首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Water‐soluble guest–host complexes are prepared in a two‐step process. For this a new, polydisperse ethylene glycol containing guest molecule is synthesized that is soluble in both chloroform and water. This guest is able to bind to urea–adamantyl‐modified poly(propylene imine) dendrimers in chloroform in a noncovalent manner. When the chloroform is slowly evaporated and D2O is added, the hydrophobic dendrimer is solubilized in water. This is not possible when the hydrophobic dendrimer is directly added to the hydrophilic guests in water. When the unmodified poly(ethylene glycol) starting material is used, no solubilization occurs, and this indicates that the urea–acetic acid head group is necessary to solubilize the dendrimer. Approximately 26 guests are required for solubilization of the dendrimer. A lower number of guests results in aggregation and precipitation of the dendrimer. A monodisperse guest molecule has been used in NMR studies to show that the guest molecule binds with its acidic head group to the periphery of the dendrimer. This methodology opens the way to functional dendrimer aggregates in aqueous media. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6431–6437, 2005  相似文献   

2.
Five generations of poly(propylene imine) dendrimers have been modified by palmityl and adamantyl endgroups via a thiourea linkage. The synthesis of the thiourea dendrimers DAB-dendr-(NHCSNHAd)(n) and DAB-dendr-(NHCSNHC(16)H(33))(n) (n = 4, 8, 16, 32, 64) proceeds smoothly via the amino-terminated DAB dendrimer and the adamantyl and palmityl isothiocyanates, respectively. The properties of the thiourea dendrimers have been studied by IR and (1)H NMR, including relaxation (T1, T2) measurements. The thiourea dendrimers are used as multivalent hosts for a number of guest molecules containing a terminal urea-glycine unit in organic solvents. The host-guest interactions have been investigated using 1D- and NOESY-NMR. These investigations show that the guest molecules bind to the dendritic host via thiourea (host)-urea (guest) hydrogen bonding, and ionic bonding between the terminal guest carboxylate moiety and the outer shell tertiary amines of the dendrimer. The ability to bind guest molecules of the adamantyl- and palmitylthiourea dendrimers has been compared with their respective urea containing dendrimer analogues, by NMR-titration, and competition experiments. Upon complexation, the thiourea dendrimer hosts show a larger downfield NH shift than the corresponding urea dendrimer hosts, indicative of stronger hydrogen bonding in the complexed state. Furthermore, microcalorimetry has been used to determine binding constants for formation of the host-guest complexes; the binding constants are typically in the order of 10(4) M(-1). Both NMR and microcalorimetric studies show that the thiourea dendrimers bind the urea containing guests with somewhat higher affinity than the corresponding urea dendrimers.  相似文献   

3.
Boc-protected L-phenylalanine has been connected to a spacer-armed ureido-acetic acid derivative, which can form multiple supramolecular complexes with urea-adamantyl modified poly(propylene imine) dendrimers in chloroform. Complexes of this guest with several generations of urea-adamantyl dendrimers were prepared. The dendrimer-guest complexes were characterized in detail by (1)H-NMR, (1)H-(1)H-NOESY spectroscopy and mass spectrometry to prove their formation. Optical rotation experiments performed on different generations of dendrimer-guest complexes showed a constant positive value. These observations indicate that, though guest molecules decrease the flexibility at the periphery of the dendrimer upon binding, the amino acid at the terminus of the guest molecule retains its high local conformational freedom. This is in agreement with values found for covalently modified spacer-armed dendrimers.  相似文献   

4.
The efficient reversible functionalization of the periphery of urea adamantyl poly(propylene imine) dendrimers with catalytic sites using noncovalent interactions is described. Phosphine ligands equipped with urea acetic groups, a binding motive complementary to that of the dendrimer host, have been prepared and assembled to the dendrimer support. The resulting supramolecular complex has been used as a multidentate ligand system in the palladium-catalyzed allylic amination reaction in a batch process and in a continuous-flow membrane reactor. We found that the activity and selectivity of the dendrimeric complex is similar to that of the monomer complex, which indicates that the catalytic centers act as independent sites. The size of the supramolecular system is sufficiently large and the binding of the guests is strong enabling a good separation of the catalyst components from the reaction mixture using nanofiltration techniques.  相似文献   

