首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Two series of novel crosslinked siloxane‐based polymers and their complexes with lithium perchlorate (LiClO4) were prepared and characterized by Fourier transform infrared spectroscopy, solid‐state NMR (13C, 29Si, and 7Li nuclei), and differential scanning calorimetry. Their thermal stability and ionic conductivity of these complexes were also investigated by thermogravimetric and AC impedance measurements. In these polymer networks, poly(propylene oxide) chains with different molecular weights were introduced through self‐synthesized epoxy‐siloxane precursors cured with two curing agents. The glass‐transition temperature (Tg) of these copolymers is dependent on the length of the ether units. The dissolution of LiClO4 considerably increases the Tg of the polyether segments. The dependence of the ionic conductivity was investigated as a function of temperature, LiClO4 concentration, and the molecular weight of the polyether segments. The ion‐transport behavior was affected by the combination of the ionic mobility and number of carrier ions. The 7Li solid‐state NMR line shapes of these polymer complexes suggest a significant interaction between Li+ ions and the polymer matrix, and temperature‐ and LiClO4 concentration‐dependent chemical shifts are correlated with ionic conductivity. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1226–1235, 2002  相似文献   

2.
New segmented polyurethanes with perfluoropolyether (PFPE) and poly(ethylene oxide) blocks were synthesized from a fluorinated macrodiol mixed with poly(ethylene glycol) (PEG) in different ratios as a soft segment, 2,4‐toluene diisocyanate as a hard segment, and ethylene glycol as a chain extender. Fourier transform infrared, NMR, and thermal analysis [differential scanning calorimetry and thermogravimetric analysis (TGA)] were used to characterize the structures of these copolymers. The copolymer films were immersed in a liquid electrolyte (1 M LiClO4/propylene carbonate) to form gel‐type electrolytes. The ionic conductivities of these polymer electrolytes were investigated through changes in the copolymer composition and content of the liquid electrolyte. The relative molar ratio of PFPE and PEG in the copolymer played an important role in the conductivity and the capacity to retain the liquid electrolyte solution. The copolymer with a 50/50 PFPE/PEG ratio, having the lowest decomposition temperature shown by TGA, exhibited the highest ionic conductivity and lowest activation energy for ion transportation. The conductivities of these systems were about 10?3 S cm?1 at room temperature and 10?2 S cm?1 at 70 °C; the films immersed in the liquid electrolyte with an increase of 70 wt % were homogenous with good mechanical properties. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 486–495, 2002; DOI 10.1002/pola.10119  相似文献   

3.
A simple but efficient strategy has been developed for the synthesis of novel di‐, tri‐, multi‐, and star‐block copolymers comprising poly(ethylene glycol) (PEG) and polyisobutylene (PIB) blocks. The synthesis principle involves the coupling of appropriately terminally functionalized PEG and PIB sequences, specifically the hydrosilation of mono‐, di‐, and tetra‐allyl‐telechelic PEGs (PEG‐allyl, allyl‐PEG‐allyl, and C(‐PEG‐allyl)4 by mono‐ and di‐Si(CH3)2H telechelic PIBs (PIB‐SiH and HiS‐PIB‐SiH). Representative block copolymers, for example, PEG‐PIB, PIB‐PEG‐PIB, (‐PIB‐PEG‐)n, and C(‐PEG‐PIB)4 have been assembled and their structures determined by 1H and 13C NMR spectroscopy. The bulk and surface morphology of select triblocks have been investigated by DSC and AFM and the findings interpreted in terms of phase‐separated PEG and PIB microdomains. The swelling behavior in water of various block copolymers also has been studied. Block copolymers containing 50–70 wt % PIB produce hydrogels, the integrity of which is maintained by physical crosslinks by PIB segments. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3200–3209, 2000  相似文献   

