首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural characterization and transport properties of blends of a commercial high molecular weight poly(?‐caprolactone) with different amounts of a montmorillonite‐poly(?‐caprolactone) nanocomposite containing 30 wt % clay were studied. Two different vapors were used for the sorption and diffusion analysis—water as a hydrophilic permeant and dichloromethane as anorganic permeant—in the range of vapor activity between 0.2 and 0.8. The blends showed improved mechanical properties in terms of flexibility and drawability as compared with the starting nanocomposites. The permeability (P), calculated as the product of the sorption (S) and the zero‐concentration diffusion coefficient (D0), showed a strong dependence on the clay content in the blends. It greatly decreased on increasing the montmorillonite content for both vapors. This behavior was largely dominated by the diffusion parameters. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1118–1124, 2002  相似文献   

2.
To suppress the repulsive interfacial energy between hydrophilic clay and a hydrophobic polymer matrix for polymer–clay nanocomposites, a third component of amphiphilic nature such as poly(?‐caprolactone) (PCL) was introduced into the styrene–acrylonitrile copolymers (SAN)/Na‐montmorillonite system. Once ?‐caprolactone was polymerized in the presence of Na‐montmorillonite, the successful ring‐opening polymerization of ?‐caprolactone and the well‐developed exfoliated structure of PCL/Na‐montmorillonite mixture were confirmed. Thereafter, SAN was melt‐mixed with PCL/Na‐montmorillonite nanocomposite, and the SAN matrix and PCL fraction were completely miscible to form a homogeneous mixture with retention of the exfoliated state of Na‐montmorillonite, exhibiting that PCL effectively stabilizes the repulsive polymer–clay interface and contributes to the improvement of the mechanical properties of nanocomposites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 246–252, 2004  相似文献   

3.
A novel process for synthesizing nylon‐6 and poly(?‐caprolactone) by microwave irradiation of the respective monomers, ?‐caprolactam and ?‐caprolactone, is described. The ring opening of ?‐caprolactam to produce nylon‐6 was performed in a microwave oven by the forward power being controlled to about 90–135 W in the presence of an ω‐aminocaproic acid catalyst (10 mol %) and for periods of 1–3 h at temperatures varying from 250 to 280 °C. The ring opening of ?‐caprolactone to produce poly(?‐caprolactone) was performed in a microwave oven by the forward power being controlled to about 70–100 W for a period of 2 h in the presence of stannous octoate with and without 1,4‐butanediol over a temperature range of 150–200 °C. The yields, conditions of the reactions, and properties of the products generated relative to the thermal processes are discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2264–2275, 2002  相似文献   

4.
Poly(ε‐caprolactone)/montmorillonite nanocomposites were prepared maintaining a constant inorganic content with three means: melt blending of poly(ε‐caprolactone) with natural or organomodified clays, in situ polymerization of ε‐caprolactone in the presence of organomodified clays, and initiation of ε‐caprolactone polymerization from the silicate layer with appropriate organomodified montmorillonites and activator. In this last case, the polymer chains were grafted to the silicate layers and it was possible to tune up the grafting density. The presence of clays did not modify the polymer crystallinity. It was shown that the in situ polymerization process from the clay surface improved the clay dispersion. The gas barrier properties of the different composite systems were discussed both as a function of the clay dispersion and of the matrix/clay interactions. The highest barrier properties were obtained for an exfoliated morphology and the highest grafting density. Similar evolution of the permeability and the diffusion coefficients was observed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 205–214, 2005  相似文献   

5.
An 2‐ureido‐4[1H]pyrimidinone (UPy) motif with self‐association capability (through quadruple hydrogen bonds) was successfully anchored onto montmorillonite clay layers. Polymer/clay nanocomposites were prepared by specific hydrogen bonding interactions between surface functionalized silica nanoclays and UPy‐bonded supramolecular poly(ethylene glycol) or poly(?‐caprolactone). The mixed morphologies including intercalated layers with a non‐uniform separation and exfoliated single layers isolated from any stack were determined by combined X‐ray diffraction and transmission electron microscopic measurements. Thermal analyses showed that all nanocomposites had higher decomposition temperatures and thermal stabilities compared with neat polymer. The differential scanning calorimetric data implied that the crystallinity of polymers did not show essential changes upon introduction of organomodified UPy clays. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 650–658  相似文献   

