首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A new bisphenol monomer containing a pair of electron‐rich tetra‐arylmethane units was designed and synthesized. Based on this monomer, along with commercial 4,4′‐(hexafluoroisopropylidene)diphenol A and 4,4′‐difluorobenzophenone, a series of novel poly(arylene ether ketone)s containing octasulfonated segments of varying molar percentage (x) (6F‐SPAEK‐x) were successfully synthesized by polycondensation reactions, followed by sulfonation. Tough, flexible, and transparent membranes, exhibiting excellent thermal stabilities and mechanical properties were obtained by casting. 6F‐SPAEK‐x samples exhibited appropriate water uptake and swelling ratios at moderate ion exchange capacities (IECs) and excellent proton conductivities. The highest proton conductivity (215 mS cm−1) is observed for hydrated 6F‐SPAEK‐15 (IEC = 1.68 meq g−1) at 100 °C, which is more than 1.5 times that of Nafion 117. Furthermore, the 6F‐SPAEK‐10 membrane exhibited comparable proton conductivity (102 mS cm−1) to that of Nafion 117 at 80 °C, with a relatively low IEC value (1.26 meq g−1). Even under 30% relative humidity, the 6F‐SPAEK‐20 membrane (2.06 meq g−1) showed adequate conductivity (2.1 mS cm−1) compared with Nafion 117 (3.4 mS cm−1). The excellent comprehensive properties of these membranes are attributed to well‐defined nanophase‐separated structures promoted by strong polarity differences between highly ionized and fluorinated hydrophobic segments. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 25–37  相似文献   

2.
A bisphenol monomer (2,5‐dimethoxy)phenylhydroquinone was prepared and further polymerized to obtain poly(arylene ether ketone) copolymers containing methoxy groups. After demethylation and sulfobutylation, a series of novel poly(arylene ether ketone)s bearing pendant sulfonic acid group (SPAEKs) with different sulfonation content were obtained. The chemical structures of all the copolymers were analyzed by 1H NMR and 13C NMR spectra. Flexible and tough membranes with reasonably good mechanical properties were prepared. The resulting side‐chain‐type SPAEK membranes showed good dimensional stability, and their water uptake and swelling ratio were lower than those of conventional main‐chain‐type SPAEK membranes with similar ion exchange capacity. Proton conductivities of these side‐chain‐type sulfonated copolymers were higher than 0.01 S/cm and increased gradually with increasing temperature. Their methanol permeability values were in the range of 1.97 × 10?7–5.81 × 10?7 cm2/s, which were much lower than that of Nafion 117. A combination of suitable proton conductivities, low water uptake, low swelling ratio, and high methanol resistance for these side‐chain‐type SPAEK films indicated that they may be good candidate material for proton exchange membrane in fuel cell applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
New sulfonated poly(imidoaryl ether sulfone) copolymers derived from sulfonated 4,4′‐dichlorodiphenyl sulfone, 4,4′‐dichlorodiphenyl sulfone, and imidoaryl biphenol were evaluated as polymer electrolyte membranes for direct methanol fuel cells. The sulfonated membranes were characterized with Fourier transform infrared spectroscopy, thermogravimetric analysis, and proton nuclear magnetic resonance spectra. The state of water in the membranes was measured with differential scanning calorimetry, and the existence of free water and bound water was discussed in terms of the sulfonation level. The 10 wt % weight loss temperatures of these copolymers were above 470 °C, indicating excellent thermooxidative stability to meet the severe criteria of harsh fuel‐cell conditions. The proton conductivities of the membranes ranged from 3.8 × 10?2 to 5 × 10?2 S/cm at 90 °C, depending on the degree of sulfonation. The sulfonated membranes maintained the original proton conductivity even after a boiling water test, and this indicated the excellent hydrolytic stability of the membranes. The methanol permeabilities ranged from 1.65 × 10?8 to 5.14 × 10?8 cm2/s and were lower than those of other conventional sulfonated ionomer membranes, particularly commercial perfluorinated sulfonated ionomer (Nafion). The properties of proton and methanol transport were discussed with respect to the state of water in the membranes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5620–5631, 2005  相似文献   

