首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Nanocomposites were prepared with different grades of nitrile rubber with acrylonitrile contents of 19, 34, and 50%, with styrene–butadiene rubber (23% styrene content), and with polybutadiene rubber with Na‐montmorillonite clay. The clay was modified with stearyl amine and was characterized by X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The XRD studies showed an increase in the gallery gap upon the modification of the filler by stearyl amine. The intercalation of the amine chains into the clay gallery gap was confirmed by the presence of some extra peaks (2928, 2846, and 1553 cm?1) in the FTIR spectra. The clay–rubber nanocomposites were characterized by TEM and XRD. The mechanical properties were studied for all the compositions. An improvement in the mechanical properties with the degree of filler loading up to a certain level was observed. The changes in the mechanical properties, with changes in the nature and polarity of the rubbers, were explained with the help of XRD and TEM results. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1573–1585, 2004  相似文献   

2.
An 2‐ureido‐4[1H]pyrimidinone (UPy) motif with self‐association capability (through quadruple hydrogen bonds) was successfully anchored onto montmorillonite clay layers. Polymer/clay nanocomposites were prepared by specific hydrogen bonding interactions between surface functionalized silica nanoclays and UPy‐bonded supramolecular poly(ethylene glycol) or poly(?‐caprolactone). The mixed morphologies including intercalated layers with a non‐uniform separation and exfoliated single layers isolated from any stack were determined by combined X‐ray diffraction and transmission electron microscopic measurements. Thermal analyses showed that all nanocomposites had higher decomposition temperatures and thermal stabilities compared with neat polymer. The differential scanning calorimetric data implied that the crystallinity of polymers did not show essential changes upon introduction of organomodified UPy clays. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 650–658  相似文献   

3.
The origin of double melting behavior of poly(p‐phenylene succinate) (PPSc) was investigated by differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction. As‐polymerized PPSc showed two melting peaks: the low melting (LM) and high melting (HM) peaks at 286 and 311 °C, respectively. When PPSc was annealed at 270 °C, the LM peak constantly shifted toward higher temperatures and grew in its area with annealing time, and eventually merged into the HM peak located at 308 °C. X‐ray diffractograms of PPSc annealed at 270 °C became sharper with increasing the annealing time while the peak positions did not change. The X‐ray diffractograms obtained from the LM and the HM peak exhibited the same diffraction peaks. It was concluded from these results that the double melting behavior of PPSc is due to the distribution of crystals having the same crystal form but differing in size and perfection. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1868–1871, 2000  相似文献   

4.
The processing of nanocomposite materials composed of amine‐cured diglycidyl ether of bisphenol A (DGEBA) reinforced with organomontmorillonite clay is reported. A novel sample preparation scheme was used to process the modified clay in the glassy epoxy network, resulting in nanocomposites where the clay was both exfoliated and intercalated by the epoxy network. The processing scheme involves sonication of the constituent materials in a solvent, followed by solvent extraction to generate a composite with homogeneous dispersions of the nanoclay. Fourier transform infrared spectroscopy (FTIR) and Fourier transform (FT‐)Raman spectroscopy confirmed that the chemical structure of the epoxy network was not affected by the use of solvents in this processing scheme. The glass‐transition temperature, Tg, linearly increased with an increased weight ratio of the nanoclay. The microstructure of clay nanoplatelets in the composites was observed with transmission electron microscopy (TEM), wide‐angle X‐ray scattering (WAXS), and small‐angle X‐ray scattering (SAXS). It was found that the clay nanoplatelets were well‐dispersed, and were intercalated as well as exfoliated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4384–4390, 2004  相似文献   

5.
Covalently bonded layered silicated/polystyrene nanocomposites were synthesized via atom transfer radical polymerization in the presence of initiator‐modified layered silicate. The resulting nanocomposites had an intercalated and partially exfoliated structure, as confirmed by X‐ray diffraction and transmission electron microscopy. The thermal properties of the nanocomposites improved substantially over those of neat polystyrene. In particular, a maximum increase of 35.5 °C in the degradation temperature was displayed by these nanocomposites. Additionally, the surface elastic modulus and hardness of these nanocomposites were more than double those of pure polystyrene. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 534–542, 2005  相似文献   

