首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New side‐chain cholesteric liquid‐crystalline elastomers containing cholesteryl 4‐allyloxybenzoate as cholesteric mesogenic units and biphenyl 4,4′‐bis(10‐undecen‐1‐ylenate) as smectic crosslinking units were synthesized. The chemical structures of the olefinic compounds and polymers obtained were confirmed by element analysis, Fourier transform infrared, proton nuclear magnetic resonance, and carbon‐13 nuclear magnetic resonance spectra. The mesogenic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. The influence of the concentration of the crosslinking unit on the phase behavior of the elastomers was examined. The elastomers containing less than 17 mol % of the crosslinking units revealed elasticity, reversible mesomorphic phase transition, wider mesophase temperature ranges, and higher thermal stability. The experimental results demonstrated that the glass‐transition temperature, isotropization temperature, and mesophase temperature ranges decreased with an increasing concentation of the crosslinking unit. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5262–5270, 2004  相似文献   

2.
A series of new side‐chain cholesteric elastomers derived from cholesteryl 4‐(10‐undecylen‐1‐yloxy)‐4′‐ethoxybenzoate and phenyl 4,4′‐bis(10‐undecylen‐1‐yloxybenzoyloxy‐p‐ethoxybenzoate) was synthesized. The chemical structures of the monomers were confirmed by elemental analyses, Fourier transform infrared, and 1H NMR and 13C NMR spectra. The mesomorphic properties of elastomers were investigated with differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. The influence of the content of the crosslinking unit on the phase behavior of the elastomers was examined. Monomer M1 showed a cholesteric phase, and M2 displayed smectic and nematic phases. The elastomers containing <15 mol % of the crosslinking units revealed reversible mesomorphic phase transition, wide mesophase temperature ranges, and high thermal stability. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3315–3323, 2005  相似文献   

3.
The phase diagram for solutions of poly(γ‐benzyl‐L ‐glutamate) in dimethylformamide has been investigated over the entire composition and temperature ranges with dielectric spectroscopy. The dielectric response in this system is dominated by ionic mobility, and phase transitions have been detected as changes in the ionic conductivity. The phase boundaries, determined by dielectric spectroscopy, are consistent with earlier published results obtained by a combination of optical microscopy observations and nuclear magnetic resonance and differential scanning calorimetry studies. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3943–3952, 2004  相似文献   

4.
Liquid‐crystalline (LC) ionomers containing 2–15 mol % calcium ions were synthesized by the exchange reaction between the nematic LC copolymer, bearing oxycyanobiphenyl mesogenic groups, and the carboxyl groups of acrylic acid, with calcium acetate. The incorporation of 2–3 mol % Ca ions in the LC copolymer leads to some rise in the clearing point and glass‐transition temperature. A further increase in the concentration of metal ions (>5 mol %) is accompanied by induction of the smectic A phase where clearing point and glass‐transition temperatures keep constant values. Phase behavior of the LC ionomers may be understood on the basis of a structural model that considers the dual role of calcium ions in a polymer matrix. Metal ions act as points of noncovalent electrostatic binding of the polymer chains and are capable of forming larger ionic associates (multiplets). The comparison of the phase behavior of sodium and calcium containing LC ionomers shows that the formation of ionic links may lead to the growth of structure defects suppressing a positive influence of charged groups on the mesophase clearing temperature. The orientation behavior of the LC ionomers in the magnetic field was studied. It was shown that the incorporation of calcium ions (3 mol %) in the LC copolymer matrix leads to the growth of orientation order parameter S of the nematic phase. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3953–3959, 2001  相似文献   

5.
A series of new cholesteric side-chain liquid crystalline polymers were prepared containing cholesteric monomer and nonmesogenic chiral monomer. All polymers were synthesized by graft polymerization using polymethylhydrosiloxane as backbone. The mesomorphic properties were investigated by differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction measurements, and temperature-changing solidistic optical rotation. The chemical structures of the monomers and polymers obtained were confirmed by Fourier transform infrared and proton nuclear magnetic resonance spectra. M1 showed cholesteric phase during the heating and the cooling cycle. Polymer P1 were chiral smectic A phase, whereas P2–P7 were cholesteric phase. Experimental results demonstrated that nonmesogetic chiral moity offered the possibility of application because of its lower glass-transition temperature, and the glass-transition temperatures and isotropization temperatures reduced, and the ranges of the mesophase temperature changed abruptly at first and then smoothly with increasing the content of chiral agent.  相似文献   