6.
Multi‐walled carbon nanotube/poly(ε‐caprolactone) composites (PCLCNs) were prepared by melt compounding. The rheology, nonisothermal crystallization behavior, and thermal stability of PCLCNs were, respectively, investigated by the parallel‐plate rheometer, differential scanning calorimeter, and TGA. Cole–Cole plots were employed successfully to detect the rheological percolation of PCLCNs under small amplitude oscillatory shear. PCLCNs present a low percolation threshold of about 2–3 wt % in contrast to that of clay‐based nanocomposites. The percolated nanotube network is very sensitive to the steady shear deformation, and is also to the temperature, which makes the principle of time‐temperature superposition be invalid on those percolated PCLCNs. Small addition of nanotube cannot improve the thermal stability of PCL but can increase crystallization temperature remarkably due to the nucleating effect. As the nanotube is much enough to be percolated, however, the impeding effect becomes the dominant role on the crystallization, and the thermal stability increases to some extent. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3137–3147, 2007  相似文献   

7.
Via γ‐ray irradiation polymerization, poly(methyl methacrylate) (PMMA)/clay nanocomposites were successfully prepared with reactive modified clay and nonreactive clay. With reactive modified clay, exfoliated PMMA/clay nanocomposites were obtained, and with nonreactive clay, intercalated PMMA/clay nanocomposites were obtained. Both results were confirmed by X‐ray diffraction and high‐resolution transmission electron microscopy. PMMA extracted from PMMA/clay nanocomposites synthesized by γ‐ray irradiation had higher molecular weights and narrow molecular weight distributions. The enhanced thermal properties of the PMMA/clay nanocomposites were characterized by thermogravimetric analysis and differential scanning calorimetry. The improved mechanical properties of PMMA/clay were characterized by dynamic mechanical analysis. In particular, the enhancement of the thermal properties of the PMMA/clay nanocomposites with reactive modified clay was much more obvious than that of the PMMA/clay nanocomposites with nonreactive clay. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3218–3226, 2003  相似文献   

8.
Novel and well‐defined dendrimer‐star, block‐comb polymers were successfully achieved by the combination of living ring‐opening polymerization and atom transfer radical polymerization on the basis of a dendrimer polyester. Star‐shaped dendrimer poly(?‐caprolactone)s were synthesized by the bulk polymerization of ?‐caprolactone with a dendrimer initiator and tin 2‐ethylhexanoate as a catalyst. The molecular weights of the dendrimer poly(?‐caprolactone)s increased linearly with an increase in the monomer. The dendrimer poly(?‐caprolactone)s were converted into macroinitiators via esterification with 2‐bromopropionyl bromide. The star‐block copolymer dendrimer poly(?‐caprolactone)‐block‐poly(2‐hydroxyethyl methacrylate) was obtained by the atom transfer radical polymerization of 2‐hydroxyethyl methacrylate. The molecular weights of these copolymers were adjusted by the variation of the monomer conversion. Then, dendrimer‐star, block‐comb copolymers were prepared with poly(L ‐lactide) blocks grafted from poly(2‐hydroxyethyl methacrylate) blocks by the ring‐opening polymerization of L ‐lactide. The unique and well‐defined structure of these copolymers presented thermal properties that were different from those of linear poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6575–6586, 2006  相似文献   

