首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Aiming to develop a high performance fiber reinforced rubber of SBR, a special technique using electron beam (EB) irradiation-induced graft-polymerization was applied to ultra-high molecular-weight polyethylene (UHMWPE) fibers. Although UHMWPE is chemically inert, N-vinyl formamide (NVF) could be graft-polymerized onto the UHMWPE fiber surface with this special technique. A maximum grafting percentage of 23.6% was achieved. The composite of SBR and grafted UHMWPE fibers with maximum grafting indicated a linear increase in the initial modulus and strength with the fiber content. At the fiber content of 10%, the initial modulus was improved about five times with respect to that of the pure SBR, while the strength was done about twice. At this moment, only a small reduction could be observed in the strain compared with that of pure SBR. The fiber reinforced rubber with a good performance was obtained in the system of SBR and grafted UHMWPE fibers.  相似文献   

2.
This study concerns the radiation grafting of styrene onto poly(tetrafluoroethylene‐co‐perfluoropropylvinylether) (PFA) substrates and the penetration depth of the graft. Grafting was obtained by the simultaneous irradiation method, and the spectroscopic analysis was made with the micro‐Raman technique. Effects of grafting conditions such as the type of solvent, dose rate, and irradiation dose on the grafting yield were investigated. Of the different solvents used, the most efficient in terms of increasing grafting yield were dichloromethane, benzene, and methanol, respectively. A mixture of methanol and dichloromethane used as a solvent for styrene achieved a higher degree of grafting and concentration of grafted polystyrene onto the surface of PFA substrates than solutions of the monomer in the separate solvents. The degree of grafting increased with increasing radiation dose up to 500 kGy, stabilizing above this dose. However, the grafting yield decreased with an increase in the dose rate. The increase in the overall grafting yield was accompanied by a proportional increase in the penetration depth of the grafts into the substrate. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3191–3199, 2002  相似文献   

3.
Well‐defined graft copolymers with styrene butadiene rubber (SBR) backbones and polystyrene branches were synthesized by living free radical polymerization (LFRP) techniques. Thus 1‐ benzoyl‐2‐phenyl‐2‐(2′,2′,6′,6′‐tetramethyl‐piperidinyl‐1′‐oxy)ethane (BZ‐TEMPO) was synthesized and hydrolyzed to the corresponding 1‐hydroxyl derivative. This functional nitroxyl compound was coupled with brominated SBR (SBR‐Br). The resulting macroinitiator (SBR‐TEMPO) for “living” free radical polymerization was then heated in the presence of styrene for the formation of the controlled graft copolymer. 1H‐NMR and IR spectroscopy were used to investigate the structure of the polymers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Styrene–butadiene rubber (SBR) is a copolymer of styrene and butadiene, and the butadiene unit is composed of cis‐1,4‐, trans‐1,4‐, and 1,2‐components. Filler‐polymer interactions of each component of SBR in silica‐filled SBR compounds were examined by microstructure analysis of the bound and unbound rubbers. The composition ratio of butadiene and styrene units (butadiene/styrene) of the bound rubber was higher than that of the compounded rubber. Of the butadiene units, the 1,2‐component of the bound rubber was more abundant than the cis‐1,4‐ and trans‐1,4‐components. The filler‐polymer interaction of the butadiene unit with silica was stronger than that of the styrene unit, and the interaction of the 1,2‐component was stronger as compared with the others. The butadiene–styrene ratio of the bound rubber of the compounds containing the silane coupling agent was lower than for the compounds without the silane. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 577–584, 2004  相似文献   

5.
聚四氟乙烯强酸性阳离子交换纤维的制备研究   总被引:2,自引:0,他引:2  
采用共辐射引发将苯乙烯接枝到聚四氟乙烯(PTFE)纤维上,然后磺化制备出强酸性和超强酸性离子交换纤维,接枝率随苯乙烯单体浓度和辐射剂量增加而提高,随辐射剂量率的增加而降低,当接枝率为20%左右时,PTFE-co-St-SO3H离子交换纤维的Hammett酸度函数低于-11.99,呈现出超强酸性。  相似文献   

6.
To prevent the loss of fiber strength, ultrahigh‐molecular‐weight polyethylene (UHMWPE) fibers were treated with an ultraviolet radiation technique combined with a corona‐discharge treatment. The physical and chemical changes in the fiber surface were examined with scanning electron microscopy and Fourier transform infrared/attenuated total reflectance. The gel contents of the fibers were measured by a standard device. The mechanical properties of the treated fibers and the interfacial adhesion properties of UHMWPE‐fiber‐reinforced vinyl ester resin composites were investigated with tensile testing. After 20 min or so of ultraviolet radiation based on 6‐kW corona treatment, the T‐peel strength of the treated UHMWPE‐fiber composite was one to two times greater than that of the as‐received UHMWPE‐fiber composite, whereas the tensile strength of the treated UHMWPE fibers was still up to 3.5 GPa. The integrated mechanical properties of the treated UHMWPE fibers were also optimum. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 463–472, 2004  相似文献   