5.
pi-Conjugated oligo(p-phenylene vinylene) (OPV) guest molecules for interaction with dendritic hosts were synthesized and fully characterized by NMR spectroscopy, MALDI-TOF-MS, elemental analysis and optical measurements. The binding properties of the five different OPV guests to a N,N-bis[(3-adamantyl ureido) propyl] methylamine host have been investigated. The guests that contained an aryl urea glycine spacer were bound with the highest association constant. Subsequently, an adamantyl urea modified fifth generation poly(propylene imine) dendrimer was synthesized as a multivalent host which contains 32 N,N-bis[(3-adamantyl ureido) propyl] amine binding sites. Size exclusion chromatography showed that 32 of the OPV guests strongly bind to the fifth generation adamantyl functionalized dendritic host. In the case of the supramolecular dendritic host/guest system smooth homogeneous thin films could be obtained by spin coating. The dendritic guest-host complexes showed a significantly higher emission upon binding then that of the individual molecules due to the three-dimensional orientation of the OPV guest molecules. In the solid state, this enhancement in luminescence was a factor of 10. The pi-conjugated oligomers are less aggregated in the supramolecular assemblies presumably because of a shielding effect of the bulky adamantyl units present in the hosts.  相似文献   

6.
Host-guest interactions between the periphery of adamantylurea-functionalized dendrimers (host) and ureido acetic acid derivatives (guest) were shown to be specific, strong and spatially well-defined. The binding becomes stronger when using phosphonic or sulfonic acid derivatives. In the present work we have quantified the binding constants for the host-guest interactions between two different host motifs and six different guest molecules. The host molecules, which resemble the periphery of a poly(propylene imine) dendrimer, have been fitted with an anthracene-based fluorescent probe. The two host motifs differ in terms of the length of the spacer between a tertiary amine and two ureido functionalities. The guest molecules all contain an acidic moiety (either a carboxylic acid, a phosphonic acid, or a sulfonic acid) and three of them also contain an ureido moiety capable of forming multiple hydrogen bonds to the hosts. The binding constants for all 12 host-guest complexes have been determined by using fluorescence titrations by monitoring the increase in fluorescence of the host upon protonation by the addition of the guest. The binding constants could be tuned by changing the design of the acidic part of the guest. The formation of hydrogen bonds gives, in all cases, higher association constants, demonstrating that the host is more than a proton sensor. The host with the longer spacer (propyl) shows higher association constants than the host with the shorter spacer (ethyl). The gain in association constants are higher when the urea function is added to the guests for the host with the longer spacer, indicating a better fit. Collision-induced dissociation mass spectrometry (CID-MS) is used to study the stability of the six motifs using the corresponding third generation dendrimer. A similar trend is found when the six different guests are compared.  相似文献   

7.
Two new receptors incorporating a 4-n-butyl aniline moiety has been designed, synthesized and evaluated for their binding properties towards a series of ureido-glycine derivatives. The host design is based on an urea adamantyl host motif known from large generations of poly(propylene imine) dendrimers functionalized with urea adamantyl moieties on the periphery. The design of the host molecules was directed towards a study of the effects of basicity of an amine function versus the effect of molecular recognition on the binding strength as seen from comparing the results obtained in the present work with previously guest–host studies. The guest–host interaction features an electrostatic interaction and multiple hydrogen binding interactions, where the main difference between the hosts described here and previously described is a substitution from an amine to aniline. Anilines are weaker bases than aliphatic amines and they generally give lower binding constants when treated with acidic guest molecules. The association constants have been measured using NMR titrations and the nature of the guest–host system is discussed based on these results. A general decrease in binding affinities is observed upon changing from the trialkyl amine hosts to the dialkyl aniline based hosts. One exception was observed where the weaker base host had stronger affinity to one of the guests. Thus, when the basicity of the host is decreased other factors influence the binding such as a better geometric fit. A crystal structure of one of the receptors has been solved and it shows no intramolecular hydrogen bonding.  相似文献   