6.
A set of poly[ω‐(4′‐cyano‐4‐biphenyloxy)alkyl‐1‐glycidylether]s were synthesized by the chemical modification of the corresponding poly(ω‐bromoalkyl‐1‐glycidylether)s with the sodium salt of 4‐cyano‐4′‐hydroxybiphenyl. New high‐molecular‐weight side‐chain liquid‐crystalline polymers were obtained with excellent yield and almost quantitative degree of modification. All side‐chain liquid‐crystalline polymers were rubbers soluble in tetrahydrofuran. The characterization by 1H and 13C NMR revealed no changes in the regioregular isotactic microstructure of the starting polymer and the absence of undesirable side reactions such as deshydrobromination. The liquid crystalline behavior was analyzed by DSC and polarized optical microscopy, and mesophase assignments were confirmed by X‐ray diffraction. Polymers that had alkyl spacers with n = 2 and 4 were nematic, those that had spacers with n = 6 and 8 were nematic cybotactic, and those that had longer spacers (n = 10 and 12) were smectic C and showed some crystallization of the side alkyl chains. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3002–3012, 2004  相似文献   

7.
1‐Alkynes containing azobenzene mesogenic moieties [HC?C(CH2)9? O? ph? N?N? ph? O? R; R = ethyl ( 1 ), octyl ( 2 ), decyl ( 3 ), (S)‐2‐methylbutyl ( 4 ), or (S)‐1‐ethoxy‐1‐oxopropan‐2‐yl ( 5 ); ph = 1,4‐phenyl] were synthesized and polymerized in the presence of a Rh catalyst {(nbd)Rh+[B(C6H5)4]?; nbd = 2,5‐norbornadiene} to yield a series of liquid‐crystalline polymers in high yields (e.g., >75%). These polymers had moderate molecular weights (number‐average molecular weight ≥ 12,000), high cis contents in the main chain (up to 83%), good thermal stability, and good solubility in common organic solvents, such as tetrahydrofuran, chloroform, and dichloromethane. These polymers were thoroughly characterized by a combination of infrared, nuclear magnetic resonance, thermogravimetric analysis, differential scanning calorimetry, polarized optical microscopy, and two‐dimensional wide‐angle X‐ray diffraction techniques. The liquid‐crystalline behavior of these polymers was dependent on the tail group attached to the azobenzene structure. Poly‐ 1 , which had the shortest tail group, that is, an ethyl group, showed a smectic A mesophase, whereas poly‐ 2 , poly‐ 3 , and poly‐ 5 , which had longer or chiral tail groups, formed smectic C mesophases, and poly‐ 4 , which had another chiral group attached to the azobenzene structure, showed a chiral smectic C mesophase in both the heating and cooling processes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4532–4545, 2006  相似文献   

8.
The detailed mesophasic characterization of main chain liquid crystalline polyurethanes containing biphenyl mesogen, which were synthesized by the novel AB‐type self‐polycondensation approach, was carried out by using Differential Scanning Calorimetry (DSC), Polarized Optical Microscopy (POM), variable temperature X‐ray Diffraction (XRD), and Fourier Transform Infrared (FT‐IR) spectroscopic studies. The type of mesophase present in these polymers was identified to be the smectic A phase by POM and XRD studies. The smectic layer thickness was found to increase as the length of the spacer increased. The effect of temperature on the hydrogen bonding was analyzed by FT‐IR studies. The curve‐fitting analysis of the NH stretching and C?O stretching modes of vibrations indicated a gradual decrease in hydrogen bonding during the transition from the crystalline state to the mesophase. The mesophase to isotropic liquid transition was then accompanied by the complete disappearance of the hydrogen bonding. The biphenyl bands also showed changes during phase transitions due to the coupling of biphenyl vibration modes with the urethane linkage attached to it. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1903–1912, 2005  相似文献   

9.
An Erratum has been published for this article in Journal of Polymer Science Part A: Polymer Chemistry (2003) 41(23) 3862 A new series of combined‐type, azobenzene‐based organophosphorus liquid‐crystalline polymers were synthesized, and their photoisomerization properties were studied. The prepared polymers contained azobenzene units as both the main‐chain and side‐chain mesogens. Various groups were substituted in the terminal of the side‐chain azobenzene mesogen, and the effects of the substituents were investigated. All the polymers were prepared at the ambient temperature by solution polycondensation with various 4‐substituted phenylazo‐4′‐phenyloxyhexylphosphorodichloridates and 4,4′‐bis(6‐hydroxyhexyloxy) azobenzene. The polymers were characterized with gel permeation chromatography, Fourier transform infrared, and 1H, 13C, and 31P NMR spectroscopy. Thermogravimetric analysis revealed that all the polymers had high char yields. The liquid‐crystalline behavior of the polymers was examined with hot‐stage optical polarizing microscopy, and all the polymers showed liquid‐crystalline properties. The formation of a mesophase was confirmed by differential scanning calorimetry (DSC). The DSC data suggested that mesophase stability was better for electron‐withdrawing substituents than for halogens and unsubstituted ones. Ultraviolet irradiation studies indicated that the time taken for the completion of photoisomerization depended on the dipolar moment, size, and donor–acceptor characteristics of the terminal substituents. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3188–3196, 2003  相似文献   