7.
The effects of radicals on silica surface, which were formed by γ‐ray irradiation, on the polymerization of vinyl monomers were investigated. It was found that the polymerization of styrene was remarkably retarded in the presence of γ‐ray‐irradiated silica above 60 °C, at which thermal polymerization of styrene is readily initiated. During the polymerization, a part of polystyrene formed was grafted onto the silica surface but percentage of grafting was very small. On the other hand, no retardation of the polymerization of styrene was observed in the presence of γ‐ray‐irradiated silica below 50 °C; the polymerization tends to accelerate and polystyrene was grafted onto the silica surface. Poly(vinyl acetate) and poly(methyl methacrylate) (MMA) were also grafted onto the surface during the polymerization in the presence of γ‐ray‐irradiated silica. The grafting of polymers onto the silica surface was confirmed by thermal decomposition GC‐MS. It was considered that at lower temperature, the grafting based on the propagation of polystyrene from surface radical (“grafting from” mechanism) preferentially proceeded. On the contrary, at higher temperature, the coupling reaction of propagating polymer radicals with surface radicals (“grafting onto” mechanism) proceeded to give relatively higher molecular weight polymer‐grafted silica. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2972–2979, 2006  相似文献   

8.
Pre‐irradiation grafting of styrene/divinylbenzene (DVB) onto poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP) films was studied with respect to the influence of solvent. Particularly favorable grafting conditions with long radical lifetimes and reasonably high polymerization rates were achieved with solvents that are precipitants for the newly formed polystyrene, e.g., low‐molecular‐mass alcohols like iPrOH, AcOH, their mixtures with H2O, and H2O/surfactant systems. Using one of these solvents significantly extended the range of accessible graft levels, and a specific degree of grafting was obtained at a much lower monomer concentration and irradiation dose than with grafting in a good solvent such as toluene. As practical consequences, the monomer was used more efficiently, and the radiation damage of the perfluorinated base material was reduced with the result of improved mechanical properties of the grafted films.  相似文献   

9.
Aiming to develop a high performance fiber-reinforced natural rubber (NR) without using resorcinol formaldehyde latex (RFL) adhesives of environmental load substances, a special technique using electron beam (EB) irradiation-induced graft polymerization was applied to high-modulus polyethylene terephthalate (PET) fibers. Although PET is chemically inert, acrylate functional silane could be graft-polymerized onto the PET fiber surface by this special technique. The composite of NR and grafted PET fibers indicated a linear increase in the initial modulus with the fiber content. The fiber reinforced rubber with a good performance was obtained in the system of NR and grafted PET fibers.  相似文献   

10.
Poly(p-phenylene-terephthalamide) PPTA chopped fibers, known as Kevlar 49 and related to aramid fibers, were subjected to graft copolymerization with styrene under the effect of gamma radiation. The effects of different parameters including irradiation dose, type of solvent and monomer concentration on the graft yield were studied. The surface-modified chopped fibers were introduced in styrene–butadiene rubber (SBR) mixtures. The properties of rubber mixtures and their corresponding vulcanizates were markedly affected depending on the fiber concentration. Grafting of styrene on to chopped PPTA fibers improves the mechanical properties of SBR–PPTA composites, especially in the presence of additional crosslining systems based on benzoyl peroxide EDMA (ethylene dimethacrylate) system. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
A new graft copolymer, poly(2‐hydroxyethyl methacrylate‐co‐styrene) ‐graft‐poly(?‐caprolactone), was prepared by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with coordination‐insertion ring‐opening polymerization (ROP). The copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 60 °C in the presence of 2‐phenylprop‐2‐yl dithiobenzoate (PPDTB) using AIBN as initiator. The molecular weight of poly (2‐hydroxyethyl methacrylate‐co‐styrene) [poly(HEMA‐co‐St)] increased with the monomer conversion, and the molecular weight distribution was in the range of 1.09 ~ 1.39. The ring‐opening polymerization (ROP) of ?‐caprolactone was then initiated by the hydroxyl groups of the poly(HEMA‐co‐St) precursors in the presence of stannous octoate (Sn(Oct)2). GPC and 1H‐NMR data demonstrated the polymerization courses are under control, and nearly all hydroxyl groups took part in the initiation. The efficiency of grafting was very high. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5523–5529, 2004  相似文献   

