首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pt‐catalyzed hydrosilylation between vinylheptaphenylcyclotetrasiloxane and a series of α,ω‐bis(hydrido)polydimethylsiloxanes and copoly(methylhydridosiloxane/dimethylsiloxane) was used to prepare chemically modified materials. These modified polymers were characterized by IR, UV, and 1H, 13C, and 29Si NMR spectroscopy and gel permeation chromatography (GPC). The molecular weights, determined by GPC, UV, and NMR end‐group analysis, showed the anticipated increases. The thermal properties of the polymers were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The crystallinity, determined by DSC, was either reduced or completely eliminated for the modified polymers. The thermal stabilities, measured in both air and nitrogen by TGA, were slightly higher than the thermal stability of α,ω‐bis(trimethylsiloxy)polydimethylsiloxane. Significantly increased bulk viscosities were observed for all the modified polymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3007‐3017, 2005  相似文献   

2.
The synthesis and characterization of some novel cationic siloxanes copolymers containing quaternary ammonium salt (QAS) groups in the backbone is reported in this article. One cationic oligomer having QAS in the backbone and reactive groups like 2,3‐epoxypropyl and 2‐hydroxy‐3‐chloropropyl (RCO) as well as 1,3‐bis(3‐aminopropyl)tetramethyldisiloxane or α,ω‐bis(3‐aminopropyl)oligodimethylsiloxane (AP) were used as precursors for this goal. Elemental analysis, IR and 1H NMR spectroscopy, thermogravimetric analysis, and X‐ray photoelectron spectroscopy were used to characterize the obtained copolymers. The thermal stability of the cationic siloxane copolymer increased when the siloxane oligomer having a high number of siloxane units in the chain (AP) was used as a precursor. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3570–3578, 2002  相似文献   

3.
2,4,8‐Trialkyl‐3‐thia‐1,5‐diazabicyclo[3.2.1]octanes have been obtained by the regioselective and stereoselective cyclocondensation of 1,2‐ethanediamine with aldehydes RCHO (R═Me, Et, Prn, Bun, Pentn) and H2S at molar ratio 1:3:2 at 0°C. The increase in molar ratio of thiomethylation mixture RCHO–H2S (6:4) at 40°C resulted in selective formation of bis‐(2,4,6‐trialkyl‐1,3,5‐dithiazinane‐5‐yl)ethanes. Cyclothiomethylation of aliphatic α,ω‐diamines with aldehydes RCHO (R═Me, Et) and H2S at molar ratio 1:6:4 and at 40°С led to α,ω‐bis(2,4,6‐trialkyl‐1,3,5‐dithiazinane‐5‐yl)alkanes. Stereochemistry of 2,4,8‐trialkyl‐3‐thia‐1,5‐diazabicyclo[3.2.1]octanes have been determined by means of 1H and 13С NMR spectroscopy and further supported by DFT calculations at the B3LYP/6‐31G(d,p) level. The structure of α,ω‐bis(2,4,6‐trialkyl‐1,3,5‐dithiazinane‐5‐yl)alkanes was confirmed by single‐crystal X‐ray diffraction study.  相似文献   

4.
alt‐Copoly[1,9‐decaphenylpentasiloxanylene/1,3‐bis(ethylene)tetramethyldisiloxanylene], alt‐copoly[1,9‐decaphenylpentasiloxanylene/1,5‐bis(ethylene)hexamethyltrisiloxanylene], alt‐copoly[1,9‐decaphenylpentasiloxanylene/1,7‐bis(ethylene)octamethyltetrasiloxanylene], and alt‐copoly[1,9‐decaphenylpentasiloxanylene/1,9‐bis(ethylene)decamethylpentasiloxanylene] were synthesized by Pt‐catalyzed hydrosilylation reactions of 1,9 divinyldecaphenylpentasiloxanes with a series of oligodimethylsiloxanes. The molecular weights of these copolymers were determined by gel permeation chromatography. Their glass‐transition temperatures (Tg's) were obtained by differential scanning calorimetry. The thermal stabilities of the copolymers were measured by thermogravimetric analysis. The structures of the copolymers were verified by 1H, 13C, and 29Si NMR as well as IR and UV spectroscopy. The copolymers displayed high thermal stabilities and a single Tg, indicating that phase separation between the two short blocks did not occur. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6146–6152, 2005  相似文献   