9.
Nontoxic and biodegradable poly(?‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(?‐caprolactone) triblock copolymers were synthesized by the solution polymerization of ?‐caprolactone in the presence of poly(ethylene glycol). The chemical structure of the resulting triblock copolymer was characterized with 1H NMR and gel permeation chromatography. In aqueous solutions of the triblock copolymers, the micellization and sol–gel‐transition behaviors were investigated. The experimental results showed that the unimer‐to‐micelle transition did occur. In a sol–gel‐transition phase diagram obtained by the vial‐tilting method, the boundary curve shifted to the left, and the gel regions expanded with the increasing molecular weight of the poly(?‐caprolactone) block. In addition, the hydrodynamic diameters of the micelles were almost independent of the investigated temperature (25–55 °C). The atomic force microscopy results showed that spherical micelles formed at the copolymer concentration of 2.5 × 10?4 g/mL, whereas necklace‐like and worm‐like shapes were adopted when the concentration was 0.25 g/mL, which was high enough to form a gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 605–613, 2007  相似文献   

10.
Libraries of 3‐aminopropyl‐terminated poly(dimethylsiloxane) (APT–PDMS) and poly(?‐caprolactone)–poly(dimethylsiloxane)–poly(?‐caprolactone) (PCL—PDMS–PCL) triblock copolymers were synthesized. Preliminary experiments were carried out to select an appropriate catalyst and route for the poly(dimethylsiloxane) synthesis, and trial experiments were conducted to verify the successful synthesis of the intended polymer compositions. Then, a series of APT–PDMS oligomers were synthesized with an automated combinatorial high‐throughput synthesis system to cover a molecular weight range of 2500–50,000 g/mol. Trial PCL—PDMS–PCL triblock copolymers were synthesized with the automated reactor system and characterized in detail with rapid gel permeation chromatography, high‐throughput Fourier transform infrared, nuclear magnetic resonance, and differential scanning calorimetry. Finally, two library synthesis experiments were carried out in which the lengths of both the poly(dimethylsiloxane) and poly(?‐caprolactone) blocks in the PCL—PDMS–PCL triblock copolymers were varied. The results obtained from these experiments demonstrated that it was possible to synthesize libraries of well‐defined APT–PDMS oligomers and PCL—PDMS–PCL triblock copolymers with an automated high‐throughput system. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4880–4894, 2006  相似文献   

11.
Polyesters constitute an important class of materials for in vivo biomedical applications. Poly(?‐caprolactone) (PCL) is a hydrophobic biodegradable polyester which is employed to a lesser extent in drug delivery applications due to its rather limited range of physicochemical characteristics. Here, we present a new paradigm for the synthesis of functionalized PCL via copolymerization of caprolactone with α,ω‐epoxy esters. Ethyl 2‐methyl‐4‐pentenoate oxide was used as a monomer which was copolymerized with ?‐caprolactone to yield random copolymers of poly(?‐caprolactone‐co‐ethyl‐2‐methyl‐4‐pentenoate oxide). The reaction conditions were optimized to generate functionalization greater than 25%. The use of ester‐epoxides favors a statistical and uniform distribution of monomer along the polymer backbone, which while preserving some of the key properties of PCL such as glass transition that is below room temperature, allows the tailoring of the melting behavior of PCL. The strategy presented herein opens up new avenues for engineering PCL properties for biomedical applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3375–3382  相似文献   

12.
The preparation and properties of poly(1‐butene) (PB)/clay nanocomposites are described for the first time. Nanocomposites were prepared with the melt‐intercalation technique, using organically modified clay. The X‐ray diffraction patterns portrayed well‐defined diffraction peaks at higher d‐spacing than pristine clay, confirming the intercalation of polymer in silicate layers. Because PB exhibits time‐dependent polymorphism, the effect of clay on the phase transformation of PB was examined with thermal analysis. The phase transformation from a metastable tetragonal form to a stable hexagonal form was enhanced because of incorporation of layered silicates in the polymer matrix. The nanocomposites exhibited about a 40–140% increase in storage modulus depending on the clay content and significantly lower coefficient of thermal expansion. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1014–1021, 2003  相似文献   