8.
A new way to analyze supramolecular dendritic architectures is reported by making use of (13)C NMR and (31)P NMR. Two ethylene glycol guest molecules have been synthesized containing a (13)C labeled carboxylic acid headgroup (2) and a phosphonic acid headgroup (3). The binding of these guests to urea-adamantyl modified poly(propylene imine) dendrimers has been investigated with (13)C NMR and (31)P NMR next to 1D and 2D (1)H NMR techniques. Different amounts of guest 2 have been added to fifth generation dendrimer 1e, and the observed chemical shift values in (13)C NMR were fitted to a model that assumes 1:1 binding between guest and binding site. An association constant of 400 +/- 95 M(-)(1) is obtained for guest 2 with 41 binding sites per dendrimer. When different amounts of phosphonic acid guest 3 are added to dendrimer 1e, two different signals are observed in (31)P NMR. Deconvolution gives the fractions of free and bound guest, resulting in an association constant of (4 +/- 3) x 10(4) M(-)(1) and 61 +/- 1 binding sites. A statistical analysis shows that guest 2 forms a "polydisperse supramolecular aggregate", while guest 3 is able to form a "monodisperse supramolecular aggregate" when the amount of guest is high enough. The NMR results are compared with dynamic light scattering experiments, and a remarkable agreement is found. Phosphonic acid guest 3 is able to exchange with guest 2, which is in agreement with the obtained association constants, and shows that these techniques can be used to analyze multicomponent dendritic aggregates.  相似文献   

9.
Gn (n = 3, 4, and 5) poly(amidoamine) (PAMAM) dendrimers were synthesized and peripherally modified with photocleavable o‐nitrobenzyl (NB) groups by reacting o‐nitrobenzaldehyde with the terminal amine groups of PAMAM dendrimers, followed by reducing the imine to amine groups with NaBH4. The NB‐modified dendrimers, Gn‐NB (n = 3, 4, and 5), were characterized by nuclear magnetic resonance and fourier transform infrared spectroscopy. The results showed that the NB groups were successfully attached on the periphery of the dendrimers with near 100% grafting efficiency. Such a photosensitive NB shell could be cut off on irradiation with 365 nm ultraviolet (UV) light. The encapsulation and release of guest molecules, that is, salicylic acid (SA) and adriamycin (ADR), by Gn‐NB were explored. The encapsulation capability of these dendrimers was found to increase as the guest molecular size was decreased and have dependence on the generation of dendrimers as well. For both of SA and ADR, the average encapsulation numbers per dendrimer decreased in the order of G4‐NB > G5‐NB > G3‐NB, indicating that the fourth generation dendrimer was a better container for the guest molecules. The rate of SA release was found to be greater with UV irradiation than that without, suggesting that the NB‐shelled PAMMAM dendrimers could function as a molecular container/box with photoresponsive characteristics. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 551–557, 2010  相似文献   

10.
The local dynamics of three poly(propylene imine) dendrimers with hydrophilic triethylenoxy methyl ether terminal groups were studied in D2O by the measurement of the 1H NMR relaxation times, which were treated with the Lipari–Szabo model‐free approach. The results showed that the overall mobility increased with temperature and decreased with increasing dendrimer size. An Arrhenius trend was observed for both overall and local motions. The activation energy of overall tumbling increased from 11.3 to 17.5 kJ/mol with the dendrimer size. The local mobility decreased from the outer part to the inner part of the dendrimer and with the dendrimer size. The spatial restriction of local motions decreased with increasing temperature up to 55 °C and remained constant above 55 °C. Local motions were more restricted when the dendrimer size increased. The results showed that the hydrophilic end groups of the dendrimers were located preferentially at the periphery of the molecules and were extended in the aqueous environment. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2969–2975, 2003  相似文献   

11.
The heterogeneous reduction process for synthesis of poly(propylene imine) (PPI) dendrimer has been replaced by a novel and homogeneous process. Accordingly, to prepare half generations, acrylonitrile was added to amine groups via Michael addition reaction. Then, nitrile groups were reduced via homogeneous hydrogenation using lithium aluminium hydride to synthesize fifth‐generation PPI dendrimers with ethylenediamine core. Also, peripheral primary amine groups were conjugated with folic acid (FA). Fourier transform infrared and 13C NMR spectroscopies and gel permeation chromatograph y were used to prove the synthesis of the various structures. Finally fifth‐generation and FA‐conjugated fifth‐generation PPI dendrimers were loaded with doxorubicin and exposed to environments with different pH values to examine the release properties of the structures. Also, drug release kinetics was investigated by fitting experimental data with various release models. The synthesized dendritic structures showed Higuchi model release behaviour due to better solubility of drug in release media with respect to dendrimer cavities.  相似文献   

12.
A mean‐field model for charged dendrimers has been elaborated and applied to Astramol dendrimers of 5th generation in salt‐free solution. The free energy of a dendrimer molecule was minimized with respect to the dendrimer size and to the profile of counterion distribution. The model of highly stretched freely jointed chain was used to describe the elasticity of long branches, the dissociated groups were assumed to be localized mostly on the periphery of the molecule, and the electrostatic interactions were described in the Poisson‐Boltzmann approximation. It was found that the osmotic pressure of counterions leads to moderate expansion of dendrimer molecules upon charging, and a significant fraction of counterions is localized within the dendrimer molecule under typical experimental conditions.