5.
1,1′‐Bis(trimethylsilylamino)ferrocene reacts with trimethyl‐ and triethylgallium to give the μ‐[ferrocene‐1,1′‐diyl‐bis(trimethylsilylamido)]tetraalkyldigallanes. These were converted into the 1,3‐bis(trimethylsilyl)‐2‐alkyl‐2‐pyridine‐1,3,2‐diazagalla‐[3]ferrocenophanes, of which the ethyl derivative was characterized by X‐ray structural analysis. Treatment of gallium trichloride with N,N′‐dilithio‐1,1′‐bis(trimethylsilylamino)ferrocene affords μ‐[ferrocene‐1,1′‐diyl‐bis(trimethylsilylamido)]tetrachlorodigallane along with bis(trimethylsilyl)‐2,2‐dichloro‐1‐aza‐3‐azonia‐2‐gallata‐[3]ferrocenophane as a side product, and both were structurally characterized by X‐ray analysis. The solution‐state structures of the new gallium compounds and aspects of their molecular dynamics in solution were studied by NMR spectroscopy (1H, 13C, 29Si NMR).  相似文献   

6.
Poly(siloxane‐urethane) crosslinked structures were prepared from isophorone diisocyanate, α,ω‐bis(hydroxybutyl)oligodimethylsiloxane and a new hybrid diol containing hydrolysable Si? OC2H5 groups besides OH groups. The latest was synthesized by the acid‐catalyzed reaction between 1,3‐bis(3‐glycidoxypropyl)tetramethyldisiloxane and 3‐aminopropyltriethoxysilane. The formations of the urethane groups along the polymer backbone as well as the formation of the silica domains were first confirmed by the presence of the specific bands in Fourier transform infrared spectra. The resulted materials were characterized using differential scanning calorimetry, thermogravimetric analysis and scanning electron microscopy. The results of the dynamic mechanical analysis (DMA) performed at various frequencies revealed shape memory capabilities for some of the obtained structures. The silica formed because of the hydrolysis‐condensation reactions proved to have reinforcing effect upon siloxane‐urethane structure also evidenced by DMA and increasing water vapor sorption capacity as was measured by dynamic vapor sorption. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
Ionic organic/siloxane networks containing quaternary ammonium salt (QAS) sequences in the cross‐linking bridges were obtained by the Menshutkin reaction of oligo(N,N‐dimethylaminoethylmethacrylate) (ODMAEM) with a telechelic chloroalkylated siloxane (CAS), such as 1,3‐bis‐(chloromethyl)‐1,1,3,3‐tetramethyldisiloxane, 1,3‐bis‐(chloropropyl)‐1,1,3,3‐tetramethyldisiloxane, and α,ω‐bis(chloromethyl) oligodimethylsiloxane. The resulted structures were investigated by Fourier transform infrared spectroscopy emphasizing the presence of both organic and siloxane moieties. The thermogravimetric analysis under inert atmosphere of the networks, besides the thermal stability, gave also information on the composition of hybrid hydrogels. The morphology of the lyophilized networks was evidenced by environmental scanning electron microscopy, as a function of CAS structure and CAS: ODMAEM feed molar ratio. The swelling response of the ionic networks in water as a function of pH and counterion nature and concentration as well as the water vapors sorption capacity in dynamic regime were evaluated. The properties of the ionic hybrid hydrogels were correlated with the reactants feed molar ratio and concentration of the reaction mixture, CAS type, and the presence of a catalyst. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