4.
Characterizations were carried out to study on a new plasticized solid polymer electrolyte that was composed of blends of poly(vinyl chloride) (PVC), liquid 50% epoxidized natural rubber (LENR50), ethylene carbonate, and polypropylene carbonate. This freestanding solid polymer electrolyte (SPE) was successfully prepared by solution casting technique. Further analysis and characterizations were carried out by using scanning electron microscopy (SEM), X-ray diffraction, differential scanning calorimeter (DSC), Fourier transform infrared (ATR-FTIR), and impedance spectroscopy (EIS). The SEM results show that the morphologies of SPEs are compatible with good homogeneity. No agglomeration was observed. However, upon addition of salt, formation of micropores occurred. It is worth to note that micropores improve the mobility of ions in the SPE system, thus increased the ionic conductivity whereas the crystallinity analysis for SPEs indicates that the LiClO4 salt is well complexed in the plasticized PVC-LENR50 as no sharp crystallinity peak was observed for 5–15% wt. LiClO4. This implies that LiClO4 salt interacts with polymer host as more bonds are form via coordination bonding. In DSC study, it is found that the glass temperature (T g) increased with the concentration of LiClO4. The lowest T g was obtained at 41.6 °C when incorporated with 15% wt. LiClO4. The features of complexation in the electrolyte matrix were studied using ATR-FTIR at the peaks of C=O, C–O–C, and C–Cl. In EIS analysis, the highest ionic conductivity obtained was 1.20?×?10?3 S cm?1 at 15% wt. LiClO4 at 353 K.  相似文献   

5.
To obtain solid polymer electrolytes (SPEs) having high ionic conductivity together with mechanical integrity, we have synthesized polystyrene (PSt)‐polyether (PE) diblock copolymers via one‐pot anionic polymerization. The PSt block is expected to aggregate to act as hard fillers in the SPE to enhance the mechanical property. The PE block consists of random copolymer (P(EO‐r‐MEEGE)) of ethylene oxide (EO) and 2‐(2‐methoxyethoxy) ethyl glycidyl ether (MEEGE) in different molar ratios ([EO]/[MEEGE] = 100/0, 86/14, 75/25, 68/32, and 41/59). The introduction of the MEEGE moiety in PEO reduced the crystallinity of PEO, and the fast motion of the MEEGE side chain caused plasticization of the PE block, thereby contributing to the fast ion transport. SPEs were fabricated by mixing the obtained diblock copolymer (PSEx) and lithium bis(trifluoromethanesulfonyl) amide (LiTFSA) with [Li]/[O] = 0.05. Ionic conductivity of the obtained SPEs was dependent on the molar ratio of EO in the PE block (x) as well as the weight fraction of PE block (fPE) in the block copolymer. PSE0.86 (fPE = 0.65) exhibited high ionic conductivity (3.3 × 10?5 S cm?1 at 30°C; 1.1 × 10?4 S cm?1 at 60°C) comparable with that of P(EO‐r‐MEEGE) (PE0.85; fPE = 1.00) (9.8 × 10?5 S cm?1 at 30°C; 4.0 × 10?4 S cm?1 at 60°C).  相似文献   

6.
Allyl ether‐functional polycarbonates, synthesized by organocatalytic ring‐opening polymerization of the six‐membered cyclic carbonate monomer 2‐allyloxymethyl‐2‐ethyltrimethylene carbonate, were used to prepare non‐polyether polymer electrolytes. UV‐crosslinking of the allyl side groups provided mechanically stable electrolytes with improved molecular flexibility—Tg below ?20 °C—and higher ionic conductivity—up to 4.3 × 10?7 S/cm at 25 °C and 5.2 × 10?6 S/cm at 60 °C—due to the plasticizing properties of the allyl ether side groups. The electrolyte function was additionally demonstrated in thin‐film Li battery cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2128–2135  相似文献   