4.
A novel sulfonated diamine monomer, 2,2′‐bis(p‐aminophenoxy)‐1,1′‐binaphthyl‐6,6′‐disulfonic acid (BNDADS), was synthesized. A series of sulfonated polyimide copolymers containing 30–80 mol % BNDADS as a hydrophilic component were prepared. The copolymers showed excellent solubility and good film‐forming capability. Atomic force microscopy phase images clearly showed hydrophilic/hydrophobic microphase separation. The relationship between the proton conductivity and degree of sulfonation was examined. The sulfonated polyimide copolymer with 60 mol % BNDADS showed higher proton conductivity (0.0945–0.161 S/cm) at 20–80 °C in liquid water. The membranes exhibited methanol permeability from 9 × 10?8 to 5 × 10?7 cm2/s at 20 °C, which was much lower than that of Nafion (2 × 10?6cm2/s). The copolymers were thermally stable up to 300 °C. The sulfonated polyimide copolymers with 30–60 mol % BNDADS showed reasonable mechanical strength; for example, the maximum tensile strength at break of the sulfonated polyimide copolymer with 40 mol % BNDADS was 80.6 MPa under high moisture conditions. The optimum concentration of BNDADS was found to be 60 mol % from the viewpoint of proton conductivity, methanol permeability, and membrane stability. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 222–231, 2007  相似文献   

5.
A series of proton exchange membranes based on sulfonated polyarylene ether ketones(SPAEKs) was used to study the effect of sulfonation degree on proton conductivity, methanol permeation and performance of direct methanol fuel cells(DMFCs). Dependences of physical characteristics of the membranes, i. e., proton conductivity, water uptake, swelling ratio, methanol permeability and ion exchange capacity(IEC) were systematically studied. Both methanol permeability and proton conductivity of the SPAEK membrane grow rapidly as the increase in sulfonation degree since methanol molecules and protons share the same transfer channel. However,the methanol permeability plays more important role comparing to proton conductivity. As a result, the SPAEK membrane with a medium sulfonation degree(60%) was found to yield the best performance in a DMFC due to the acquirement of balanced conductivity and methanol permeability.  相似文献   

6.
The sulfonated poly(ether ether ketone sulfone) (SPEEKS)/heteropolyacid (HPA) composite membranes with different HPA content in SPEEKS copolymers matrix with different degree of sulfonation (DS) were investigated for high temperature proton exchange membrane fuel cells. Composite membranes were characterized by Fourier transfer infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR band shifts suggested that the sulfonic acid groups on the copolymer backbone strongly interact with HPA particles. SEM pictures showed that the HPA particles were uniformly distributed throughout the SPEEKS membranes matrix and particle sizes decreased with the increment of copolymers' DS. The holes were not found in SPEEKS‐4/HPA30 (consisting of 70% SPEEKS copolymers with DS = 0.8 and 30% HPA) composite membrane after composite membranes were treated with boiling water for 24 h. Thermal stabilities of the composite membranes were better than those of pure sulfonated copolymers membranes. Although the composite membranes possessed lower water uptake, it exhibited higher proton conductivity for SPEEKS‐4/HPA30 especially at high temperature (above 100 °C). Its proton conductivity linearly increased from 0.068 S/cm at 25 °C to 0.095 S/cm at 120 °C, which was higher than 0.06 S/cm of Nafion 117. In contrast, proton conductivity of pure SPEEKS‐4 membrane only increased from 0.062 S/cm at 25 °C to 0.078 S/cm at 80 °C. At 120 °C, proton conductivity decreased to poor 0.073 S/cm. The result indicated that composite membranes exhibited high proton conductivity at high temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1967–1978, 2006  相似文献   

7.
Phosphoric acid‐doped crosslinked proton‐conducting membranes with high anhydrous proton conductivity, and good chemical stability in phosphoric acid were synthesized and characterized. The synthetic procedure of the acid‐doped composite membranes mainly involves the in situ crosslinking of polymerizable monomer oils (styrene and acrylonitrile) and vinylimidazole, and followed by the sulfonation of pendant imidazole groups with butanesultone, and further doped with phosphoric acid. The resultant phosphoric acid‐doped composite electrolyte membranes are flexible and show high thermal stability and high‐proton conductivity up to the order of 10?2 S cm?1 at 160 °C under anhydrous conditions. The phosphoric acid uptake, swelling degree, and proton conductivity of the composite membranes increase with the vinylimidazole content. The resultant composite membranes also show good oxidative stability in Fenton's reagent (at 70 °C), and quite good chemical stability in phosphoric acid (at 160 °C). The properties of the prepared electrolyte membranes indicate their promising prospects in anhydrous proton‐exchange membrane applications. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013 , 51, 1311–1317  相似文献   