10.
The synthesis of two vinyl‐terminated side‐chain liquid‐crystalline polyethers containing benzylideneaniline moieties as mesogenic cores was approached in two different ways: by chemically modifying poly(epichlorohydrin) with suitable mesogenic acids or by polymerizing analogous glycidyl ester or glycidyl ether derivatives. In all the conditions tested, the first approach led to materials in which the imine group was hydrolyzed. The second approach led to the desired polymers PG2a and PG2b , but only from the glycidyl ether derivatives and when the initiator was the system that combined polyiminophosphazene base t‐Bu‐P4 and 3,5‐di‐t‐butylphenol. These polymers were chemically characterized by IR and 1H and 13C NMR spectroscopies. The estimated degrees of polymerization ranged from 30 to 36. The liquid crystalline behavior of the synthesized polymers was studied by differential scanning calorimetry, polarized optical microscopy (POM) and X‐ray diffraction. Both polymers behave like liquid crystals and exhibited a single mesophase, which was recognized as a smectic C mesophase, probably with a bilayer arrangement, i.e., a smectic C2 mesophase. The crosslinking of both polymers was performed with dicumyl peroxide as initiator, which led to liquid crystalline thermosets. POM and X‐ray diffraction confirmed that the mesophase organization mantained on the crosslinked materials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1877–1889, 2006  相似文献   

11.
A series of viologen polymers with bromide, tosylate, and triflimide as counterions were prepared by either the Menshutkin reaction or metathesis reaction in a common organic solvent. Their polyelectrolyte behavior in methanol was determined by solution viscosity measurements, and their chemical structures were determined by Fourier transform infrared and Fourier transform NMR spectroscopy. They were characterized for their thermotropic liquid‐crystalline properties with a number of experimental techniques. Each of the viologen polymers with organic counterions had a low melting transition or fusion temperature above which it formed either a high‐order smectic phase or a low‐order smectic phase. Each of them also exhibited a smectic‐to‐isotropic transition. The ranges of the liquid‐crystalline phase were 80–88 °C for viologen polymers with tosylate as a counterion and 120–146 °C for viologen polymers with triflimide as a counterion. They had excellent thermal stability. The ranges of thermal stability were 288–329 °C for viologen polymers with tosylate as a counterion and 343–350 °C for viologen polymers with triflimide as a counterion. The fluorescence property for all of the viologen polymers in either aqueous or methanol solution was also included in this study. For example, the viologen polymer containing the 4,4′‐bipyridinium and p‐xylyl units along the backbone of the polymer chain with triflimide as a counterion had an absorption spectrum (λmax = 265 nm), an excitation spectrum (λex values = 357, 443, and 454 with monitoring at 533 nm), and an emission spectrum (λem = 536 nm with excitation at 430 and 450 nm) in methanol. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 659–674, 2002; DOI 10.1002/pola.10134  相似文献   

12.
Two series of vinyl‐terminated, side‐chain liquid‐crystalline polyethers containing 4,4′‐biphenyl and 2,6‐naphthalene moieties as mesogenic cores with several contents of vinyl crosslinkable groups were synthesized by chemically modifying poly(epichlorohydrin) with mixtures of saturated and vinyl‐terminated mesogenic acids. In most cases the degree of modification was over 90%. The polymers were characterized by chlorine analysis, IR and 1H and 13C NMR spectroscopies, viscometry, size exclusion chromatography/multi‐angle laser light scattering, and thermogravimetric analysis. The liquid‐crystal behavior of all the synthesized polymers was examined by differential scanning calorimetry, polarized optical microscopy (POM), and X‐ray diffraction on mechanically oriented samples. The crosslinking of most polymers was done by peroxide‐type initiators, which generally led to liquid‐crystal elastomers. The mesophase organization was maintained on the crosslinked materials, as confirmed by POM and X‐ray diffraction. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3384–3399, 2003  相似文献   

