首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The reversible addition–fragmentation chain transfer (RAFT) polymerizations of 2‐naphthyl acrylate (2NA) initiated by 2,2′‐azobisisobutyronitrile were investigated with 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN) as a RAFT agent at various temperatures in a benzene solution. The results of the polymerizations showed that 2NA could be polymerized in a controlled way by RAFT polymerization with CPDN as a RAFT agent; the polymerization rate was first‐order with respect to the monomer concentration, and the molecular weight increased linearly with the monomer conversion. The polydispersities of the polymer were relatively low up to high conversions in all cases. The chain‐extension reactions of poly(2‐naphthyl acrylate) (P2NA) with methyl methacrylate and styrene successfully yielded poly(2‐naphthyl acrylate)‐b‐poly(methyl methacrylate) and poly(2‐naphthyl acrylate)‐b‐polystyrene block polymers, respectively, with narrow polydispersities. The P2NA obtained by RAFT polymerization had a strong ultraviolet absorption at 270 nm, and the molecular weights had no apparent effect on the ultraviolet absorption intensities; however, the fluorescence intensity of P2NA increased as the molecular weight increased and was higher than that of 2NA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2632–2642, 2005  相似文献   

2.
A novel miktofunctional initiator ( 1 ), 2‐hydroxyethyl 3‐[(2‐bromopropanoyl)oxy]‐2‐{[(2‐bromopropanoyl)oxy]methyl}‐2‐methyl‐propanoate, possessing one initiating site for ring‐opening polymerization (ROP) and two initiating sites for atom transfer radical polymerization (ATRP), was synthesized in a three‐step reaction sequence. This initiator was first used in the ROP of ?‐caprolactone, and this led to a corresponding polymer with secondary bromide end groups. The obtained poly(?‐caprolactone) (PCL) was then used as a macroinitiator for the ATRP of tert‐butyl acrylate or methyl methacrylate, and this resulted in AB2‐type PCL–[poly(tert‐butyl acrylate)]2 or PCL–[poly(methyl methacrylate)]2 miktoarm star polymers with controlled molecular weights and low polydispersities (weight‐average molecular weight/number‐average molecular weight < 1.23) via the ROP–ATRP sequence. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2313–2320, 2004  相似文献   

3.
Poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐p‐phenylenevinylene] (MEH‐PPV) with a molar mass of 26–47 × 104 g mol?1 and a polydispersity of 2.5–3.2 was synthesized by a liquid–solid two‐phase reaction. The liquid phase was tetrahydrofuran (THF) containing 1,4‐bis(chloromethyl)‐2‐methoxy‐5‐(2′‐ethylhexyloxy)benzene as the monomer and a certain amount of tetrabutylammonium bromide as a phase‐transfer catalyst. The solid phase consisted of potassium hydroxide particles with diameters smaller than 0.5 mm. The reaction was carried out at a low temperature of 0 °C and under nitrogen protection. No gelation was observed during the polymerization process, and the polymer was soluble in the usual organic solvents, such as chloroform, toluene, THF, and xylene. A polymer light‐emitting diode was fabricated with MEH‐PPV as an active luminescent layer. The device had an indium tin oxide/poly(3,4‐ethylenedioxylthiophene) (PEDOT)/MEH‐PPV/Ba/Al configuration. It showed a turn‐on voltage of 3.3 V, a luminescence intensity at 6.1 V of 550 cd/m2, a luminescence efficiency of 0.43 cd/A, and a quantum efficiency of 0.57%. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3049–3054, 2004  相似文献   