8.
Reactions of SnCl2 with the complexes cis‐[PtCl2(P2)] (P2=dppf (1,1′‐bis(diphenylphosphino)ferrocene), dppp (1,3‐bis(diphenylphosphino)propane=1,1′‐(propane‐1,3‐diyl)bis[1,1‐diphenylphosphine]), dppb (1,4‐bis(diphenylphosphino)butane=1,1′‐(butane‐1,4‐diyl)bis[1,1‐diphenylphosphine]), and dpppe (1,5‐bis(diphenylphosphino)pentane=1,1′‐(pentane‐1,5‐diyl)bis[1,1‐diphenylphosphine])) resulted in the insertion of SnCl2 into the Pt? Cl bond to afford the cis‐[PtCl(SnCl3)(P2)] complexes. However, the reaction of the complexes cis‐[PtCl2(P2)] (P2=dppf, dppm (bis(diphenylphosphino)methane=1,1′‐methylenebis[1,1‐diphenylphosphine]), dppe (1,2‐bis(diphenylphosphino)ethane=1,1′‐(ethane‐1,2‐diyl)bis[1,1‐diphenylphosphine]), dppp, dppb, and dpppe; P=Ph3P and (MeO)3P) with SnX2 (X=Br or I) resulted in the halogen exchange to yield the complexes [PtX2(P2)]. In contrast, treatment of cis‐[PtBr2(dppm)] with SnBr2 resulted in the insertion of SnBr2 into the Pt? Br bond to form cis‐[Pt(SnBr3)2(dppm)], and this product was in equilibrium with the starting complex cis‐[PtBr2(dppm)]. Moreover, the reaction of cis‐[PtCl2(dppb)] with a mixture SnCl2/SnI2 in a 2 : 1 mol ratio resulted in the formation of cis‐[PtI2(dppb)] as a consequence of the selective halogen‐exchange reaction. 31P‐NMR Data for all complexes are reported, and a correlation between the chemical shifts and the coupling constants was established for mono‐ and bis(trichlorostannyl)platinum complexes. The effect of the alkane chain length of the ligand and SnII halide is described.  相似文献   

9.
1‐[2′‐(Heptaphenylcyclotetrasiloxanyl)ethyl]‐1,3,3,5,5‐pentamethylcyclotetrasiloxane ( II ) was prepared from 1‐[2′‐(methyldichlorosilyl)ethyl]‐1,3,3,5,5,7,7‐heptaphenylcyclotetrasiloxane ( I ) and tetramethyldisiloxane‐1,3‐diol. Acid‐catalyzed ring‐opening of II in the presence of tetramethyldisiloxane gave 1,9‐dihydrido‐5‐[2′‐(heptaphenylcyclotetrasiloxanyl)ethyl]nonamethylpentasiloxane ( III ) and 1,9‐dihydrido‐3‐[2′‐(heptaphenylcyclotetrasiloxanyl)ethyl]nonamethylpentasiloxane ( IV ). Both acid‐ and base‐catalyzed ring‐opening polymerization of II gives highly viscous, transparent polymers. The structures of I – IV and polymers were determined by UV, IR, 1H, 13C, and 29Si NMR spectroscopy. In addition, molecular weights obtained by GPC and NMR end group analysis were confirmed with mass spectrometry. On the basis of 29Si NMR spectroscopy, the polymers appear to result exclusively from ring‐opening of the cyclotrisiloxane ring. No evidence for ring‐opening of the cyclotetrasiloxane ring was observed. Polymer properties were determined by DSC and TGA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 137–146, 2006  相似文献   

10.
New Schiff bases of 2,4‐dihydroxybenzaldehyde with siloxane‐α,ω‐diamines having different numbers of siloxane units in the chain have been synthesized and characterized by spectroscopy, elemental and thermal analyses. These azomethines were found to form complexes readily with copper(II), nickel(II), cobalt(II), cadmium(II) and zinc(II). From IR and UV–Vis studies, the phenolic oxygen and imine nitrogen of the ligand were found to be the coordination sites. Thermogravimetric analysis (TGA) data indicate the chelates to be more stable than the corresponding ligands. The melting points increase with shortening of the siloxane segment from azomethine, as well as the result of complexation. The chelates obtained were covalently inserted in polymeric linear structures by polycondensation through the OH‐difunctionalized ligand with 1,3‐bis(carboxypropyl)tetramethyldisiloxane. Direct polycondensation, assisted either by acetic anhydride or N,N′‐dicyclohexylcarbodiimide as dehydrating agent and the complex 4‐(dimethylamino)pyridinium 4‐toluenesulfonate as catalyst, was used for the synthesis of these compound types. The structures of the polymers obtained were confirmed by IR, UV and 1H NMR. Characterization was undertaken by TGA, solubility tests and viscosity measurements. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
The synthesis of 1,3‐bis(2‐trimethylsilyloxyhexafluoro‐2‐propyl)‐5‐allylbenzene ( IV ) is described, starting from commercially available 1,3‐bis(2‐hydroxyhexafluoro‐2‐propyl)benzene. After the first step of iodination was optimized, a series of metallating agents were tested, before allylation, so that the best reagent could be selected. The allyl compound IV was then added to two different copoly(dimethyl‐methylhydro)siloxanes, PS 122.5 and PS 123 from Gelest/ABCR, via platinum‐catalyzed hydrosilylation, for the preparation of new polysiloxanes bearing specifically designed pendant aryl moieties. The different synthesized products were characterized by spectroscopic methods (IR and 1H, 13C, 19F, and 29Si NMR), and the glass‐transition temperatures of copolymers VI‐2 , VI‐3 , and VI‐4 were measured. It was shown that the higher the amount was of grafted fluoroaryl groups, the higher the glass‐transition temperature was. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1400–1410, 2003  相似文献   