13.
Narrow fractions of a side‐chain acrylate oligomer/polymer with phenyl benzoate side chains are separated in a broad range of the degree of polymerization (7 ≤ Pw ≤ 149). An examination of the phase behavior of the obtained fractions has shown that only the longer macromolecules can form the two‐dimensional K (TDK) mesophase, whereas oligomers of a shorter main chain form the conventional nematic phase only. A critical Pw value has been observed to be necessary for the TDK mesophase formation. The temperatures and enthalpies of liquid‐crystalline phase transitions have been studied as a function of the molar mass, and the phase‐growth kinetics for the TDK phase have been studied with an Avrami treatment. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2352–2360, 2005  相似文献   

14.
A homologous series of side‐chain liquid crystalline (SCLC) poly{[N‐[10‐((4‐(((4′‐n‐hexyloxy)benzoyl)oxy)phenoxy)carbonyl)‐n‐decyl]maleimide]‐co‐[N‐(n‐octadecyl)maleimide]} [(ME6)‐co‐(MI‐18)] random copolymers with various MI‐18 contents have been synthesized and their properties studied. The high content in threo‐disyndiotactic sequences of the maleimide main chain seems responsible for the stability of the highly ordered smectic mesophase. The relationship between structure and composition on thermotropic mesophase was investigated by polarizing optical microscopy, differential scanning calorimetry, and X‐ray diffraction. For copolymers with mesogenic unit contents less than ~0.655 molar fraction the transition from (SA) texture to isotropic (I) is maintained, as shown by the TCl, ΔHCl and ΔSCl amounts and intermolecular spacing 4.42–4.53 Å and intralayer correlation lengths of 44.2–45.2 Å. The layer thickness does not appreciably depend on copolymer composition. However, copolymers with non‐mesogenic comonomer MI‐18 molar contents larger than >0.655 molar fraction X(M), are no longer liquid crystalline materials, despite its packing is preserved without any detectable appearance of birefringence. Thermodynamic boundaries of the liquid crystalline state have been established through a phase diagram. The properties of this n‐hexyloxy pendant group‐based series are compared to those of the analogous materials containing methoxy pendant groups (ME1), and differences are accounted for in terms of the local side‐chain packing within the mesophase. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
New hydrogen‐bonded liquid‐crystalline poly(ester amide)s (PEA)s were obtained from 1,4‐terephthaloyl[bis‐(3‐nitro‐N‐anthranilic acid)] (5) or 1,4‐terephthaloyl[bis‐(N‐anthranilic acid)] (6), with or without nitro groups, respectively, through the separate condensation of each with hydroquinone or dihydroxynaphthalene. The dicarboxylic monomers were synthesized from 2‐aminobenzoic acid. The phase behavior of the monomers and polymers were studied with differential scanning calorimetry, polarized light microscopy, and wide‐angle X‐ray diffraction methods. Monomer 5, containing nitro groups, exhibited a smectic liquid‐crystalline phase, whereas the texture of monomer 6 without nitro groups appeared to be nematic. The PEAs containing nitro groups exhibited polymorphism (smectic and nematic), whereas those without nitro groups exhibited only one phase transition (a nematic threaded texture). The changes occurring in the phase behavior of the polymers were explained by the introduction of nitro groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1289–1298, 2004  相似文献   

16.
Chiral side‐chain liquid‐crystalline polysiloxanes ( PS‐1 , PS‐2 , PS‐3 , PS‐4 , PS‐5 , PS‐6 ) bearing fluorinated units and sulfonic acid groups were synthesized with poly(methylhydrogeno)siloxane, cholest‐5‐en‐3‐ol(3β)‐4‐(2‐propenyloxy)benzoate, and 3‐trifluoromethyl‐phenyl 3‐sulfo‐4‐undec‐10‐ enoyloxy‐benzoate. The effects of fluorinated units and sulfonic acid groups on characteristic of liquid‐crystalline properties were studied. PS‐1 , PS‐2 , and PS‐3 exhibited both smectic and cholesteric mesophases, while PS‐4 , PS‐5 , and PS‐6 exhibited only cholesteric mesophase. As the polymers contained more fluorinated units and sulfonic acid groups, segregation of the fluorinated segment to the surface and aggregation of hydrogen bonding should occur. Therefore, the highly ordered lamellar mesogen–siloxane matrix systems should be disturbed severely, suggesting that PS‐4 , PS‐5 , and PS‐6 show no smectic phase. The maximum reflection bands become broad and shifted slightly to long wavelength from PS‐1 to PS‐6 . Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
A series of side‐chain liquid‐crystal polymers, poly[6‐[4‐(4′‐n‐alkyl benzoateazo)phenoxy]‐hexylmethacrylate]s (PMAzoCOORm, m = 1, 2, 3, 4, 5, 6, 8, 10, 14, and 18) have been prepared by two synthetic methods. The chemical structure of the monomers was confirmed by 1H NMR and mass spectrometry. The molecular characterizations of the polymers were performed with 1H NMR and gel permeation chromatograph. The phase behaviors of polymers were investigated by the combination of techniques including differential scanning calorimetry, polarized optical microscopy, and small‐angle X‐ray scattering. For m = 1, 2, 3, 4, 5, and 6, the polymers exhibited a monosmectic A phase in which the smectic layer period was almost identical to the side‐chain length. In addition, for m = 2, 3, 4, and 5, they presented the monosmectic C phase in low temperature; moreover, the tilt angle increased from 23.3 to 40.5°. For m = 8, 10, 14, and 18, the polymers showed a bilayer smectic A phase in which the layer spacing was larger than a fully extended side chain but less than two extended chains. On the other hand, for the clearing point, with the increasing of m, it first decreased, and then increased. All of these indicated that the length of alkyl tails played an important role in the phase behaviors of these polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2759–2768  相似文献   