4.
Atom transfer radical polymerization (ATRP) of acrylates in ionic liquid, 1‐butyl‐3‐methylimidazolium hexaflurophospate, with the CuBr/CuBr2/amine catalytic system was investigated. Sequential polymerization was performed by synthesizing AB block copolymers. Polymerization of butyl acrylate (monomer that is only partly soluble in an ionic liquid forming a two‐phase system) proceeded to practically quantitative conversion. If the second monomer (methyl acrylate) is added at this stage, polymerization proceeds, and block copolymer formed is essentially free of homopolymer according to size exclusion chromatographic analysis. The number‐average molecular weight of the copolymer is slightly higher than calculated, but the molecular weight distribution is low (Mw/Mn = 1.12). If, however, methyl acrylate (monomer that is soluble in an ionic liquid) is polymerized at the first stage, then butyl acrylate in the second‐stage situation is different. Block copolymer free of homopolymer of the first block (with Mw/Mn = 1.13) may be obtained only if the conversion of methyl acrylate at the stage when second monomer is added is not higher than 70%. Matrix‐assisted laser desorption/ionization time‐of‐flight analysis confirmed that irreversible deactivation of growing macromolecules is significant for methyl acrylate polymerization at a monomer conversion above 70%, whereas it is still not significant for butyl acrylate even at practically quantitative conversion. These results show that ATRP of butyl acrylate in ionic liquid followed by addition of a second acrylate monomer allows the clean synthesis of block copolymers by one‐pot sequential polymerization even if the first stage is carried out to complete conversion of butyl acrylate. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2799–2809, 2002  相似文献   

5.
An ABC‐type miktoarm star polymer was prepared with a core‐out method via a combination of ring‐opening polymerization (ROP), stable free‐radical polymerization (SFRP), and atom transfer radical polymerization (ATRP). First, ROP of ϵ‐caprolactone was carried out with a miktofunctional initiator, 2‐(2‐bromo‐2‐methyl‐propionyloxymethyl)‐3‐hydroxy‐2‐methyl‐propionic acid 2‐phenyl‐2‐(2,2,6,6‐tetramethyl‐piperidin‐1‐yl oxy)‐ethyl ester, at 110 °C. Second, previously obtained poly(ϵ‐caprolactone) (PCL) was used as a macroinitiator for SFRP of styrene at 125 °C. As a third step, this PCL–polystyrene (PSt) precursor with a bromine functionality in the core was used as a macroinitiator for ATRP of tert‐butyl acrylate in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 100 °C. This produced an ABC‐type miktoarm star polymer [PCL–PSt–poly(tert‐butyl acrylate)] with a controlled molecular weight and a moderate polydispersity (weight‐average molecular weight/number‐average molecular weight < 1.37). The obtained polymers were characterized with gel permeation chromatography and 1H NMR. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4228–4236, 2004  相似文献   

6.
A series of forced gradient copolymers with different controlled distribution of monomer units along the copolymer backbone were successfully prepared by atom transfer radical polymerization in miniemulsion. The newly developed initiation technique, known as activators generated by electron transfer, was beneficial for forced gradient copolymers preparation because all polymer chains were initiated within the miniemulsion droplets and the miniemulsion remained stable throughout the entire polymerization. Various monomer pairs with different reactivity ratios were examined in this study, including n‐butyl acrylate/t‐butyl acrylate, n‐butyl methacrylate/methyl methacrylate, and n‐butyl acrylate/styrene. In each case, the added monomer diffused across the aqueous suspending medium and gradient copolymers with different forced distributions of comonomer units along the polymer backbone were obtained. The shape of the gradient along the backbone of the copolymers was influenced by the molar ratio of the monomers, the reactivity ratio of the comonomers as well as the feeding rate. The shape of the gradient was also affected by the relative hydrophobicities of the comonomers. Copolymerizations exhibited good control for all feeding rates and comonomer feeding ratios, as evidenced by narrow molecular weight distribution (Mw/Mn = 1.20–1.40) and molecular weight increasing smoothly with polymer yield, indicating high initiation efficiency. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1413–1423, 2007  相似文献   