7.
Hybrid organic–inorganic materials derived from 3‐glycidoxypropyltrimethoxylsilane were prepared via two different synthetic routes: (1) the HCl‐catalyzed sol–gel approach of silane followed by the lithium perchlorate (LiClO4)/HCl‐catalyzed opening of epoxide and (2) the simultaneous gelation of tin/LiClO4‐catalyzed silane/epoxide groups. LiClO4 catalyzed the epoxide polymerization, and its effects on the structures of these hybrid materials were studied by NMR. The structure of the inorganic side was probed by solid‐state 29Si NMR spectroscopy, and the characterizations of the organic side and the chemical processes involved in the different synthetic routes were performed with solid‐state cross‐polarity/magic‐angle‐spinning 13C NMR. The different synthetic routes significantly affected the polymerization behaviors of the organic and inorganic sides in the presence of LiClO4. A larger amount of LiClO4 promoted the opening of epoxide and led to the formation of longer poly(ethylene oxide) chains via the HCl‐catalyzed sol–gel approach, whereas in the case of the tin‐catalyzed approach, the faster polymerization of the inorganic side hindered the growth of the organic network. The addition of LiClO4 was proven to be without crystalline salt present in the hybrid networks by wide‐angle X‐ray powder diffraction. Also, the interactions between the ions and hybrid host, examined with Fourier transform infrared and 7Li proton‐decoupled magic‐angle‐spinning NMR, further demonstrated that extensive ion aggregation existed in these hybrid materials. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 151–161, 2004  相似文献   

8.
New solid polymer electrolytes are developed for a lithium power source used at the temperatures up to 100°C. Polyester diacrylate (PEDA) based on oligohydroxyethylacrylate and its block copolymers with polyethylene glycol were offered for polymer matrix formation. The salt used was LiClO4. The ionic conductivity of electrolytes was measured in the range of 20 to 100°C using the electrochemical impedance method. It is shown that the maximum conductivity in the whole temperature range is characteristic of the electrolyte based on the PEDA copolymer and polyethylene glycol condensation product (2.8 × 10?6 S cm?1 at 20°C, 1.8 × 10?4 S cm?1 at 95°C).  相似文献   

9.
Details on the structure and transport characteristics of the solid polymer electrolyte polyethylene oxide (PEO)/lithium salt (LiClO4) modified by novolac phenolic resin are presented here. From IR spectra it could be concluded that complex formation occurred through multiple interactions between the ether oxygen of PEO–lithium, phenolic lithium, and the phenolic ether oxygen of PEO. The free hydroxyl band in phenolic reflected that phenolic closely interacted with both the PEO polymer and ionic salt. With increasing salt content in PEO, the vibration band corresponding to the ClO anion (~623 cm?1) displayed growth of a shoulder at ~635 cm?1, suggesting the formation of Li+…ClO4? ion pairing. However, in the presence of phenolic, ion‐pairing formation was effectively suppressed, which suggested that the phenolic moiety facilitated a greater degree of LiClO4 salt dissociation. Activation energy analysis revealed two conducting pathways: one through the amorphous PEO and the other through the PEO/phenolic amorphous matrix. The high ion conductivity originated from effective salt dissociation and the establishment of a new conduction network formed by PEO and phenolic. Furthermore, the structural modification also extended the thermal stability and mechanical strength of the solid polymer electrolyte composite. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3866–3875, 2004  相似文献   