The schematic structure of poly(propylene imine) dendrimers for the 4th generation.  相似文献   


13.
This study focused on the use of NMR techniques as a tool for the investigation of complex formation between proparacaine and cyclodextrins (CDs) or p‐sulfonic acid calix[6]arene. The pH dependence of the complexation of proparacaine with β‐CD and p‐sulfonic acid calix[6]arene was studied and binding constants were determined by 1H NMR spectroscopy [diffusion‐ordered spectroscopy (DOSY)] for the charged and uncharged forms of the local anesthetic in β‐CD and p‐sulfonic acid calix[6]arene. The stoichiometries of the complexes was determined and rotating frame Overhauser enhancement spectroscopy (ROESY) 1D experiments revealed details of the molecular insertion of proparacaine into the β‐CD and p‐sulfonic acid calix[6]arene cavities. The results unambiguously demonstrate that pH is an important factor for the development of supramolecular architectures based on β‐CD and p‐sulfonic acid calix[6]arene as the host molecules. Such host–guest complexes were investigated in view of their potential use as new therapeutic formulations, designed to increase the bioavailability and/or to decrease the systemic toxicity of proparacaine in anesthesia procedures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The synthesis and characterization of novel ionic networks linked by the ammonium salts of poly(propylene imine) (PPI) dendrimers of the first (PPI G1) and second (PPI G2) generation and two short bis carboxymethyl ether terminated poly(ethylene glycol)s (DiCOOH‐PEG) with different molecular weights (Mn ~ 250 and Mn ~ 600) are reported. Likewise, an ionic network based on PPI G1 and a long αω‐dicarboxylic acid functionalized PEG (Mn ~ 4800) were evaluated. Simpler ionic structures based on tris(2‐aminoethyl)amine or hexamethylene diamine and the short DiCOOH‐PEGs are also investigated. The ionic structures formed were confirmed by differential scanning calorimetry, Fourier Transform Infrared spectroscopy in the attenuated‐total‐reflection mode, and 1H‐13C NMR spectroscopy. A comprehensive 1H NMR analysis revealed that only the primary amines of the PPI G1 dendrimer residing at the periphery take part in the ionic network formation. In the case of PPI G2, the picture is less clear. A thorough investigation of the thermal degradation of the utilized precursors and all the ionic materials prepared was additionally performed by thermogravimetric analysis. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
A 1H NMR and rheological study of host‐guest complexation interactions between three β‐cyclodextrin and three adamantyl substituted poly(acrylate)s, and also between them and adamantan‐1‐carboxylate and native β‐cyclodextrin, respectively, is reported. A close correllation between molecular level interactions and macroscopic characteristics of polymer networks in aqueous solution exists. It is found that intra‐ and intermolecular host‐guest complexation between the host β‐cyclodextrin and guest adamantyl substituents and the length of the aliphatic tether between them and the poly(acrylate) backbone have important roles. Dominantly, steric effects and competitive intra‐ and intermolecular host‐guest complexation are found to control poly(acrylate) isomeric interstrand linkage in polymer network formation. The preparations of five new 3% randomly substituted poly(acrylate)s are reported. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1818–1825, 2010  相似文献   

