaleimides affords soluble, hydrophobic polymers, whereas grafting with maleimide‐terminated poly(ethylene glycol) affords hydrophilic polymers. Because this reaction proceeds below the melting point of the copolymers, the procedure can be applied to thin films, whereby the surface properties are modified. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3256–3263, 2002  相似文献   

10.
Copoly(ethylene terephthalate‐imide)s (PETIs) were synthesized by the melt copolycondensation of bis(2‐hydroxyethyl)terephthalate with a new imide monomer, N,N′‐bis[p‐(2‐hydroxyethoxycarbonyl)phenyl]‐biphenyl‐3,3′,4,4′‐tetracarboxydiimide (BHEI). The copolymers were characterized by intrinsic viscosity, Fourier transform infrared, 1H NMR, differential scanning calorimetry, and thermogravimetric analysis techniques. Although their crystallinities decreased as the content of BHEI units increased, the glass‐transition temperatures (Tg) increased significantly. When 5 or 10 mol % BHEI units were incorporated into poly(ethylene terephthalate), Tg increased by 10 or 24 °C, respectively. The thermal stabilities of PETI copolymers were about the same as the thermal stability of PET, whereas the weight loss of PETIs decreased as the content of BHEI units increased. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 408–415, 2001  相似文献   

11.
To increase the Tg in combination with a retained crystallization rate, bis(2‐hydroxyethyl)terephthalate (BHET) was incorporated into poly(butylene terephthalate) (PBT) via solid‐state copolymerization (SSP). The incorporated BHET fraction depends on the miscibility of BHET in the amorphous phase of PBT prior to SSP. DSC measurements showed that BHET is only partially miscible. During SSP, the miscible BHET fraction reacts via transesterification reactions with the mobile amorphous PBT segments. The immiscible BHET fraction reacts by self‐condensation, resulting in the formation of poly(ethylene terephthalate) (PET) homopolymer. 1H‐NMR sequence distribution analysis showed that self‐condensation of BHET proceeded faster than the transesterification with PBT. SAXS measurements showed an increase in the long period with increasing fraction BHET present in the mixtures used for SSP followed by a decrease due to the formation of small PET crystals. DSC confirmed the presence of separate PET crystals. Furthermore, the incorporation of BHET via SSP resulted in PBT‐PET copolymers with an increased Tg compared to PBT. However, these copolymers showed a poorer crystallization behavior. The modified copolymer chain segments are apparently fully miscible with the unmodified PBT chains in the molten state. Consequently, the crystal growth process is retarded resulting in a decreased crystallization rate and crystallinity. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 882–899, 2007.  相似文献   

12.
A novel multiblock aromatic–aliphatic copolyester poly(ethylene‐co‐1,6‐hexene terephthalate)‐copoly(1,4‐dioxan‐2‐one) (PEHT‐PPDO) was successfully synthesized via the chain‐extension reaction of dihydroxyl teminated poly(ethylene‐co‐hexane terephthalate) (PEHT‐OH) with dihydroxyl teminated poly(1,4‐dioxan‐2‐one) (PPDO‐OH) prepolymers, using toluene‐2,4‐diisocyanate as a chain extender. To produce PEHT‐OH prepolymer with an appropriate melting point which can match the reaction temperature of PEHT‐OH prepolymer with PPDO‐OH prepolymer, 1,6‐hexanediol was used to disturb the regularity of poly(ethylene terephthalate) segments. The chemical structures and molecular weights of PEHT‐PPDO copolymers were characterized by 1H NMR, FTIR, and GPC. The DSC data showed that PPDO‐OH segments were miscible well with PEHT‐OH segments in amorphous state and that the crystallization of copolyester was predominantly contributed by PPDO segments. The TGA results indicated that the thermal stability of PEHT‐PPDO was improved comparing with PPDO homopolymer. The novel aromatic–aliphatic copolyesters have good mechanical properties and could find applications in the field of biodegradable polymer materials. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2828–2837, 2010  相似文献   