12.
Two types of novel fluorinated diimide‐diacid monomers—[2,2′‐(4,4′‐(3′‐methylbiphenyl‐2,5‐diyl)bis(oxy)bis(3‐(trifluoromethyl)‐4,1‐phenylene))bis(1,3‐dioxoisoindoline‐5‐carboxylic acid)] (III) and [2,2′‐(4,4′‐(3′‐(trifluoromethyl)biphenyl‐2,5‐diyl)bis(oxy)bis(3‐(trifluoromethyl)‐4,1‐phenylene))bis(1,3‐dioxoisoindoline‐5‐carboxylic acid)] (IV)—were respectively designed and prepared by the condensation of diamines I and II with two molar equivalents of trimellitic anhydride. From both diimide‐diacids, two series of novel poly(amide‐imide)s (PAIs) (IIIa–IIIe and IVa–IVe) bearing different pendant groups were prepared by direct polymerization with various aromatic diamines (a–e). All the PAIs had a high glass transition temperatures (Tgs, 232–265 °C), excellent thermal stability (exhibiting only 5% weight loss at 493–542 °C under nitrogen) and good solubility in various organic solvents due to the introduction of the bulky pendant groups. The cast films of these PAIs (80–90 μm) had good optical transparency (73–81% at 450 nm, 85–88% at 550 nm and 87–89% at 800 nm) and low dielectric constants (2.65–2.98 at 1 MHz). The spin‐coated films of these PAIs presented a minimum birefringence value as low as 0.0077–0.0143 at 650 nm and low optical absorption at the near‐infrared optical communication wavelengths of 1310 and 1550 nm. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3243–3252  相似文献   

13.
Oleic acid and α,ω‐diacid were converted into propargylic esters followed by thiol‐ene/yne coupling (TEC/TYC) functionalization in presence of mercaptoethanol. The multiradical addition on fatty esters leads to the formation of lipidic polyols (OH1 and OH2), as judged by 1H NMR and mass spectroscopies as well as by size exclusion chromatography. The crosslinking reaction between TEC/TYC‐based polyols and 4,4′‐methylene bis(phenylisocyanate) isocyanate reactant was monitored by FTIR experiment and reaction parameters were optimized. By differential scanning calorimetry, relatively high glass transitions are measured corresponding to structure with little or without dangling chain. Moreover, the thermal stability of the resulting plant oil‐based polyurethane materials (PU1 and PU2) were found to be fully consistent with that of other lipidic PUs respecting a three‐step process. Thanks to TYC methodology, fatty α,ω‐diacid produces lipidic polyol without dangling chain and lipidic thermoset PU with relatively high Tg. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1597–1606  相似文献   

14.
Two new cyclobutanoid amides, piperarborenine A (=1,1′‐{[(1α,2α,3β,4β)‐2,4‐bis(3,4‐dimethoxyphenyl)cyclobutane‐1,3‐diyl]dicarbonyl}bis[5,6‐dihydropyridin‐2(1H)‐one]; 1 ) and piperarborenine B (=1,1′‐{[(1α,2α,3β,4β)‐2‐(3,4‐dimethoxyphenyl)‐4‐(3,4,5‐trimethoxyphenyl)cyclobutane‐1,3‐diyl]dicarbonyl}bis[5,6‐dihydropyridin‐2(1H)‐one]; 2 ) were isolated from the stem of Piper arborescens, besides two known cyclobutanoid amides, piperarboresine (=1,1′‐{[(1α,2α,3β,4β)‐2‐(7‐methoxy‐1,3‐benzodioxol‐5‐yl)‐4‐(3,4,5‐trimethoxyphenyl)cyclobutane‐1,3‐diyl]dicarbonyl}bis[5,6‐dihydropyridin‐2(1H)‐one]; 3 ) and piplartine‐dimer A (=1,1′‐{[(1α,2α,3β,4β)‐2,4‐bis(3,4,5‐trimethoxyphenyl)cyclobutane‐1,3‐diyl]dicarbonyl}bis[5,6‐dihydropyridin‐2(1H)‐one]; 4 ). The structures of the two new compounds were determined by spectral analyses.  相似文献   