7.
The synthesis of ABA‐type block copolymers, involving liquid‐crystalline 6‐(4‐cyanobiphenyl‐4′‐oxy)hexyl acrylate (LC6) and styrene (St) monomer with copper‐based atom transfer radical polymerization (ATRP) and photoinduced radical polymerization (PIRP), was studied. First, photoactive α‐methylol benzoin methyl ether was esterified with 2‐bromopropionyl bromide, and it was subsequently used for ATRP of LC6 in diphenylether in conjunction with CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalyst. The obtained photoactive functional liquid‐crystalline polymer, poly[6‐(4‐cyanobiphenyl‐4′‐oxy)hexyl acrylate] (PLC6), was used as an initiator in PIRP of St. Similarly, photoactive polystyrenes were also synthesized and employed for the block copolymerization of LC6 in the second stage. The spectral, thermal, and optical measurements confirmed a full combination of ATRP and PIRP, which resulted in the formation of ABA‐type block copolymers with very narrow polydispersities. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1892–1903, 2003  相似文献   

8.
Magnetic ionic liquid monomers were synthesized and then polymerized to get magnetic polymer latexes and films. First, a series of 1‐vinyl‐3‐dodecyl‐imidazolium monomers having metal halides counter‐anions such as FeCl3Br?, CoCl2Br?, and MnCl2Br? were synthesized. These ionic liquid monomers were first homopolymerized to lead to magnetic poly(ionic liquids) and characterized. Secondly, magnetic latexes were synthesized by using the magnetic ionic liquids as surfmers (surfactant + monomer) in the emulsion polymerization of methyl methacrylate/n‐butyl acrylate. It was found that the powders obtained by freeze‐drying the latexes presented a paramagnetic behavior with weak antiferromagnetic interactions between the adjacent metal ions. Although the ratio of magnetic ionic liquid/monomer was only 2% these poly(methyl methacrylate‐co‐butyl acrylate) powders and latexes responded to a magnetic field due to the surfmer paramagnetic nature. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1145–1152  相似文献   

9.
Segmented terpolymers, poly(alkyl methacrylate)‐g‐poly(D ‐lactide)/poly(dimethylsiloxane) (PLA/PDMS), were prepared with a combination of the “grafting through” technique (macromonomer method) and controlled/living radical polymerization (atom transfer radical polymerization or reversible addition–fragmentation transfer polymerization). Two synthetic pathways were used. The first was a single‐step approach in which a low‐molecular‐weight methacrylate monomer (methyl methacrylate or butyl methacrylate) was copolymerized with a PLA macromonomer and a PDMS macromonomer. The second strategy was a two‐step approach in which a graft copolymer containing one macromonomer was chain‐extended by a copolymerization of the second macromonomer and the low‐molecular‐weight methacrylate. The kinetics of both synthetic approaches were investigated, showing that the polymerizations exhibited a controlled/living behavior. Furthermore, the molecular structure of the terpolymers (composition, molecular weight distribution, and microstructure) was investigated by two‐dimensional liquid chromatography. Well‐defined terpolymers with controlled branch distribution, composition (Fw,PMMA/Fw,PLA/Fw,PDMS ~ 50/30/20) molecular weight (Mn ~ 50,000 g · mol?1), and a narrow molecular weight distribution (Mw/Mn ~ 1.3) were prepared via both pathways. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1939–1952, 2004  相似文献   

10.
Hydroxy‐terminated poly(pentamethylene p,p′‐bibenzoate) oligomers with different molecular weights were prepared. The poly(pentamethylene p,p′‐bibenzoate) oligomers showed rather high crystallinity, and some of them exhibited a monotropic smectic phase. Block copolyesters with hard segments of poly(pentamethylene p,p′‐bibenzoate) and soft segments of poly(tetramethylene adipate) were prepared by coupling the poly(pentamethylene p,p′‐bibenzoate) oligomer and a poly(tetramethylene adipate)glycol with methylene‐4,4′‐diphenylene diisocyanate in solution. The block copolyesters were characterized by IR, 1H NMR, differential scanning calorimetry, a polarized microscope, and X‐ray diffraction. The thermal transitions of the block copolyesters were dependent on the composition and the molecular weight of the poly(pentamethylene p,p′‐bibenzoate) oligomer used. The hard segments in the block copolyesters showed no liquid crystallinity and exhibited rather low crystallinity or were even amorphous. The molecular weight of the poly(pentamethylene p,p′‐bibenzoate) oligomer used influences the glass‐transition temperature and crystalline properties of the soft segments in the block copolyesters significantly. The effect on the glass‐transition temperature of the soft segments is described as the difference in miscibility between the hard and soft segments. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2626–2636, 2002  相似文献   