10.
Ionic liquid monomer couples were prepared by the neutralization of 1‐vinylimidazole with vinylsulfonic acid or 3‐sulfopropyl acrylate. These ionic liquid monomer couples were viscous liquid at room temperature and showed low glass transition temperature (Tg) at ?83 °C and ?73 °C, respectively. These monomer couples were copolymerized to prepare ion conductive polymer matrix. Thus prepared ionic liquid copolymers had no carrier ions, and they showed very low ionic conductivity of below 10?9 S cm?1. Equimolar amount of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) to imidazolium salt unit was then added to generate carrier ions in the ionic liquid copolymers. Poly(vinylimidazolium‐co‐vinylsulfonate) containing equimolar LiTFSI showed the ionic conductivity of 4 × 10?8 S cm?1 at 30 °C. Advanced copolymer, poly(vinylimidazolium‐co‐3‐sulfopropyl acrylate) which has flexible spacer between the anionic charge and polymer main chain, showed the ionic conductivity of about 10?6 S cm?1 at 30 °C, which is 100 times higher than that of copolymer without spacer. Even an excess amount of LiTFSI was added, the ionic conductivity of the copolymer kept this conductivity. This tendency is completely different from the typical polyether systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Five ionic imidazolium based monomers, namely 1‐vinyl‐3‐ethylimidazolium bis(trifluoromethylsulfonyl)imide (ILM1), 1‐vinyl‐3‐(diethoxyphosphinyl)‐propylimidazolium bis(trifluoromethylsulfonyl)imide (ILM2), 1‐[2‐(2‐methyl‐acryloyloxy)‐propyl]‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (ILM3), 1‐[2‐(2‐methyl‐acryloyloxy)‐undecyl]‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (ILM4), 1‐vinyl‐3‐ethylimidazolium dicyanamide (ILM5) were prepared and used for the synthesis of linear polymeric ionic liquids (PILs), crosslinked networks with polyethyleneglycol dimethacrylate (PEGDM) and interpenetrating polymer networks (IPNs) based on polybutadiene (PB). The ionic conductivities of IPNs prepared using an in situ strategy were found to depend on the ILM nature, Tg and the ratio of the other components. Novel ionic IPNs are characterized by increased flexibility, small swelling ability in ionic liquids (ILs) along with high conductivity and preservation of mechanical stability even in a swollen state. The maximum conductivity for a pure IPN was equal to 3.6 × 10?5 S/cm at 20 °C while for IPN swollen in [1‐Me‐3‐Etim] (CN)2N σ reached 8.5 × 10?3 S/cm at 20 °C or 1.4 × 10?2 S/cm at 50 °C. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4245–4266, 2009  相似文献   

12.
Novel calixarene‐centered amphiphilic A2B2 miktoarm star copolymers composed of two PCL arms and two PEG arms with calix[4]arene as core moiety were synthesized by the combination of CROP and “click” chemistry. First, a heterotetrafunctional calix[4]arene derivative with two hydroxyl groups and two alkyne groups was designed as a macroinitiator to prepare calixarene‐centered PCL homopolymers (C4‐PCL) by CROP in the presence of Sn(Oct)2 as catalyst at 110 °C. Next, azide‐terminated PEG (A‐PEG) was synthesized by tandem treating methoxy poly(ethylene glycol)s (mPEG) with 4‐chlorobutyryl chloride and NaN3. Finally, copper(I)‐catalyzed cycloaddition reaction between C4‐PCL and A‐PEG led to A2B2 miktoarm star copolymer [C4S(PCL)2‐(PEG)2]. 1H NMR, FT‐IR, and SEC analyses confirmed the well‐defined miktoarm star architecture. These amphiphilic miktoarm star copolymers could self‐assemble into multimorphological aggregates in water. The calix[4]arene moieties with a cavity <1 nm on the hydrophilic/hydrophobic interface of these aggregates may provide potential opportunities to entrap guest molecules for special applications in supermolecular science. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
A series of novel poly(urethane-PEO-polar siloxane) copolymers and their complexes with LiClO4 were prepared for assessment as polymer electrolytes and characterized by IR, GPC, and DSC, and their ionic conductivity and thermal stability were tested. The incorporation of polar siloxanes into U-PEO greatly increased conductivity. The highest conductivity was 2.6 × 10?5 S cm?1 at 25°C. The correlation between Tg, conductivity, and the ratio of siloxane to PEO as well as stability of the polymers are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
The crystallinity and conductivity of nanoparticle‐filled solid polymer electrolytes (SPEs) are investigated as a function of thermal history and water content. Our objective is to evaluate how performance is affected by the conditions under which the SPEs are handled and tested. The samples consist of polyethylene oxide (PEO), LiClO4, and Al2O3 nanoparticles. At low humidity, SPEs at ether oxygen to lithium ratios of 8:1 do not crystallize immediately; instead, 3 days are required for crystallization to occur, and this does not depend strongly on the presence of nanoparticles. The conductivity is improved by the addition of nanoparticles at low humidity, but only at an ether oxygen to lithium ratio of 10:1, which corresponds to the eutectic concentration. At high humidity, the recrystallization time is delayed for 3 weeks, and the conductivity increases in both filled and unfilled SPEs beyond that of the low humidity samples. Although we observe that water amplifies the influence of nanoparticles on conductivity, we also find that nanoparticles inhibit water uptake—but only in the presence of lithium. Because Li+ strongly absorbs water, this result suggests that nanoparticles may interact directly with Li+ ions to prevent water uptake. In filled samples at the eutectic concentration (10:1), more water is absorbed compared to the nanoparticle‐filled 8:1 samples, even though less lithium is present. This suggests that nanoparticles may segregate to lithium‐poor regions in the 10:1 samples, and this scenario is supported by the morphology that would be expected at the eutectic concentration. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1496–1505, 2011  相似文献   