6.
In the present work, rubber/clay nanocomposites were prepared by a solution mixing process using fluoroelastomers and different nanoclays (namely, Cloisite NA+, Cloisite 10A, Cloisite 20A, and Cloisite 30B). Fluoroelastomers having different microstructure and viscosity (Viton B‐50, Viton B‐600, Viton A‐200, and VTR‐8550) were used. Characterization of the nanocomposites was done by using X‐ray diffraction and atomic force microscopy. The mechanical and dynamic mechanical properties were studied. The surface energy of the clays and the elastomer was also measured. Even with the addition of only 4 phr of clay in Viton B‐50, tensile strength and modulus improved by 30–96% and 80–134%, respectively, depending on the nature of the nanoclays. Exfoliation was observed with both the unmodified and the modified clays at low loading in all the fluoroelastomers. Best properties were observed with the unmodified clay. All the grades of fluororubber followed the same trend. The increment (19%) in storage modulus was also higher in the case of the unmodified clay filled Viton B‐50 system. The results were explained with the help of thermodynamics, surface energies, and swelling studies. The difference in surface energy, Δγ, between the rubber and the unmodified clay was lower. The work of adhesion (67.63 mJ/m2) between Viton B‐50 and Cloisite NA+ was also higher than that (51.42 mJ/m2) between Viton B‐50 and Cloisite 20A. Negative ΔHS value for the unmodified clay‐filled system thermodynamically favored the formation of the nanocomposite as compared to the modified clay filled samples where ΔHS is positive or zero. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 162‐176, 2006  相似文献   

7.
Large melting point depressions for organic nanocrystals, in comparison with those of the bulk, were observed in an associative polymer: telechelic, pyrene‐labeled poly(dimethylsiloxane) (Py‐PDMS‐Py). Nanocrystals formed within nanoaggregates of pyrenyl units that were immiscible in poly(dimethylsiloxane). For 5 and 7 kg/mol Py‐PDMS‐Py, physical gels resulted, with melting points exceeding 40 °C and with small‐angle X‐ray scattering peaks indicating that the crystals were nanoconfined, were 2–3 nm long, and contained roughly 18–30 pyrenyl dye end units. In contrast, 30 kg/mol Py‐PDMS‐PY was not a gel and exhibited no scattering peak at room temperature; however, after 12 h of annealing at ?5 °C, multiple melting peaks were present at 5–30 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3470–3475, 2004  相似文献   

8.
Thermomechanical properties and crystallization behavior of poly(ethylene terephthalate) (PET) nanocomposites containing layered double hydroxide (LDH) were investigated. To enhance the compatibility between PET matrix and LDH, dimethyl 5‐sulfoisophthalate (DMSI) anion intercalated LDH (LDH‐DMSI) was synthesized by coprecipitation method, and its structure was confirmed by Fourier transform infrared (FTIR) spectrometer and X‐ray diffraction (XRD) measurements. Then, PET nanocomposites with LDH‐DMSI content of 0, 0.5, 1.0, and 2.0 wt% were prepared by in‐situ polymerization. The dispersion morphologies were observed by transmission electron microscopy (TEM) and XRD, showing that LDH‐DMSI was exfoliated in PET matrix. Thermal and mechanical properties, such as thermal stability, tensile modulus, and tensile yield strength of nanocomposites, were enhanced by exfoliated LDH‐DMSI nanolayers. However, elongation at break was drastically decreased with LDH loading owing to the increased stiffness and microvoids. The effect of exfoliated nanolayers, which acted as a nucleating agent confirmed by differential scanning calorimeter (DSC), on the microstructural parameters during isothermal crystallization, was analyzed by synchrotron small‐angle X‐ray scattering (SAXS). It is believed that nanocomposites could be crystallized more easily owing to the increased nucleation sites, which lead to the decrease of average amorphous region size and the long period with the increase of LDH‐DMSI content. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 28–40, 2007  相似文献   

9.
The effect of electron irradiation on poly(vinylidene fluoride‐trifluoroethylene) (56/44 mol %) copolymers was studied with dielectric constant measurements, differential scanning calorimetry (DSC), X‐ray diffraction, thermally stimulated depolarization current (TSDC) spectroscopy, and polarization hysteresis loops. The dielectric relaxation peaks, obeying the Vogel–Fulcher law, indicated that the copolymers were transformed from a normal ferroelectric to a relaxor ferroelectric. The X‐ray and DSC results showed that both the crystalline and polar ordering decreased after irradiation, indicating a partial recovery from trans–gauche bonds to local trans bonds (polar ordering). Moreover, the peak temperature decreased with the irradiation dose in the TSDC spectra; this demonstrated fewer dipoles and crystalline regions in the irradiated copolymer films during the ferroelectric–paraelectric transition and was consistent with polarization hysteresis loop measurements. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1099–1105, 2004  相似文献   