11.
Hydrophilic/CO2‐philic poly(ethylene oxide)‐b‐poly(1,1,2,2‐tetrahydroperfluorodecyl acrylate) block copolymers were synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization, iodine transfer polymerization (ITP), and atom transfer radical polymerization (ATRP) in the presence of either degenerative transfer agents or a macroinitiator based on poly(ethylene oxide). In this work, both RAFT and ATRP showed higher efficiency than ITP for the preparation of the expected copolymers. More detailed research was carried out on RAFT, and the living character of the polymerization was confirmed by an ultraviolet (UV) analysis of the ? SC(S)Ph or ? SC(S)S? C12H25 end groups in the polymer chains. The quantitative UV analysis of the copolymers indicated a number‐average molecular weight in good agreement with the value determined by 1H NMR analysis. The properties of the macromolecular surfactants were investigated through the determination of the cloud points in neat liquid and supercritical CO2 and through the formation of water‐in‐CO2 emulsions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2405–2415, 2004  相似文献   

12.
A novel azo‐containing dithiocarbamate, 1‐phenylethyl N,N‐(4‐phenylazo) phenylphenyldithiocarbamate (PPADC), was successfully synthesized and used to mediate the polymerization of methyl acrylate (MA) and styrene (St). In the presence of PPADC, the reversible addition‐fragmentation chain transfer (RAFT) polymerization was well controlled in the case of MA, however, the slightly ill‐controlled in the case of St. Interestingly, the polymerization of St could be well‐controlled when using PPADC as the initiator in the presence of CuBr/PMDETA via atom transfer radical polymerization (ATRP) technique. In the cases of RAFT polymerization of MA and ATRP of St, the kinetic plots were both of first‐order, and the molecular weight of the polymer increased linearly with the monomer conversion while keeping the relatively narrow molecular weight distribution (Mw/Mn). The molecular weight of the polymer measured by gel permeation chromatographer (GPC) was also close to the theoretical value (Mn(th)). The obtained polymer was characterized by 1H‐NMR analysis, ultraviolet absorption, FTIR spectra analysis and chain‐extension experiments. Furthermore, the photoresponsive behaviors of azobenzene‐terminated poly(methyl acrylate) (PMA) and polystyrene (PS) were similar to PPADC. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5626–5637, 2008  相似文献   

13.
A conjugated poly(p‐CN‐phenylenevinylene) (PCNPV) containing both electron‐donating triphenylamine units and electron‐withdrawing cyano groups was prepared via Knoevenagel condensation in a good yield. Gel permeation chromatography suggested that the soluble polymer had a very high weight‐average molecular weight of 309,000. A bright and saturated red emission was observed under UV excitation in solution and film. Cyclic voltammetry showed that the polymer presented quasi‐reversible oxidation with a relatively low potential because of the triphenylamine unit. A single‐layer indium tin oxide/PCNPV/Mg–Ag device emitted a bright red light (633 nm). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3947–3953, 2004  相似文献   