13.
Segmented poly(ether‐block‐amide) copolymers are typically known as polyamide‐based thermoplastic elastomers consisting of hard, crystallizable polyamide block and flexible, amorphous polyether block. The melting characteristics of a poly(ether‐block‐amide) copolymer melt‐crystallized under various quiescent, isothermal conditions were calorimetrically investigated using differential scanning calorimetry (DSC). For such crystallized copolymer samples, their crystalline structures under ambient condition and the structural evolutions upon heating from ambient to complete melting were characterized using ambient and variable‐temperature wide‐angle X‐ray diffractometry (WAXD), respectively. It was observed that dependent of specific crystallization conditions, the copolymer samples exhibited one, two, or three melting endotherms. The ambient WAXD results indicated that all melt‐crystallized copolymer samples only exhibited γ‐form crystals associated with the hexagonal habits of the polyamide homopolymer, whereas variable‐temperature WAXD data suggested that upon heating from ambient, a melt‐crystallized copolymer might exhibit so‐called Brill transition before complete melting. Based on various DSC and variable‐temperature WAXD experimental results obtained in this study, the applicability of different melting mechanisms that might be responsible for multiple melting characteristics of various crystallized PEBA copolymer samples were discussed. It was postulated that the low (T m1) endotherm was primarily because of the disruption of less thermally stable, short‐range ordered structure of amorphous polyamide segments of the copolymer, which was only formed after the completion of primary crystallization via so‐called annealing effects. The intermediate (Tm2) and high (Tm3) endotherms were attributed to the melting of primary crystals within polyamide crystalline microdomains of the copolymer. The appearance of these two melting endotherms might be somehow complicated by thermally induced Brill transition. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2035–2046, 2008  相似文献   

14.
This study describes the morphology and nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) in situ micro‐fiber‐reinforced blends (MRB) obtained via slit‐extrusion, hot‐stretching quenching. For comparison purposes, neat PP and PET/PP common blends are also included. Morphological observation indicated that the well‐defined microfibers are in situ generated by the slit‐extrusion, hot‐stretching quenching process. Neat iPP and PET/iPP common blends showed the normal spherulite morphology, whereas the PET/iPP microfibrillar blend had typical transcrystallites at 1 wt % PET concentration. The nonisothermal crystallization kinetics of three samples were investigated with differential scanning calorimetry (DSC). Applying the theories proposed by Jeziorny, Ozawa, and Liu to analyze the crystallization kinetics of neat PP and PET/PP common and microfibrillar blends, agreement was found between our experimental results and Liu's prediction. The increases of crystallization temperature and crystallization rate during the nonisothermal crystallization process indicated that PET in situ microfibers have significant nucleation ability for the crystallization of a PP matrix phase. The crystallization peaks in the DSC curves of the three materials examined widened and shifted to lower temperature when the cooling rate was increased. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 374–385, 2004  相似文献   

15.
Starting with 3,3′,4,4′‐biphenyltetracarboxylic dianhydride and methyl aminobenzoate, we synthesized a novel rodlike imide‐containing monomer, N,N′‐bis[p‐(methoxy carbonyl) phenyl]‐biphenyl‐3,3′,4,4′‐tetracarboxydiimide (BMBI). The polycondensation of BMBI with dimethyl terephthalate and ethylene glycol yielded a series of copoly(ester imide)s based on the BMBI‐modified poly(ethylene terephthalate) (PET) backbone. Compared with PET, these BMBI‐modified polyesters had higher glass‐transition temperatures and higher stiffness and strength. In particular, the poly(ethylene terephthalate imide) PETI‐5, which contained 5 mol % of the imide moieties, had a glass‐transition temperature of 89.9 °C (11 °C higher than the glass‐transition temperature of PET), a tensile modulus of 869.4 MPa (20.2 % higher than that of PET), and a tensile strength of 80.8 MPa (38.8 % higher than that of PET). Therefore, a significant reinforcing effect was observed in these imide‐modified polyesters, and a new approach to higher property polyesters was suggested. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 852–863, 2002; DOI 10.1002/pola.10169  相似文献   

16.
The preparation of poly(2,6‐dimethyl‐1,4‐phenylene ether)‐b‐poly(ethylene terephthalate) block copolymer was performed by the reaction of the 2‐hydroxyethyl modified poly(2,6‐dimethyl‐1,4‐phenylene ether) (PPE‐EtOH) with poly(ethylene terephthalate) (PET) by an in situ process, during the synthesis of the polyester. The yield of the reaction of the 2‐hydroxyethyl functionalized PPE‐EtOH with PET was close to 100%. A significant proportion of the PET‐b‐PPE‐EtOH block copolymer was found to have short PET block. Nevertheless, the copolymer structured in the shape of micelles (20 nm diameter) and very small domains with 50–200 nm diameter, whereas unmodified PPE formed much larger domains (1.5 μm) containing copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3985–3991, 2008  相似文献   