18.
A novel phosphorus‐containing thermotropic liquid crystalline copolyester with kinked unit named as poly(hydroxybenzate‐co‐DOPO‐benzenediol dihydrodipheyl ether terephthalate) (PHDDT) was synthesized successfully by melting transesterification from terephthalic acid (TPA), p‐hydroxybenzoic acid (p‐ABH), 2‐(6‐oxid‐6H‐dibenz(c, e) (1,2) oxaphosphorin 6‐yl)1,4‐benzenediol (DOPO‐HQ), and 4,4′‐dihydroxydiphenyl ether (DOP). The chemical structure, the mesophase behavior, and the thermal properties of the copolyesters were characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H, 13C, and 31P NMR), wide‐angle X‐ray diffraction, polarizing light microscopy (PLM), differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. Results suggested that PHDDTs exhibited the typical nematic mesophase that occurred at low temperatures and maintained in a broad temperature range from 230 °C to higher than 400 °C, and had low glass transition temperature ranging from 154.5 to 166.9 °C. The novel phosphorus‐containing thermotropic liquid crystalline copolyester will have a potential application in preparing various in situ reinforced polymer materials with excellent mechanical properties and flame retardancy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4703–4709, 2009  相似文献   

19.
An approach for the creation of a novel family of multifunctional crown‐ether‐containing comb‐shaped copolyacrylates consisting of chromophoric (azobenzene), ionophoric (crown‐ether), and mesogenic groups in the same macromolecule was developed. Phase behavior of the copolymers was studied, and correlation between their molecular structure and thermal properties was established. The increase of crown‐ether‐containing groups' concentration up to 26 mol % leads to disruption of nematic order and formation of amorphous phase. Influence of copolymers complexation with potassium perchlorate on mesomorphic properties of such systems was investigated. It was shown that complexation leads to decrease in mesophase thermostability due to the significant reducing of the side group anisometry by perchlorate counter ion. The comparative investigations of photooptical properties and photoorientation processes of copolymers and their complexes were also performed. An essential difference in kinetics of photooptical behavior was revealed; the bulky crown‐ether substituents decrease rotational mobility and prevent photoorientation process of azobenzene fragments diminishing photoinduced orientation and order parameter. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6532–6541, 2008  相似文献   

20.
On the basis of the concept of mesogen‐jacketed liquid crystalline polymers, a series of new methacrylate monomers, (2,5‐bis[2‐(4′‐alkoxyphenyl) ethynyl] benzyl methacrylate (MACn, n = 4, 6, 8, 10, and 12) and 2,5‐bis[2‐(6′‐decanoxynaphthyl) ethynyl] benzyl methacrylate (MANC10), and their polymers, PMACn (n = 4, 6, 8, 10, and 12) and PMANC10 were synthesized. The bistolane mesogen with large π‐electron conjugation were side‐attached to the polymer backbone via short linkages. Various characterization techniques such as differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized light microscopy were used to study their mesomorphic phase behavior. The polymer PMACn with shorter flexible substituents (n = 4) forms the columnar nematic (?N) phase, but other polymers with longer flexible tails (n = 6, 8, 10, and 12) can develop into a smetic A (SA) phase instead of a ?N phase. The PMANC10 containing naphthyl can also form a well‐defined SA phase. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号