14.
This investigation reports the preparation of tailor‐made poly(2‐ethylhexyl acrylate) (PEHA) prepared via in situ living radical polymerization in the presence of layered silicates and characterization of this polymer/clay nanocomposite. Being a low Tg (?65 °C) material, PEHA has very good film formation property for which it is used in paints, adhesives, and coating applications. 2‐Ethylhexyl acrylate was polymerized at 90 °C using CuBr and Cu(0) as catalyst in combination with N,N,N′,N″,N″‐pentamethyl diethylenetriamine (PMDETA) as ligand. A tremendous enhancement in reaction rate and polymerization data was achieved when acetone was added as additive to increase the efficiency of the catalyst system. PEHA/clay nanocomposite was prepared at 90 °C using CuBr as catalyst in combination with PMDETA as ligand. Different types of clay with same loading were also used to study the effect on reaction rate. The molecular weight (Mn) and polydispersity index of the prepared nanocomposites were characterized by size exclusion chromatography. The active end group of the polymer chain was analyzed by 1H NMR analysis and by chain extension experiment. Polymer/clay interaction was studied by Fourier Transform Infrared spectrometry and wide‐angle X‐ray diffraction analyses. Distribution of clay in the polymer matrix was studied by the transmission electron microscopy. Thermogravimetric analysis showed that thermal stability of PEHA/clay nanocomposite increases on addition of nanoclay. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
N‐Bromosuccinimide (NBS) was used as a thermal iniferter for the initiation of the bulk polymerizations of methyl methacrylate, methyl acrylate, and styrene. The polymerizations showed the characteristics of a living polymerization: both the yields and the molecular weights of the resultant polymers increased linearly as the reaction time increased. The molecular weight distributions of the polymers were 1.42–1.95 under the studied conditions. The resultant polymers could be used as macroiniferters to reinitiate the polymerization of the second monomer. The copolymers poly(methyl methacrylate)‐b‐polystyrene and polystyrene‐b‐poly(methyl methacrylate) were obtained and characterized. End‐group analysis of the resultant poly(methyl methacrylate), poly(methyl acrylate), and polystyrene confirmed that NBS behaved as a thermal iniferter. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2567–2573, 2005  相似文献   

16.
A set of poly[ω‐(4′‐cyano‐4‐biphenyloxy)alkyl‐1‐glycidylether]s were synthesized by the chemical modification of the corresponding poly(ω‐bromoalkyl‐1‐glycidylether)s with the sodium salt of 4‐cyano‐4′‐hydroxybiphenyl. New high‐molecular‐weight side‐chain liquid‐crystalline polymers were obtained with excellent yield and almost quantitative degree of modification. All side‐chain liquid‐crystalline polymers were rubbers soluble in tetrahydrofuran. The characterization by 1H and 13C NMR revealed no changes in the regioregular isotactic microstructure of the starting polymer and the absence of undesirable side reactions such as deshydrobromination. The liquid crystalline behavior was analyzed by DSC and polarized optical microscopy, and mesophase assignments were confirmed by X‐ray diffraction. Polymers that had alkyl spacers with n = 2 and 4 were nematic, those that had spacers with n = 6 and 8 were nematic cybotactic, and those that had longer spacers (n = 10 and 12) were smectic C and showed some crystallization of the side alkyl chains. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3002–3012, 2004  相似文献   

17.
An Erratum has been published for this article in J. Polym. Sci. Part A: Polym. Chem. (2004) 42(21) 5559 . The initiator efficiency, f, of 2,2′‐azobis(isobutyronitrile) (AIBN) in dodecyl acrylate (DA) bulk free‐radical polymerizations has been determined over a wide range of monomer conversion in high‐molecular‐weight regimes (Mn ? 106 g mol?1 [? 4160 units of DA)] with time‐dependent conversion data obtained via online Fourier transform near infrared spectroscopy (FTNIR) at 60 °C. In addition, the required initiator decomposition rate coefficient, kd, was determined via online UV spectrometry and was found to be 8.4 · 10?6 s?1 (±0.5 · 10?6 s?1) in dodecane, n‐butyl acetate, and n‐dodecyl acetate at 60 °C. The initiator efficiency at low monomer conversions is relatively low (f = 0.13) and decreases with increasing monomer to polymer conversions. The evolution of f with monomer conversion (in high‐molecular‐weight regimes), x, at 60 °C can be summarized by the following functionality: f60 °C (x) = 0.13–0.22 · x + 0.25 · x2 (for x ≤ 0.45). The reported efficiency data are believed to have an error of >50%. The ratio of the initiator efficiency and the average termination rate coefficient, 〈kt±, (f/〈kt〉) has been determined at various molecular weights for the generated polydodecyl acrylate (Mn = 1900 g mol?1 (? 8 units of DA) up to Mn = 36,500 g mol?1 (? 152 units of DA). The (f/〈kt〉) data may be indicative of a chain length‐dependent termination rate coefficient decreasing with (average) chain length. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5170–5179, 2004  相似文献   