15.
The TiCl4‐mediated [3+3] cyclocondensation of various 1,3‐bis(trimethylsilyloxy)buta‐1,3‐dienes with 1‐chloro‐1,1‐difluoro‐4‐(trimethylsilyloxy)pent‐3‐en‐2‐one provides a regioselective access to novel 6‐(chlorodifluoromethyl)salicylates (=6‐(chlorodifluoromethyl)‐2‐hydroxybenzoates) with very good regioselectivity. For selected products, it was demonstrated that the CF2Cl group can be transformed to CF2H and CF2(Allyl) by free‐radical reactions.  相似文献   

16.
A series of 1,ω‐dithiaalkanediyl‐bridged bis(phenols) of the general type [OSSO]H2 with variable steric properties and various bridges were prepared. The stoichiometric reaction of the bis(phenols) 1,3‐dithiapropanediyl‐2,2′‐bis(4,6‐di‐tert‐butylphenol), 1,3‐dithiapropanediyl‐2,2′‐bis[4,6‐di(2‐phenyl‐2‐propyl)phenol], rac‐2,3‐trans‐propanediyl‐1,4‐dithiabutanediyl‐2,2′‐bis[4,6‐di(2‐phenyl‐2‐propyl)phenol], rac‐2,3‐trans‐butanediyl‐1,4‐dithiabutane diyl‐2,2′‐bis[4,6‐di(2‐phenyl‐2‐propyl)phenol], rac‐2,3‐trans‐hexanediyl‐1,4‐dithiabutanediyl‐2,2′‐bis[4,6‐di(2‐phenyl‐2‐propyl)phenol], 1,3‐dithiapropanediyl‐2,2′‐bis[6‐(1‐methylcyclohexyl)‐4‐methylphenol] (C1, R=1‐methylcyclohexyl), and 1,4‐dithiabutanediyl‐2,2′‐bis[6‐(1‐methylcyclohexyl)‐4‐methylphenol] with rare‐earth metal silylamido precursors [Ln{N(SiHMe2)2}3(thf)x] (Ln=Sc, x=1 or Ln=Y, x=2; thf=tetrahydrofuran) afforded the corresponding scandium and yttrium bis(phenolate) silylamido complexes [Ln(OSSO){N(SiHMe2)2}(thf)] in moderate to good yields. The monomeric nature of these complexes was shown by an X‐ray diffraction study of one of the yttrium complexes. The complexes efficiently initiated the ring‐opening polymerization of rac‐ and meso‐lactide to give heterotactic‐biased poly(rac‐lactides) and highly syndiotactic poly(meso‐lactides). Variation of the ligand backbone and the steric properties of the ortho substituents affected the level of tacticity in the polylactides.  相似文献   

17.
With purpose to prepare waterborne polyurethane with improved performance, bis(methyoxyl hydroxyl)-functionalized polysiloxanes with different dimethylsiloxane segment length were prepared. The preparation includes three steps, the first is synthesis of 1,3-bis(glycidoxypropyl)tetramethyldisiloxane (compound I) via hydrosilylation of allylglycidyl ether with tetramethyldisiloxane, followed by a subsequent methoxylation of the resultant compound from the hydrosilylation to give 1,3-bis(3-(1-methoxy-2-hydroxypropoxy)propyl)tetramethyldisiloxane (compound II). Using this compound II and octamethylcyclotetrasiloxane (D4), an equilibrium reaction was carried out to obtain the target Product III, i.e. bis(methoxyl hydroxyl)-functionalized polysiloxanes. The ratio of D4/compound II was varied in order to prepare product III with different segment length consisting of dimethylsiloxane units. At each step, the outcome compounds were characterized through Infrared, 1H NMR, 13C NMR as well as H-H and H-C Correlated Spectroscopy (COSY). The results showed that each step was successfully carried out and objective products were achieved. It was estimated that compound II was not exclusive in the methoxylation step. Characterizations of the compound II enabled us to give a reliable quantitative amount for the by-products for the first time. In addition, the molecular weights of the final product III with varying dimethylsiloxane length were estimated by hydroxyl group analysis, 1H NMR and GPC, which showed a good agreement between the theoretical molecular weights and those from these tests.  相似文献   