8.
A sulfonated dianhydride monomer, 6,6′‐disulfonic‐4,4′‐binaphthyl‐1,1′,8,8′‐tetracarboxylic dianhydride (SBTDA), was successfully synthesized by direct sulfonation of the parent dianhydride, 4,4′‐binaphthyl‐1,1′,8,8′‐tetracarboxylic dianhydride (BTDA), using fuming sulfuric acid as the sulfonating reagent. A series of sulfonated homopolyimides were prepared from SBTDA and various common nonsulfonated diamines. The resulting polymer electrolytes, which contain ion conductivity sites on the deactivated positions of the aryl backbone rings, displayed high proton conductivities of 0.25–0.31 S cm?1 at 80 °C. The oxidative stability test indicated that the attachment of the ? SO3H groups onto the dianhydride units did not deteriorate the oxidative stability of the SPI membranes. The better membranes were achieved by the copolymerization of nonsulfonated diamine, SBTDA, and BTDA. Copolymer membrane synthesized from hexane‐1,6‐diamine, SBTDA, and BTDA displayed excellent water stability of more than 1000 h at 90 °C, while its proton conductivity was still at a high level (comparable to that of Nafion 117). Furthermore, the novel block copolymer ( II‐b ) displayed higher proton conductivity compared with the random one ( II‐r ) obviously, probably due to the slightly higher water uptake and better microphase separated morphology. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2820–2832, 2008  相似文献   

9.
Poly(arylene ether ketone)s (PAEKs) are the most commonly known high‐performance materials used for ion exchange and fuel cell membranes. Described here is the design of novel sulfonated PAEKs (SPAEKs) and nonsulfonated PAEKs containing crown ether units in the main chain, which can be used in sensing applications and ion‐selective membranes. To this end, 4,4′(5′)‐di(hydroxybenzo)‐18‐crown‐6 was synthesized and used as monomer in a step growth polymerization to form crown ether‐containing PAEKs and SPAEKs. The successful synthesis of PAEKs containing 18‐crown‐6 and sulfonate groups was confirmed by gel permeation chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. Membranes are fabricated from the sulfonated polymers. Potassium ion transport properties of the SPAEK and crown ether‐containing SPAEK membranes are assessed by diffusion dialysis. Potassium ion diffusion in the crown ether‐containing SPAEK membranes is almost four times lower than K+ diffusion in the native polymer membranes, without crown ether. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2786–2793  相似文献   

10.
《先进技术聚合物》2018,29(1):130-142
The possibility of developing low‐cost commercial grafted and sulfonated Poly(vinylidene fluoride) (PVDF‐g‐PSSA) membranes as proton exchange membranes for fuel cell applications have been investigated. PVDF‐g‐PSSA membranes were systematically prepared and examined with the focus of understanding how the polymer microstructure (degree of grafting and sulfonation, ion‐exchange capacity, etc) affects their methanol permeability, water uptake, and proton conductivity. Fourier transform infrared spectroscopy was used to characterize the changes of the membrane's microstructure after grafting and sulfonation. The results showed that the PVDF‐g‐PSSA membranes exhibited good thermal stability and lower methanol permeability. The proton conductivity of PVDF‐g‐PSSA membranes was also measured by the electrochemical impedance spectroscopy method. It was found that the proton conductivity of PVDF‐g‐PSSA membranes depends on the degree of sulfonation. All the sulfonated membranes show high proton conductivity at 92°C, in the range of 27 to 235 mScm−1, which is much higher than that of Nafion212 (102 mScm−1 at 80°C). The results indicated that the PVDF‐g‐PSSA membranes are particularly promising membranes to be used as polymer electrolyte membranes due to their excellent stability, low methanol permeability, and high proton conductivity.  相似文献   