15.
Polyurea, which was synthesized from 4,4′‐diphenylmethane diisocyanate, Jeffamine‐ED2001 (weight‐average molecular weight: 2000), and 3,5‐diaminobanzoic acid (DABA) were doped with lithium perchlorate (LiClO4) as the polyelectrolyte. Differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, and 7Li magic‐angle spinning (MAS) solid‐state NMR were used to monitor changes in the morphology of polyurea electrolytes corresponding to the concentration of LiClO4 dopants. DSC showed the glass‐transition temperature of the hard and soft segments increases with salt concentration. FTIR indicated the carboxylic group of DABA coordinates with the Li+ ion, and the ordered hydrogen‐bonded urea carbonyl groups are destroyed when the salt concentration exceeds 0.5 mmole of LiClO4 (gPUrea)?1. The 7Li MAS solid‐state NMR investigation of the polyurea electrolytes revealed the presence of two Li+ environments at lower temperature. Impedance spectroscopy measurements showed that the conductivity behavior followed the Arrhenius equation, and the maximum conductivity occurred when the crystalline structure of polyurea was disrupted. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 4007–4016, 2003  相似文献   

16.
Typically, phenylethynyl (PE) end‐capped oligomides require a temperature of 370 °C for 1 h to develop a crosslinked system. A published method using poly(ethylene glycol)s (DM‐PEG‐250 and PEG‐400) as cosolvents with NMP was effective in crosslinking the ethynyl end‐caps at 250 °C/3 h in nonsulfonated oligomides. The application of this novel crosslinked method to PE end‐capped sulfonated oligomides was effective but caused a secondary crosslinked network via the sulfonic acid groups and ethylene glycol solvents. The solid‐state 13C NMR spectral data on 13C‐labeled end‐caps in the PE‐3F‐SPI‐3 oligomide provide evidence for the ethynyl to ethynyl and ethylene oxide sulfonate ester dual crosslinked structure. Infrared spectroscopy of model compounds also provides evidence for the presence of crosslinked sulfonate ester and appended sulfonate ester side chains. 13C NMR also provided quantitative data on the extent of the ethynyl to ethynyl crosslinking reaction and sulfonate ester crosslinks and side chains. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
A relatively low‐temperature crosslinking method for phenylethynyl (PE) end‐capped oligomides was developed. PE end‐capped oligomides are typically cured into crosslinked polyimides at 370 °C for about 1 h. The addition of a low viscosity mixed‐solvent of N‐methylpyrrolidinone (NMP)/dimethyl ether of polyethylene glycol (M = 250 g/mol), NMP/DM‐PEG‐250, or NMP/polyethylene glycol (M = 400 g/mol), NMP/PEG‐400, as film forming medium for PE‐end‐capped oligomides was investigated. Fourier transform infrared spectroscopy and 13C NMR showed that the mixed solvent addition was effective for achieving low‐temperature crosslinking of the ethynyl end‐caps over the temperature range 200–250 °C. The low temperature crosslinking process was explained by thermolysis of the PEG molecules over this temperature range forming free radical species such as ~CH2CH2O· or ~CH2CH2· which initiate cure of the ethynyl groups resulting in a cross linked polyimide membrane. The PEG solvents also provide a radical source for the degradation polymerization of the solvents to a water and NMP insoluble polymer, which formed a miscible blend with the crosslinked membrane. Glass transition temperature (differential scanning calorimetry) data and thermo gravimetric analysis data provide evidence for the miscible blend. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3950–3963, 2010.  相似文献   