18.
The synthesis of hybrid star‐shaped polymers was carried out by atom transfer radical polymerization of n‐butyl acrylate from a well‐defined multifunctional titanium‐oxo‐cluster initiator. Conditions were identified to prevent possible side reactions among monomer, polymer, and the titanium‐oxo‐cluster ligands. Polymerizations provided linear first‐order kinetics and the evolution of the experimental molecular weight is also linear with the conversion. 1H DOSY NMR and cleavage of the polymeric branches from the multifunctional initiator by hydrolysis were used to (i) prove the star‐shaped structure of the polymer, and (ii) demonstrate that the shoulder observed on size exclusion chromatograms is not due to a noncontrolled polymerization but to ungrafting of polymeric branches during analysis. Rheological properties of the hybrid star‐shaped poly(n‐butyl acrylate) were studied in the linear regime and show that the Ti‐oxo‐cluster not only increases significantly the viscosity of the polymer relative to its ungrafted arm but has a rheological signature which is qualitatively different from that of stars with organic cores suggesting that the Ti cluster reduces significantly the molecular mobility of the star. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
The thermoresponsive poly(ionic liquid) of poly[1‐(4‐vinylbenzyl)‐3‐methylimidozolium tetrafluoroborate] trithiocarbonate (P[VBMI][BF4]‐TTC) showing the soluble‐to‐insoluble phase transition in the methanol/water mixture at the upper critical solution temperature (UCST) was synthesized by solution RAFT polymerization and the synthesized P[VBMI][BF4]‐TTC was employed as macro‐RAFT agent to mediate the RAFT polymerization under dispersion condition to afford the thermoresponsive diblock copolymer nanoparticles of poly[1‐(4‐vinylbenzyl)‐3‐methylimidozolium tetrafluoroborate]‐b‐polystyrene (P[VBMI][BF4]‐b‐PS). The controllable solution RAFT polymerization was achieved as indicated by the linearly increasing polymer molecular weight with the monomer conversion and the narrow molecular weight distribution. The P[VBMI][BF4]‐TTC macro‐RAFT agent mediated dispersion polymerization afforded the P[VBMI][BF4]‐b‐PS nanoparticles, the size of which was uncorrelated with the polymerization degree of the P[VBMI][BF4] block. Several parameters including the polymerization degree, the polymer concentration and the water content in the solvent of the methanol/water mixture were found to be correlated with the UCST of the poly(ionic liquid). The synthesized poly(ionic liquid) is believed to be a new thermos‐responsive polymer and will be useful in material science. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 945–954  相似文献   

20.
Optically active homopolymers and copolymers, bearing chiral units at the side chain and end chain, were prepared via atom transfer radical polymerization (ATRP) techniques. The well‐defined optically active polymers were obtained via the ATRP of pregnenolone methacrylate (PR‐MA), β‐cholestanol acrylate (CH‐A), and 20‐(hydroxymethyl)‐pregna‐1,4‐dien‐3‐one acrylate (HPD‐A) with ethyl 2‐bromopropionate as the initiator and CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as the catalytic system. The experimental results showed that the polymerizations of PR‐MA, CH‐A, and HPD‐A proceeded in a living fashion, providing pendent chiral group polymers with low molecular weight distributions and predetermined molecular weights that increased linearly with the monomer conversion. Furthermore, the copolymers poly(pregnenolone methacrylate)‐b‐poly[(dimethylamino)ethyl methacrylate] and poly(pregnenolone methacrylate‐co‐methyl methacrylate) were synthesized and characterized with 1H NMR, transmission electron microscopy, and polarimetric analysis. In addition, when optically active initiators estrone 2‐bromopropionate and 20‐(hydroxymethyl)‐pregna‐1,4‐dien‐3‐one 2‐bromopropionate were used for ATRPs of methyl methacrylate and styrene, terminal optically active poly(methyl methacrylate) and polystyrene were obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1502–1513, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号