12.
A polyimide‐graft‐polystyrene (PI‐g‐PS) copolymer with a polyimide backbone and polystyrene side chains was synthesized by the “grafting from” method using styrene polymerization on a polyimide multicenter macroinitiator via ATRP mechanism. The side chain grafting density z = 0.86 of PI‐g‐PS is rather high for graft‐copolymers synthesized by the ATRP method. Molecular characteristics and solution behavior of PI‐g‐PS were studied in selective solvents using light scattering and viscometry methods. In all solvents, the backbone tends to avoid contact with a poor solvent. To describe the conformation and hydrodynamic properties of PI‐g‐PS macromolecules in thermodynamically good solvents for side chains and PI‐g‐PS, the wormlike spherocylinder model is used. Macromolecules of the studied graft‐copolymer are characterized by high equilibrium rigidities (Kuhn segment length >20 nm). In Θ‐conditions, PI‐g‐PS macromolecules may be modeled by a rigid prolate ellipsoid of revolution with a low asymmetry form and a collapsed backbone as the ellipsoid core. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1539–1546  相似文献   

13.
A binary mixture of styrene and maleic anhydride has been graft copolymerized onto cellulose extracted from Pinus roxburghii needles. The reaction was initiated with gamma rays in air by the simultaneous irradiation method. Graft copolymerization was studied under optimum conditions of total dose of radiation, amount of water, and molar concentration previously worked out for grafting styrene onto cellulose. Percentage of total conversion (Pg), grafting efficiency (%), percentage of grafting (Pg), and rates of polymerization (Rp), grafting (Rg), and homopolymerization (Rh) have been determined as a function of maleic anhydride concentration. The high degree of kinetic regularity and the linear dependence of the rate of polymerization on maleic anhydride concentration, along with the low and nearly constant rate of homopolymerization suggest that the monomers first form a complexomer which then polymerizes to form grafted chains with an alternating sequence. Grafting parameters and reaction rates achieve maximum values when the molar ratio of styrene to maleic anhydride is 1 : 1. Further evidence for the alternating monomer sequence is obtained from quantitatively evaluating the composition of the grafted chains from the FT‐IR spectra, in which the ratio of anhydride absorbance to aromatic (CC) absorbance for the stretching bands assigned to the grafted monomers remained constant and independent of the feed ratio of maleic anhydride to styrene. Thermal behaviour of the graft copolymers revealed that all graft copolymers exhibit single stage decomposition with characteristic transitions at 161–165°C and 290–300°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1763–1769, 1999  相似文献   

14.
A new biodegradable starch graft copolymer, starch‐g‐poly(1,4‐dioxan‐2‐one), was synthesized through the ring‐opening graft polymerization of 1,4‐dioxan‐2‐one onto a starch backbone. The grafting reactions were conducted with various 1,4‐dioxan‐2‐one/starch feed ratios to obtain starch‐g‐poly(1,4‐dioxan‐2‐one) copolymers with various poly(1,4‐dioxan‐2‐one) graft structures. The microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was characterized in detail with one‐ and two‐dimensional NMR spectroscopy. The effect of the feed composition on the resulting microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3417–3422, 2004  相似文献   

15.
Methacrylic acid (MAA) and acrylic acid (AA) were grafted onto high‐density polyethylene (PE) with UV initiation and a range of solvents. With acetone as the solvent, MAA was more easily grafted onto PE when the photoinitiator benzophenone was precoated on PE than when it was dissolved in the monomer solution. The grafting was faster in aliphatic solvents than in polar solvents or a UV‐adsorbing aromatic solvent (toluene). Acetone itself could initiate the photografting of both MAA and AA onto PE when it was mixed with water. The extent of grafting of MAA onto PE showed a maximum when there was about 40% acetone in the mixture. For AA, when the acetone/water concentration was 10%, the extent of grafting increased rapidly with the irradiation time. At higher acetone concentrations, the extent of grafting was low. Atomic force microscopy images showed that the surface topography of PE grafted with MAA in acetone/water was quite different from that obtained when the grafting was performed in other organic solvents. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 253–262, 2004  相似文献   

16.
The graft copolymerizations of styrene onto poly(ethylene terephthalate) (PET) and nylon fibers were carried out by the mutual irradiation and preirradiation methods. True graft copolymers were isolated from the products by extraction and characterized by hydrolysis and osmometry. Among the swelling agents employed, methanol was most effective for increasing the extent of grafting onto PET. In both methods of the grafting, the molecular weight of polystyrene formed in the substrate matrix was higher than one million if no chain-transfer agent was added to the monomer solution. Similar to the case of radiation grafting onto poly(vinyl alcohol) and cellulose, the isolated graft copolymer carried only one branch per copolymer molecule in both cases. Of great interest is the particularly low extent of grafting in the case of PET–styrene. This should be attributed to the low sensitivity of PET to radiation. The grafting site on the mother polymer molecule is discussed on the basis of the solution behavior of the branch polymers separated from the backbone.  相似文献   