10.
Novel nanocomposites from poly(L ‐lactide) (PLLA) and an organically modified layered double hydroxide (LDH) were prepared using the melt‐mixing technique. The structure and crystallization behavior of these nanocomposites were investigated by means of wide‐angle X‐ray diffraction (WAXD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and polarized optical microscopy (POM). WAXD results indicate that the layer distance of dodecyl sulfate‐modified LDH (LDH‐DS) is increased in the PLLA/LDH composites, compared with the organically modified LDH. TEM analysis suggests that the most LDH‐DS layers disperse homogenously in the PLLA matrix in the nanometer scale with the intercalated or exfoliated structures. It was found that the incorporation of LDH‐DS has little or no discernable effect on the crystalline structure as well as the melting behavior of PLLA. However, the crystallization rate of PLLA increases with the addition of LDH‐DS. With the incorporation of 2.5 wt % LDH‐DS, the PLLA crystallization can be finished during the cooling process at 5 °C/min. With the addition of 5 wt % LDH‐DS, the half‐times of isothermal melt‐crystallization of PLLA at 100 and 120 °C reduce to 44.4% and 57.0% of those of the neat PLLA, respectively. POM observation shows that the nucleation density increases and the spherulite size of PLLA reduces distinctly with the presence of LDH‐DS. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2222–2233, 2008  相似文献   

11.
The double melting behavior of a thermotropic liquid crystalline polyimide was studied by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), transmission electron microscopy (TEM), wide‐angle X‐ray diffraction (WAXD), and small‐angle X‐ray scattering (SAXS). This liquid crystalline polyimide exhibited a normal melting peak around 278 °C and transformed into a smectic A phase. The smectic A phase changed to nematic phase upon heating to 298 °C, then became isotropic melt around 345 °C. The samples annealed or isothermally crystallized at lower temperature showed double melting endotherms during heating scan. The annealing‐induced melting endotherm was highly dependent on annealing conditions, whereas the normal melting endotherm was almost not influenced by annealing when the annealing temperature was low. Various possibilities for the lower melting endotherm are discussed. The equilibrium melting points of both melting peaks were extrapolated to be 283.2 °C. Combined analytical results showed that the double melting peaks were from the melting of the two types of crystallites generated from two crystallization processes: a slow and a fast one. Fast crystallization may start from the well‐aligned liquid crystal domains, whereas the slow one may be from the fringed or amorphous regions. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3018–3031, 2000  相似文献   

12.
Superior property enhancements in polymer–clay nanocomposites can be achieved if one can significantly enhance the nanoclay dispersion and polymer–clay interactions. Recent studies have shown that nanoclays can be dispersed in polymers using supercritical carbon dioxide (scCO2). However, there is need for a better understanding of how changing the clay modifier affects the clay dispersability by scCO2 and the resultant nanocomposite rheology. To address this, the polystyrene (PS)/clay nanocomposites with “weak” interaction (Cloisite 93A clay) and “strong” interaction (Cloisite 15A clay) have been prepared using the supercritical CO2 method in the presence of a co‐solvent. Transmission electron microscopy images and small‐angle X‐ray diffraction illustrate that composites using 15A and 93A clays show similar magnitude of reduction in the average tactoid size, and dispersion upon processing with scCO2. When PS and the clays are coprocessed in scCO2, the “dispersion” of clays appears to be independent of modifier or polymer–clay interaction. However, the low‐frequency storage modulus in the scCO2‐processed 15A nanocomposites is two orders of magnitude higher than that of 93A nanocomposites. It is postulated that below percolation (solution blended composites), the strength of polymer–clay interaction is not a significant contributor to rheological enhancement. In the scCO2‐processed nanocomposites the enhanced dispersion passes the percolation threshold and the interactions dictate the reinforcement potential of the clay–polymer–clay network. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 823–831, 2010  相似文献   

13.
The crystalline‐phase transition in polyamide‐66/montmorillonite nanocomposites before melting was investigated by in situ X‐ray diffraction and is reported for the first time in this work. The phase‐transition temperature in the nanocomposites was 170 °C, 20 °C lower than that in polyamide‐66. The lower phase‐transition temperature of the nanocomposites could be attributed to the γ‐phase‐favorable environment caused by silicate layers. Meanwhile, the addition of silicate layers changed the crystal structure of the polyamide‐66 matrix and influenced the phase‐transition behavior. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 63–67, 2003  相似文献   