11.
Random and block sulfonated poly(meta‐phenylene isopthalamide)s as proton exchange membranes were synthesized through the Higashi‐Yamazaki phosphorylation method. Polymers with different degrees of sulfonation from 40 to 100 mol percent were prepared by adjusting the molar feed ratio of 5‐sulfoisophthalic acid sodium salt (SIPA) and isophthalic acid (IPA) in the reaction with meta‐phenylene diamine. Creasable polymer films were obtained by casting DMSO polymer solutions and the membrane films could be exchanged to the proton form in strong acid. 1H NMR spectroscopy and titration confirmed the degree of sulfonation. Thermogravimetric analysis demonstrated good thermal stabilities with 5% weight loss greater than 380 °C. The copolymers with low degrees of sulfonation (DS = 40 mol %) exhibited low water uptake (water uptake < 17 wt %) at room temperature. A segmented multiblock copolymer prepared by preforming a sulfonated block showed lower water uptake at high temperatures than the random polymer with the same DS of 40 mol % and displayed stability in water up to 80 °C. Both random and block copolymers showed higher proton conductivities at high temperature than that of Nafion‐117 under 95% relative humidity. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2582–2592  相似文献   

12.
A series of soluble, benzimidazole‐based polymers containing sulfonic acid groups (SuPBI) has been synthesized. SuPBI membranes resist extensive swelling in water but are poor proton conductors. When blended with high ion exchange capacity (IEC) sulfonated poly(ether ether ketone) (SPEEK), a polymer that has high proton conductivity but poor mechanical integrity, ionic crosslinks form reducing the extent of swelling. The effect of sulfonation of PBI on crosslinking in these blends was gauged through comparison with nonsulfonated analogs. Sulfonic acid groups present in SuPBI compensate for acid groups involved in crosslinking, thereby increasing IEC and proton conductivity of the membrane. When water uptake and proton conductivity were compared to the IEC of blends containing either sulfonated or nonsulfonated PBI, no noticeable distinction between PBI types could be made. Comparisons were also made between these blends and pure SPEEK membranes of similar IEC. Blend membranes exhibit slightly lower maximum proton conductivity than pure SPEEK membranes (60 vs. 75 mS cm?1) but had significantly enhanced dimensional stability upon immersion in water, especially at elevated temperature (80 °C). Elevated temperature measurements in humid environments show increased proton conductivity of the SuPBI membranes when compared with SPEEK‐only membranes of similar IEC (c.f. 55 for the blend vs. 42 mS cm?1 for SPEEK at 80 °C, 90% relative humidity). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3640–3650, 2010  相似文献   

13.
Novel sulfonated diamines bearing aromatic pendant groups, namely, 3,5‐diamino‐3′‐sulfo‐4′‐(4‐sulfophenoxy) benzophenone (DASSPB) and 3,5‐diamino‐3′‐sulfo‐4′‐(2,4‐disulfophenoxy) benzophenone (DASDSPB), were successfully synthesized. Novel side‐chain‐type sulfonated (co)polyimides (SPIs) were synthesized from these two diamines, 1,4,5,8‐naphthalene tetracarboxylic dianhydride (NTDA) and nonsulfonated diamines such as 4,4′‐bis(3‐aminophenoxy) phenyl sulfone (BAPPS). Tough and transparent membranes of SPIs with ion exchange capacity of 1.5–2.9 meq g?1 were prepared. They showed good solubility and high thermal stability up to 300 °C. They showed isotropic membrane swelling in water, which was different from the main‐chain‐type and sulfoalkoxy‐based side‐chain‐type SPIs. The relative humidity (RH) and temperature dependence of proton conductivity were examined. At low RH, the novel SPI membranes showed much higher conductivity than the sulfoalkoxy‐based SPIs. They showed comparable or even higher proton conductivity than Nafion 112 in water at 60 °C (>0.10 S cm?1). The membrane of NTDA‐DASDSPB/BAPPS (1/1)‐s displayed reasonably high proton conductivities of 0.05 and 0.30 S cm?1 at 50 and 100% RH, respectively, at 120 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2862–2872, 2006  相似文献   