17.
The γ‐initiated reversible addition–fragmentation chain‐transfer (RAFT)‐agent‐mediated free‐radical graft polymerization of styrene onto a polypropylene solid phase has been performed with cumyl phenyldithioacetate (CPDA). The initial CPDA concentrations range between 1 × 10?2 and 2 × 10?3 mol L?1 with dose rates of 0.18, 0.08, 0.07, 0.05, and 0.03 kGy h?1. The RAFT graft polymerization is compared with the conventional free‐radical graft polymerization of styrene onto polypropylene. Both processes show two distinct regimes of grafting: (1) the grafting layer regime, in which the surface is not yet totally covered with polymer chains, and (2) a regime in which a second polymer layer is formed. Here, we hypothesize that the surface is totally covered with polymer chains and that new polymer chains are started by polystyrene radicals from already grafted chains. The grafting ratio of the RAFT‐agent‐mediated process is controlled via the initial CPDA concentration. The molecular weight of the polystyrene from the solution (PSfree) shows a linear behavior with conversion and has a low polydispersity index. Furthermore, the loading of the grafted solid phase shows a linear relationship with the molecular weight of PSfree for both regimes. Regime 2 has a higher loading capacity per molecular weight than regime 1. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4180–4192, 2002  相似文献   

18.
The in situ grafting‐from approach via atom transfer radical polymerization was successfully applied to polystyrene, poly(styrene‐co‐acrylonitrile), and polyacrylonitrile grafted onto the convex surfaces of multiwalled carbon nanotubes (MWCNTs) with (2‐hydroxyethyl 2‐bromoisobutyrate) as an initiator. Thermogravimetric analysis showed that effective functionalization was achieved with the grafting approach. The grafted polymers on the MWCNT surface were characterized and confirmed with Fourier transform infrared spectroscopy and nuclear magnetic resonance. Raman and near‐infrared spectroscopy revealed that the grafting of polystyrene, poly(styrene‐co‐acrylonitrile), and polyacrylonitrile slightly affected the side‐wall structures. Field emission scanning electron microscopy showed that the carbon nanotube surface became rough because of the grafting of the polymers. Differential scanning calorimetry results indicated that the polymers grafted onto MWCNTs showed higher glass‐transition temperatures. The polymer‐grafted MWCNTs exhibited relatively good dispersibility in an organic solvent such as tetrahydrofuran. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 460–470, 2007  相似文献   

19.
This study explored the abilities of 1‐(9‐anthrylmethyloxy)‐2‐pyridone and related compounds, which absorb long‐wavelength light (>350 nm), to photochemically initiate radical and cationic polymerizations. It was found that the irradiation of the title compounds initiates the radical polymerization of styrene whereas the cationic polymerization of oxetane proceeds in the presence of these photoinitiators to a negligible extent. The behavior of 9‐anthrylmethyloxyl and amidyl radicals in the photopolymerization process of styrene was discussed based on 1H NMR, UV, and fluorescence spectral data. In addition, the photoinitiation ability of the anthrylmethyloxyl end group was also investigated by using its model compound. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2859–2865, 2004  相似文献   

20.
The grafting polymerization of styrene initiated by the alkyl chloride groups of poly(CTFE‐alt‐VE) and poly[(CTFE‐alt‐VE)‐co‐(HFP‐alt‐VE] copolymers (where CTFE, HFP, and VE stand for chlorotrifluoroethylene (CTFE), hexafluoropropylene (HFP), and vinyl ether (VE), respectively) followed by the chemical modification of the polystyrene grafts are presented. First, the fluorinated alternating copolymers were produced by radical copolymerization of CTFE (with HFP) and VE. Second, atom transfer radical polymerization enabled the grafting polymerization of styrene in the presence of the poly(CTFE‐alt‐VE)‐macroinitiator using the alkyl chloride group of CTFE as the initiation site. Kinetics of the styrene polymerization indicated that such a grafting had a certain controlled character. For the first time, grafting of polystyrene onto alternating fluorinated copolymers has been achieved. Differential scanning calorimetry thermograms of these graft copolymers exhibited two glass transition temperatures assigned to both amorphous domains of the polymeric fluorobackbone (ranging from ?20 to +56 °C) and the polystyrene grafts (ca. 95 °C). The thermostability of these copolymers increased on grafting. Thermal degradation temperatures at 5% weight loss were ranging from 193 to 305 °C when the polystyrene content varied from 81 to 27%. Third, chloromethylation of the polystyrene grafts followed by the cationization of the chloromethyl dangling groups led to original ammonium‐containing graft copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号