18.
25, 25′, 27, 27′‐Bis(1,3‐dioxypropane)‐bis(5, 11, 17, 23‐tetra‐tert‐butylcalix[4]arene‐26,28‐diol) (4) and 25, 25′, 27, 27′‐bis(1, 4‐dioxybutane)‐bis (5, 11, 17, 23‐tetra‐tert‐butylcalix‐[4]arene‐26, 28‐diol) (5) were synthesized by the reaction of p‐tert‐butylcalix[4]arene (1) with preorganized 25, 27‐bis(3‐bromoproxyl)calix[4]arene‐26, 27‐diol (2) and 25, 27‐bis(3‐bromobutoxyl)calix[4]arene‐26, 27‐diol (3) in the presence of K2CO3 and KI. Compounds 4 and 5 were characterized with X‐ray analysis and the selectivity of 4 and 5 toward K+ over other alkali metal ions, alkaline metal ions as well as NH4+ were investigated with an ion‐selective electrode.  相似文献   

19.
Regioselective 1,3-dipolar cycloaddition of Cyanogen N,N′-dioxide ( 2 ) to trimethylsilyl enol ethers 3a-d, 6 and 7 gave the corresponding 5,5′-bis(trimethylsilyloxy)-3,3′-Δ2-biisoxazolines which upon short heating with 10% hydrochloric acid afforded 3,3′-biisoxazoles 5a-d , 8 and 9. Only the intermediate 5,5′-bis(trimethylsilyloxy)-derivative 4a was isolated and studied. Reaction of 2 with vinyl methyl ketone ( 10 ) gave biisoxazoline 11 which by oxidation with γ-manganese dioxide gave biisoxazole 12.  相似文献   

20.
Cationic (arene)ruthenium‐based tetranuclear complexes of the general formula [Ru4(η6‐p‐cymene)4(μ‐NN)2(μ‐OO∩OO)2]4+ were obtained from the dinuclear (arene)ruthenium complexes [Ru2(η6p‐cymene)2(μ‐OO∩OO)2Cl2] (p‐cymene=1‐methyl‐4‐(1‐methylethyl)benzene, OO∩OO=5,8‐dihydroxy‐1,4‐naphthoquinonato(2?), 9,10‐dihydroxy‐1,4‐anthraquinonato(2?), or 6,11‐dihydroxynaphthacene‐5,12‐dionato(2?)) by reaction with pyrazine or bipyridine linkers (NN=pyrazine, 4,4′‐bipyridine, 4,4′‐[(1E)‐ethene‐1,2‐diyl]bis[pyridine]) in the presence of silver trifluoromethanesulfonate (CF3SO3Ag) (Scheme). All complexes 4 – 12 were isolated in good yield as CF3SO salts, and characterized by NMR and IR spectroscopy. The host–guest properties of the metallarectangles incorporating 4,4′‐bipyridine and (4,4′‐[(1E)‐ethene‐1,2‐diyl]bis[pyridine] linkers were studied in solution by means of multiple NMR experiments (1D, ROESY, and DOSY). The largest metallarectangles 10 – 12 incorporating (4,4′‐[(1E)‐ethene‐1,2‐diyl]bis[pyridine] linkers are able to host an anthracene, pyrene, perylene, or coronene molecule in their cavity, while the medium‐size metallarectangles 7 – 9 incorporating 4,4′‐bipyridine linkers are only able to encapsulate anthracene. However, out‐of‐cavity interactions are observed between these 4,4′‐bipyridine‐containing rectangles and pyrene, perylene, or coronene. In contrast, the small pyrazine‐containing metallarectangles 4 – 6 show no interaction in solution with this series of planar aromatic molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号