14.
Ethylene‐vinyl alcohol copolymer (EVOH)/clay nanocomposites were prepared via dynamic melt blending. The effect of the processing parameters on blends containing two clay types in different amounts was examined. The blends were characterized with a Brabender plastograph and capillary rheometer, differential scanning calorimetry, dynamic mechanical thermal analysis (DMTA), X‐ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). XRD showed advanced EVOH intercalation within the galleries, whereas TEM images indicated exfoliation, thereby complementing the XRD data. A dilution process with EVOH and clay treatment in an ultrasonic bath before melt blending did not add to the intercalation level. Different trends were observed for the EVOHs containing two different clay treatments, one claimed to be treated for EVOH and the other for amine‐cured epoxy. They reflected the differences in the amounts of the strongly interacting polymer for the two nanocomposites. Thermal analysis showed that the melting temperature, crystallization temperature, and heat of fusion of the EVOH matrix sharply decreased with both increasing clay content and processing times. Significantly higher viscosity levels were obtained for the blends in comparison with those of the neat polymer. The DMTA spectra showed higher glass‐transition temperatures for the nanocomposites in comparison with those of the neat EVOH. However, at high clay loadings, the glass‐transition temperature remained constant, presumably because of an adverse plasticizing effect of the low moleculared mass onium ions treating the clays. The storage modulus improved when clay treated for EVOH was used, and it deteriorated when amine‐cured epoxy clay was incorporated, except for the sonicated clay. TGA results showed significant improvements in the blends' thermal stability in comparison with that of the neat EVOH, which, according to TEM, was greater for the intercalated structures rather than for exfoliated ones. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1741–1753, 2002  相似文献   

15.
Novel bioengineering functional copolymer‐g‐biopolymer‐based layered silicate nanocomposites were fabricated by catalytic interlamellar bulk graft copolymerization of L‐lactic acid (LA) monomer onto alternating copolymer of maleic anhydride (MA) with 1‐octadecene as a reactive matrix polymer in the presence of preintercalated LA…organo‐MMT clay (reactive ODA‐MMT and non‐reactive DMDA‐MMT) complexes as nanofillers and tin(oct)2 as a catalyst under vacuum at 80°C. To characterize the functional copolymer layered silicate nanocomposites and understand the mechanism of in situ processing, interfacial interactions and nanostructure formation in these nanosystems, we have utilized a combination of variuous methods such as FT‐IR spectroscopy, X‐ray diffraction (XRD), dynamic mechanical (DMA), thermal (DSC and TGA‐DTG), SEM and TEM morphology. It was found that in situ graft copolymerization occurred through the following steps: (i) esterification of anhydride units of copolymer with LA; (ii) intercalation of LA between silicate galleries; (iii) intercalation of matrix copolymer into silicate layers through in situ amidization of anhydride units with octadecyl amine intercalant; and (iv) interlamellar graft copolymerization via in situ intercalating/exfoliating processing. The main properties and observed micro‐ and nanoporous surface and internal core–shell morphology of the nanocomposites significantly depend on the origin of MMT clays and type of in situ processing (ion exchanging, amidization reaction, strong H‐bonding and self‐organized hydrophobic/hydrophilic interfacial interactions). This developed approach can be applied to a wide range of anhydride‐containing copolymers such as random, alternating and graft copolymers of MA to synthesize new generation of polymer‐g‐biopolymer silicate layered nanocomposites and nanofibers for nanoengineering and nanomedicine applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
X‐ray diffraction methods and differential scanning calorimetry thermal analysis have been used to investigate the structural changes of syndiotactic polystyrene (sPS)/clay nanocomposites. sPS/clay nanocomposites have been prepared by the mixing of sPS polymer solutions with organically modified montmorillonite. X‐ray diffraction data and differential scanning calorimetry results indicate that the dominating crystal forms and their relative fractions in sPS and sPS/clay nanocomposites are different for various premelting temperatures (Tmax's). Higher Tmax's favor the formation of the thermodynamically more stable β‐crystalline form, and its relative fraction has been obtained from the X‐ray diffraction data in the range of 11.5–13°. The intensity of the X‐ray diffraction data in the range of 11.5–13° decreases as the thickness of sPS/clay nanocomposites decreases from 150 to 20 μm. At the same time, the intensity of the X‐ray data in the range of 6–7° becomes sharper as the thickness of sPS/clay nanocomposites decreases. The calculation ratio based on the peak intensities at 6.2 and 6.8° for sPS/clay nanocomposites of equal thickness and crystallinity in the pure β and α forms has also been determined in this study. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1730–1738, 2003  相似文献   