13.
Biodegradable, amphiphilic, four‐armed poly(?‐caprolactone)‐block‐poly(ethylene oxide) (PCL‐b‐PEO) copolymers were synthesized by ring‐opening polymerization of ethylene oxide in the presence of four‐armed poly(?‐caprolactone) (PCL) with terminal OH groups with diethylzinc (ZnEt2) as a catalyst. The chemical structure of PCL‐b‐PEO copolymer was confirmed by 1H NMR and 13C NMR. The hydroxyl end groups of the four‐armed PCL were successfully substituted by PEO blocks in the copolymer. The monomodal profile of molecular weight distribution by gel permeation chromatography provided further evidence for the four‐armed architecture of the copolymer. Physicochemical properties of the four‐armed block copolymers differed from their starting four‐armed PCL precursor. The melting points were between those of PCL precursor and linear poly(ethylene glycol). The length of the outer PEO blocks exhibited an obvious effect on the crystallizability of the block copolymer. The degree of swelling of the four‐armed block copolymer increased with PEO length and PEO content. The micelle formation of the four‐armed block copolymer was examined by a fluorescent probe technique, and the existence of the critical micelle concentration (cmc) confirmed the amphiphilic nature of the resulting copolymer. The cmc value increased with increasing PEO length. The absolute cmc values were higher than those for linear amphiphilic block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 950–959, 2004  相似文献   

14.
Superparamagnetic and biodegradable/biocompatible core–corona nanocomposite particles were prepared by ring‐opening polymerization of ?‐caprolactone initiated from the surface of maghemite. As was done in a previous work, an aminosilane coupling agent was chosen as the coinitiator and immobilized at the surface of the maghemite particles to allow the growth of the poly(?‐caprolactone) (PCL) chains from the solid surface. Two different catalytic systems based on aluminum and tin alkoxides were investigated. Whatever the catalyst used, diffuse reflectance Fourier transform spectroscopy brought evidence for polymer anchoring through a covalent bond, whereas thermogravimetric analysis attested to the presence of high amounts of PCL around the maghemite. Magnetization measurements proved that the nanocomposites kept their superparamagnetic properties after coating. The polymer contents obtained by this grafting‐from route were compared with the results obtained by a more classical grafting‐to process. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3221–3231, 2005  相似文献   

15.
To synthesize the copolyester of poly(β‐hydroxybutyrate) (PHB) and poly(?‐caprolactone) (PCL), the transesterification of PHB and PCL was carried out in the liquid phase with stannous octoate as the catalyzer. The effects of reaction conditions on the transesterification, including catalyzer concentration, reaction temperature, and reaction time, were investigated. The results showed that both rising reaction temperature and increasing reaction time were advantageous to the transesterification. The sequence distribution, thermal behavior, and thermal stability of the copolyesters were investigated by 13C NMR, Fourier transform infrared spectroscopy, differential scanning calorimetry, wide‐angle X‐ray diffraction, optical microscopy, and thermogravimetric analysis. The transesterification of PHB and PCL was confirmed to produce the block copolymers. With an increasing PCL content in the copolyesters, the thermal behavior of the copolyesters changed evidently. However, the introduction of PCL segments into PHB chains did not affect its crystalline structure. Moreover, thermal stability of the copolyesters was little improved in air as compared with that of pure PHB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1893–1903, 2002  相似文献   

16.
In the last few years much progress has been made in the development of hybrid polymer–inorganic filler nanocomposites. Nevertheless, many questions remain. The comprehension of the structure and the interactions at the polymer–nanofiller interface are crucial to foresee and control the properties of nanocomposites. Because of the high surface ratio of the inorganic nanofiller, the interface is expected to have a prevailing role in determining the nanocomposite properties. In this study we use X‐ray photoelectron spectroscopy (XPS) as a tool for the surface characterization of an organophilic montmorillonite/poly(ε‐caprolactone) exfoliated nanocomposite. The XPS core levels of the nanocomposite have been compared with those obtained from its precursors, and analyzed as reference compounds to evaluate eventual differences attributable to the polymer–nanofiller interfacial interactions. The XPS investigation has allowed us to propose a qualitative model of possible interface interactions between poly(ε‐caprolactone) and the organo‐modified montmorillonite. The model is substantiated by Fourier transform infrared spectroscopy (FTIR). © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3907–3919, 2004  相似文献   