14.
Novel proton conducting membranes, sulfonated polyethersulfone Cardo (SPES-C), were prepared with concentrated sulfonic acid at room temperature. The degree of sulfonation was controlled by reaction time. Their proton conductivity and methanol permeability as a function of temperature were investigated. The SPES-C membranes with 70% DS were still not water soluble and had low degree of swelling. With the level of 70% sulfonation, proton conductivity was 0.011 S/cm at 80 °C, 0.0338 S/cm at 110 °C, which approached that of Nafion® 115 membrane at the same conditions. Methanol permeability of SPES-C membranes was considerably smaller than that of Nafion® 115 membrane over the temperature 25–80 °C.  相似文献   

15.
A series of novel phenolphthalein‐containing sulfonated poly(arylene ether phosphine oxide)s (sPAEPP) with various sulfonation degrees were synthesized by direct polycondensation. The structure of sPAEPP was confirmed by 1H‐NMR, 13C‐NMR, and IR spectroscopy. The high‐molecular weight of these polymers was determined by gel permeation chromatography (GPC). The transparent, tough, and flexible membranes could be achieved by solution casting. The macroscopic properties and microstructure of the obtained membranes were investigated in detail. The results showed that these sPAEPP membranes displayed excellent properties in terms of swelling, proton conductivity, and methanol permeability. For example, sPAEPP‐100 membrane exhibited an appropriate water uptake of 33.1%, a swelling ratio of only 11.7% (lower than 20.1% of Nafion 117), a proton conductivity of 0.11 S cm?1 (similar to that of Nafion 117) at 80 °C, and a methanol permeability of 4.82 × 10?7 cm2 s?1. Meanwhile, it also presented outstanding oxidative stability. Atomic force microscope (AFM) micrographs showed that the hydrophilic domains of the sPAEPP‐100 membrane formed connected and narrow ionic channels, which contributed to its high proton conductivity and good dimensional stability. As a result, sPAEPP‐100 membrane displays excellent application prospect for fuel cells. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1097–1104  相似文献   

16.
Six series of novel highly sulfonated polybenzimidazoles (sPBIs) with high molecular weight were prepared by direct polycondensation between 3,3′‐diaminobenzidine and original multisulfonated dinuclear dicarboxylic acids containing bridging ether, sulfone, and hexafluoroisopropylidene moieties. All reactions were carried out in polyphosphoric acid, which acts as both solvent and catalyst. The degree of sulfonation was modulated in the final products by varying the proportion of sulfonated to nonsulfonated dicarboxylic acids used in the synthesis. The high purity of the disulfonated and tetrasulfonated monomers allows wholly sulfonated homopolymers to be obtained. Confirmation of the chemical structure and the degree of sulfonation were derived from 1H nuclear magnetic resonance spectroscopy. Inherent viscosity was estimated as between 0.70 and 5.33 dL g?1 for sPBIs with ion exchange capacity in the range 0.87–4.68 mequiv g?1. Dynamic thermogravimetric analysis in air showed no weight loss below 350 °C (heating rate 5 °C min?1). The nature of the bisphenyl bridge has clear influence on the water uptake and proton conduction properties of the resulting sPBI membranes, with hexafluoroisopropylidene links providing materials of highest conductivity as well as favoring film‐forming characteristics. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Two new kinds of fluorine‐containing polybenzimidazoles (PBI), poly(2,2′‐(tetrafluoro‐p‐phenylene)‐5,5′‐bibenzimidazole) and poly(2,2′‐tetradecafluoroheptylene‐5,5′‐bibenzimidazole), were synthesized by condensation polymerization of 3,3′‐diaminobenzidine and perfluoroterephthalic acid (or perfluoroazelaic acid), with polyphosphoric acid as solvent. Thermogravimetric analysis results show that the fluorine‐containing polymers synthesized exhibit promising thermal stability. The film‐forming properties of the fluorine‐containing polymers are improved over nonfluorinated PBI. The introduction of fluorine into the backbone of the polymers has significant positive affection on their chemical oxidation stability demonstrated by Fenton test. Compared with poly(2,2′‐(m‐phenylene)‐5,5′‐bibenzimidazole)/phosphoric acid (PA) composite membrane, the resulting fluorinated membranes with a same PA doping level exhibit better flexibility and higher proton conductivity. The maximum proton conductivity gained is 3.05 × 10?2 S/cm at 150 °C with a PA doping level of 7. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2115–2122, 2010  相似文献   