17.
Two methacrylate‐modified clays have been prepared and used to produce nanocomposites of polystyrene and poly(methyl methacrylate) by in situ polymerization. These nanocomposites have been characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), cone calorimetry and the evaluation of mechanical properties. When the clay contains only a single methacrylate unit, the styrene system is exfoliated but methacrylate is intercalated. When two methacrylate units are present on the cation of the clay, both systems are exfoliated. TGA data show that the thermal stability of all the nanocomposites is improved, as expected. The relationships between the fire properties and nanostructure of the nanocomposites are complicated, as shown by cone calorimetry. The conclusions that one may reach using cone calorimetry do not completely agree with those from XRD and TEM. The evaluation of mechanical properties shows an increase in Young's modulus for all nanocomposites along with a decrease in elongation; tensile strength is decreased for methacrylate nanocomposites but increased for styrenics systems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The preparation and properties of poly(1‐butene) (PB)/clay nanocomposites are described for the first time. Nanocomposites were prepared with the melt‐intercalation technique, using organically modified clay. The X‐ray diffraction patterns portrayed well‐defined diffraction peaks at higher d‐spacing than pristine clay, confirming the intercalation of polymer in silicate layers. Because PB exhibits time‐dependent polymorphism, the effect of clay on the phase transformation of PB was examined with thermal analysis. The phase transformation from a metastable tetragonal form to a stable hexagonal form was enhanced because of incorporation of layered silicates in the polymer matrix. The nanocomposites exhibited about a 40–140% increase in storage modulus depending on the clay content and significantly lower coefficient of thermal expansion. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1014–1021, 2003  相似文献   

19.
The thermochromic behavior of poly(di‐n‐octylsilane) {[Si(C8H17)2]n; PDOS} was studied by ultraviolet (UV) absorption, differential scanning calorimetry, and X‐ray diffraction measurements. The structure of PDOS in the low‐temperature phase strongly depended on not only the temperature but also the rate of cooling, that is, the thermal history. Temperature‐dependent UV absorption spectra were highly dependent on thermal hysteresis. Cooled rapidly (10 K/min), PDOS showed two absorption peaks at 3.32 and 3.51 eV in low‐temperature‐ordered phases, whereas a single absorption peak at 3.32 eV became predominant with slow cooling (0.3 K/min). The appearance of the two peaks at low temperatures suggested that a mixture of different conformations was introduced by rapid cooling. A fiber diffraction pattern measured at 240 K after rapid cooling also showed evidence of the existence of novel conformation. A temperature‐dependent powder X‐ray diffraction pattern changed significantly between 270 and 280 K. Rapid cooling reduced the intensity of the X‐ray diffraction peak in this temperature region. This intensity change was explained by the conformational mixture in the polymer. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1085–1092, 2001  相似文献   

20.
The double melting behavior of poly(butylene terephthalate) (PBT) was studied with differential scanning calorimetry (DSC) and wide‐angle X‐ray analysis. DSC melting curves of melt‐crystallized PBT samples, which we prepared by cooling from the melt (250 °C) at various cooling rates, showed two endothermic peaks and an exothermic peak located between these melting peaks. The cooling rate effect on these peaks was investigated. The melt‐crystallized PBT sample cooled at 24 K min?1 was heated at a rate of 1 K min?1, and its diffraction patterns were obtained successively at a rate of one pattern per minute with an X‐ray measurement system equipped with a position‐sensitive proportional counter. The diffraction pattern did not change in the melting process, except for the change in its peak height. This suggests that the double melting behavior does not originate from a change in the crystal structure. The temperature dependence of the diffraction intensity was obtained from the diffraction patterns. With increasing temperature, the intensity decreased gradually in the low‐temperature region and then increased distinctly before a steep decrease due to the final melting. In other words, the temperature‐dependence curve of the diffraction intensity showed a peak that is interpreted as proof of the recrystallization in the melting process. The peak temperature was 216 °C. The temperature‐dependence curve of the enthalpy change obtained by the integration of the DSC curve almost coincided with that of the diffraction intensity. The double melting behavior in the heating process of PBT is concluded to originate from the increase of crystallinity, that is, recrystallization. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2005–2015, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号