17.
Polymer networks showing a thermally induced shape‐memory effect were prepared through the crosslinking of oligo(?‐caprolactone)dimethacrylates under photocuring with or without an initiator. The influence of the molecular weight of the oligo(?‐caprolactone)dimethacrylates and the initiator concentration on the macroscopic properties of the polymer networks was investigated. The isothermal and nonisothermal crystallization behavior of the polymer networks was evaluated as a basic principle of the functionalization process. Shape‐memory properties such as the strain fixity and strain recovery rate were quantified with cyclic thermomechanical tensile experiments for different maximum elongations. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1369–1381, 2005  相似文献   

18.
Hydroxyl‐functionalized three‐arm poly(?‐caprolactone)s (PGCL‐OHs) were synthesized by the ring‐opening polymerization of ?‐caprolactone in the presence of glycerol (as the core) and stannous octoate. The effect of the feed ratio of ?‐caprolactone to glycerol on the ring‐opening polymerization was studied. These three‐arm PGCL‐OHs were then converted into double‐bond‐functionalized three‐arm poly(?‐caprolactone)s (PGCL‐Mas) by the reaction of PGCL‐OH with maleic anhydride in the melt at 130 °C. The quantitative conversion of hydroxyl functionality was achieved at a low molecular weight. The resulting PGCL‐OH and PGCL‐Ma were characterized with gel permeation chromatography, Fourier transform infrared, 1H NMR, 13C NMR, and differential scanning calorimetry. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1127–1141, 2002  相似文献   

19.
Organic–inorganic hybrid diblock copolymers composed of poly(ε‐caprolactone) and poly(MA POSS) [PCL‐b‐P(MA POSS)] were synthesized via reversible addition‐fragmentation chain transfer polymerization of 3‐methacryloxypropylheptaphenyl polyhedral oligomeric silsesquioxane (MA POSS) with dithiobenzoate‐terminated poly(ε‐caprolactone) as the macromolecular chain transfer agent. The dithiobenzoate‐terminated poly(ε‐caprolactone) (PCL‐CTA) was synthesized via the atom transfer radical reaction of 2‐bromopropionyl‐terminated PCL with bis(thiobenzoyl)disulfide in the presence of the complex of copper (I) bromide with N,N,N′,N″,N″‐pentamethyldiethylenetriamine. The results of molecular weights and polydispersity indicate that the polymerizations were in a controlled fashion. The organic–inorganic diblock copolymer was incorporated into epoxy to afford the organic–inorganic nanocomposites. The nanostructures of the organic–inorganic composites were investigated by means of transmission electron microscopy and dynamic mechanical thermal analysis. Thermogravimetric analysis shows that the organic–inorganic nanocomposites displayed the increased yields of degradation residues compared to the control epoxy. In the organic–inorganic nanocomposites, the inorganic block [viz., P(MA POSS)] had a tendency to enrich at the surface of the materials and the dewettability of surface for the organic–inorganic nanocomposites were improved in terms of the measurement of surface contact angles. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
Biodegradable poly(L ‐lactide‐co‐ε‐caprolactone) copolymers with different L ‐lactide (LLA)/ε‐caprolactone (CL) ratios of 75/25 and 50/50 were electrospun into fine fibers. The deformation behavior of the electrospun membranes with randomly oriented structures was evaluated under uniaxial tensile loading. The electrospun membrane with a higher LLA content showed a significantly higher tensile modulus but a similar maximum stress and a lower ultimate strain in comparison with the membrane with a lower LLA content. The beaded fibers that formed in the membranes caused lower tensile properties. X‐ray diffraction and differential scanning calorimetry results suggested that the electrospun fine fibers developed highly oriented structures in CL‐unit sequences during the electrospinning process even though the concentration was only 25 wt %. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3205–3212, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号