18.
A series of novel sulfonated polyimides (equivalent weight per sulfonic acid = 310–744 g/equiv) containing 10–70 mol % 1,5‐naphthylene moieties were synthesized as potential electrolyte materials for high‐temperature polymer electrolyte fuel cells. The polycondensation of 1,4,5,8‐naphthalene tetracarboxylic dianhydride, 4,4′‐diamino‐2,2′‐biphenyldisulfonic acid, and 1,5‐diaminonaphthalene gave the title polymer electrolytes. The polyimide electrolytes were high‐molecular‐weight (number‐average molecular weight = 36.0–350.7 × 103 and weight‐average molecular weight = 70.4–598.5 × 103) and formed flexible and tough films. The thermal properties (decomposition temperature > 260 °C, no glass‐transition temperature), stability to oxidation, and water absorption were analyzed and compared with those of perfluorosulfonic acid polymers. The polyimide containing 20 mol % 1,5‐naphthylene moieties showed higher proton conductivity (0.3 S cm?1) at 120 °C and 100% relative humidity than perfluorosulfonic acid polymers. The temperature and humidity dependence of the proton conductivity was examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3901–3907, 2003  相似文献   

19.
Directly copolymerized wholly aromatic sulfonated poly(arylene ether sulfone) copolymers derived from 4,4′‐biphenol, 4,4′‐dichlorodiphenyl sulfone, 3,3′‐disulfonated, and 4,4′‐dichlorodiphenyl sulfone (BPSH) were evaluated as proton‐exchange membranes for elevated temperature operation (100–140 °C). Acidification of the copolymer from the sulfonated form after the nucleophilic step (condensation) copolymerization involved either immersing the solvent‐cast membrane in sulfuric acid at 30 °C for 24 h and washing with water at 30 °C for 24 h (method 1) or immersion in sulfuric acid at 100 °C for 2 h followed by similar water treatment at 100 °C for 2 h (method 2). The fully hydrated BPSH membranes treated by method 2 exhibited higher proton conductivity, greater water absorption, and less temperature dependence on proton conductivity as compared with the membranes acidified at 30 °C. In contrast, the conductivity and water absorption of a control perfluorosulfonic acid copolymer (Nafion 1135) were invariant with treatment temperature; however, the conductivity of the Nafion membranes at elevated temperature was strongly dependent on heating rate or temperature. Tapping‐mode atomic force microscope results demonstrated that all of the membranes exposed to high‐temperature conditions underwent an irreversible change of the ionic domain microstructure, the extent of which depended on the concentration of sulfonic acid sites in the BPSH system. The effect of aging membranes based on BPSH and Nafion at elevated temperature on proton conductivity is also discussed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2816–2828, 2003  相似文献   

20.
New sulfonated poly(arylene ether sulfone) copolymers with high molecular weights were successfully synthesized with controlled degrees of disulfonation of up to 70 mol % via the direct copolymerization of sulfonated aromatic dihalides, aromatic dihalides, and one of four structurally distinct bisphenols. The disodium salts of the 3,3′‐disulfonated‐4,4′‐dichlorodiphenyl sulfone and 3,3′‐disulfonated‐4,4′‐difluorodiphenyl sulfone comonomers were synthesized via the sulfonation of 4,4′‐dichlorodiphenyl sulfone or 4,4′‐difluorodiphenyl sulfone with 30% fuming sulfuric acid at 110 °C. Four bisphenols (4,4′‐bisphenol A, 4,4′‐bisphenol AF, 4,4′‐biphenol, and hydroquinone) were investigated for the syntheses of novel copolymers with controlled degrees of sulfonation. The composition and incorporation of the sulfonated repeat unit into the copolymers were confirmed by 1H NMR and Fourier transform infrared spectroscopy. Solubility tests on the sulfonated copolymers confirmed that no crosslinking and probably no branching occurred during the copolymerizations. Tough, ductile films were solvent‐cast that exhibited increased water absorption with increasing degrees of sulfonation. These copolymers are promising candidates for high temperature proton‐exchange membranes in fuel cells, which will be reported separately in part II of this series. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2264–2276, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号