17.
This work examined the miscibility, crystallization kinetics, and melting behavior of melt‐mixed poly(trimethylene terephthalate) (PTT)/poly(ethylene‐co‐cyclohexane 1,4‐dimethanol terephthalate) (PETG) blends. Differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction techniques were used to approach the goals. The single composition‐dependent glass‐transition temperatures of the blends and the equilibrium melting temperature (T) depression of PTT in the blends indicated the miscible characteristic of the blend system at all compositions. T of pure PTT, determined with a conventional extrapolative method, was 525.8 K. Furthermore, the Flory–Huggins interaction parameter was estimated to be ?0.38. The dynamic and isothermal crystallization abilities of PTT were hindered by the incorporation of PETG. A complex melting behavior was observed for pure PTT and its blends. The observed complex melting behavior resulted mainly from the recrystallization and/or reorganization of the originally formed crystals during the heating scans. For the samples crystallized under the same conditions, the degree of recrystallization and/or reorganization declined with increasing PETG contents in the blends. The preliminary results obtained from the DSC experiments suggested that untraceable interchange reactions occurred in the studied blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2264–2274, 2003  相似文献   

18.
The free‐radical copolymerization of N‐phenylmaleimide (N‐PhMI) with acrylic acid was studied in the range of 25–75 mol % in the feed. The interactions of these copolymers with Cu(II) and Co(II) ions were investigated as a function of the pH and copolymer composition by the use of the ultrafiltration technique. The maximum retention capacity of the copolymers for Co(II) and Cu(II) ions varied from 200 to 250 mg/g and from 210 to 300 mg/g, respectively. The copolymers and polymer–metal complexes of divalent transition‐metal ions were characterized by elemental analysis, Fourier transform infrared, 1H NMR spectroscopy, and cyclic voltammetry. The thermal behavior was investigated with differential scanning calorimetry (DSC) and thermogravimetry (TG). The TG and DSC measurements showed an increase in the glass‐transition temperature (Tg) and the thermal stability with an increase in the N‐PhMI concentration in the copolymers. Tg of poly(N‐PhMI‐co‐AA) with copolymer composition 46.5:53.5 mol % was found at 251 °C, and it decreased when the complexes of Co(II) and Cu(II) at pHs 3–7 were formed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4933–4941, 2005  相似文献   

19.
Solvent transport in poly(ethylene terephthalate) (PET) and related phase transformation were investigated. The data of mass sorption were analyzed according to Harmon's model for Case I (Fickian), Case II (swelling), and anomalous transport. This transport process in PET is accompanied by the induced crystallization of the original amorphous state. The transformation was examined by wide‐angle X‐ray scattering, small‐angle X‐ray scattering, differential scanning calorimetry, and Fourier transform infrared spectroscopy. During this process, the matrix is under a strain state that causes different kinetic paths of crystallization as compared with that by thermal annealing. This state of strain assists the development of the solvent‐induced crystallization. The model regarding crystallization was proposed in terms of the study of long period L, the crystal thickness lc, and the thickness of amorphous layer la obtained from the one‐dimensional correlation function and interface distribution function. Different kinetic paths were discovered for different crystallization processes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1444–1453, 2002  相似文献   

20.
After isothermal crystallization, poly(ethylene terephthalate) (PET) showed double endothermic behavior in the differential scanning calorimetry (DSC) heating scan. During the heating scans of semicrystalline PET, a metastable melt which comes from melting thinner lamellar crystal populations formed between the low and the upper endothermic temperatures. The metastable melt can recrystallize immediately just above the low melting temperature and form thicker lamellae than the original ones. The thickness and perfection depends on the crystallization time and crystallization temperature. The crystallization kinetics of this metastable melt can be determined by means of DSC. The kinetics analysis showed that the isothermal crystallization of the metastable PET melt proceeds with an Avrami exponent of n = 1.0 ∼ 1.2, probably reflecting one‐dimensional or irregular line growth of the crystal occurring between the existing main lamellae with heterogeneous nucleation. This is in agreement with the hypothesis that the melting peaks are associated with two distinct crystal populations with different thicknesses. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 53–60, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号