16.
A reactive three‐layered dendrimer containing carboxyl groups was synthesized by the coupling of dicarboxylic acid and a highly reactive, two‐layered glycopeptide dendrimer. Lactose, maltose, or maltotriose was reacted with the poly(lysine) dendrimer in its third and fourth generations by reductive amination and afforded two‐layered glycolysine dendrimers. The reaction was conducted in a borate buffer (pH 9.0). 1H NMR, 13C NMR, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analyses were applied for the determination of the structures of the products. When an excess amount of the oligosaccharide and a long reaction time were used, the degree of substitution increased to 1.5–2.0 against an amino group. For the preparation of highly reactive, multilayered dendrimers for an antigen carrier, C6 hydroxy groups of the oligosaccharides were selectively esterified by adipic acid and suberic acid to give 6‐O‐adipoyl oligosaccharide–poly(lysine) dendrimers and 6‐O‐suberoyl oligosaccharide–poly(lysine) dendrimers. The reactivity of these multilayered dendrimers was examined by a model reaction with phenylalanine ethyl ester. The dendrimer showed high reactivity, providing phenylalanine ethyl ester–dicarboxylate oligosaccharide–poly(lysine) dendrimers with a considerably high proportion of phenylalanine residues. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3622–3633, 2002  相似文献   

17.
This paper describes the behavior of various generations of polyglycerol dendrimers that contain a perfluorinated shell. The aggregation in organic solvents is based on supramolecular fluorous–fluorous interactions, which can be described by means of 19F NMR spectroscopy. In order to study the interaction and aggregation phenomena of dendrimers with perfluorinated shell and perfluoro‐tagged guest molecules we investigated [G3.5]‐dendrimer with a perfluorinated shell in the presence of perfluoro‐tagged disperse red. Noteworthy, the interaction intensities varied in an unexpected manner depending on the equivalents of perfluoro‐tagged guest molecules added to the dendrimers in solution which then formed supramolecular complexes based on fluorous–fluorous interactions. We found that these complexes aggregated around residual air in the solvent to form stable micron‐sized bubbles. Their sizes correlated with the interaction intensities measured for certain dendrimer–guest molecule ratios. Degassing of the solutions led to a quasi phase separation between organic and fluorous phase, whereby the dendrimers formed the fluorous phases. Regassing the sample with air afforded bubbles of the initial size again.  相似文献   

18.
We provide detailed insight into complex supramolecular assembly processes by fully characterizing a multicomponent model system using dynamic light scattering, cryogenic transmission electron microscopy, atomic force microscopy, and various NMR techniques. First, a preassembly of a host molecule (the fifth-generation urea-adamantyl poly(propylene imine) dendrimer) and 32 guest molecules (a water- and chloroform-soluble ureidoacetic acid guest) was made in chloroform. The association constant in chloroform is concealed by guest self-association and is therefore higher than 10(3) M(-1). Via the neat state the single-host complex was transferred to water, where larger dendrimer-based assemblies were formed. The core of these assemblies, consisting of multiple host molecules (on average three), is kinetically trapped upon dissolution in water, and its size is constant irrespective of the concentration. The guest molecules forming the corona of the assemblies, however, stay dynamic since they are still in rapid exchange on the NMR time scale, as they were in chloroform. A stepwise noncovalent synthesis provides a means to obtain metastable dynamic supramolecular assemblies in water, structures that cannot be formed in one step.  相似文献   

19.
New supramolecular assemblies based on cyclodextrin and adamantane were prepared. Two methacrylate monomers bearing cyclodextrin and adamantane were synthesized, and copolymerized with poly(ethylene glycol) methyl ether methacrylate, (PEGMA, 300 g/mol), by free radical polymerization. Copolymers bearing pendent cyclodextrin and adamantane were characterized by NMR, FTIR, TGA, SEC, Differential scanning calorimetry (DSC), and UV‐visible spectrophotometer. All copolymers showed two distinct glass transitions. The specific interaction between pendent adamantyl and cyclodextrin was examined by 1H‐NMR. The viscoelastic properties of supramolecular assemblies were investigated with frequency and temperature sweep experiments. The specific host‐guest interaction between pendent adamantyl and cyclodextrin lead to large increases of the viscosity; and depending on the concentration of these groups, also to gel formation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 581–592, 2010  相似文献   

20.
Abstract

Poly(propylene imine) dendrimers from first and third generation modified with 1,8-naphthalimide units and their Cu(II) complexes have been characterized by fluorescence and EPR spectroscopy. Cotton fabric has been modified with these dendrimers and their color characteristics were determined. The antimicrobial activity of dendrimer ligands and their Cu(II) complexes in solution and after their deposition on a cotton fabric was investigated. Good antibacterial effect of dendrimer ligands has been obtained, which is enhanced at their Cu(II) complexes. After their deposition on cotton fabric metallodendrimers exhibit good antibiofilm activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号