18.
This article reports our discovery that poly(ethylene glycol) (PEG) can quantitatively be functionalized by transesterification using Candida antarctica lipase B (Novozyme 435) as the catalyst. α‐ω telechelic PEG‐methacrylates and PEG‐acetates were successfully prepared using commercially available PEGs with both narrow and broad molecular weight distribution. 1H and 13C NMR together with MALDI‐TOF mass spectroscopy verified the expected structures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3024–3028, 2008  相似文献   

19.
Novel crosslinkable fluorinated oligoimides were prepared in two steps. The first involved the synthesis of oligoimides terminated with nadic or allylic double bonds, and the second step was materialized either by a radical addition of mercaptotrialkoxysilane derivatives onto nadic double bonds or a hydrosilylation reaction of hydrogenotrialkoxysilane derivative onto allylic double bonds. Three kinds of crosslinking of the trialkoxysilane end groups were studied. The first kind entailed a thermal self‐crosslinking of trialkoxysilane groups. The second process of crosslinking incorporated a bicomponent system—the crosslinked agent was 1,1,1‐tris(4‐hydroxyphenyl)ethane (TRIOH). The trialkoxysilane groups reacted with the hydroxyl–phenol groups of TRIOH to give thermally stable phenoxysilane bonds as well as a crosslinking network. The last method was also a bicomponent system; the oxalic acid was added into an oligoimide solution where by thermal treatment water was created. The water molecules hydrolyzed the trialkoxysilane groups into silanol groups that polycondensed into a crosslinked network following a sol–gel process. The mechanism of the different crosslinking reactions was investigated by Fourier transform infrared spectroscopy and solid‐state 29Si NMR. The self‐crosslinked material prepared from precursor α,ω‐trimethoxysilyl fluorinated oligomer (Mn = 5500 g · mol?1) exhibited a 10 wt % loss temperature under air higher than 420 °C and a low birefringence (Δn = 0.008) at 1.300 μm. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2602–2619, 2001  相似文献   

20.
Nine new kinds of thermosetting polymers with the Si(H)? C?C unit were synthesized by dehydrogenative polycondensation reactions between hydrosilanes and diethynyl compounds in the presence of a magnesia catalyst. Phenylsilane, silane, vinylsilane, and n‐octylsilane were used as the hydrosilanes, and 1,3‐diethynylbenzene, 1,4‐diethynylbenzene, 4,4′‐diethynyldiphenyl ether, and 1,3‐diethynyl‐1,1,3,3‐tetramethyldisiloxane were used as the diethynyl compounds. All the polymers were thermosetting, highly heat‐resistant, easily soluble in a solvent, and moldable. In particular, ? Si(R)H? C?C? C6H4? C?C? (R = H or CH?CH2) showed high thermal stability; the temperature of 5% weight loss was greater than 800 °C, and the residue at 1000 °C was over 90%. The thermal stabilities of the polymers were attributed to the crosslinking reaction of the Si? H and C?C bonds. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2658–2669, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号